메뉴 건너뛰기




Volumn 34, Issue 1, 2017, Pages 111-121

Cytopathological image analysis using deep-learning networks in microfluidic microscopy

Author keywords

[No Author keywords available]

Indexed keywords

CELL CULTURE; CELLS; CYTOLOGY; DIAGNOSIS; DISEASES; FEATURE EXTRACTION; IMAGING TECHNIQUES; LEARNING ALGORITHMS; LEARNING SYSTEMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; PERSONNEL TRAINING; THROUGHPUT;

EID: 85009237688     PISSN: 10847529     EISSN: 15208532     Source Type: Journal    
DOI: 10.1364/JOSAA.34.000111     Document Type: Article
Times cited : (24)

References (45)
  • 3
    • 84055182561 scopus 로고    scopus 로고
    • Microfabricated multiple field of view imaging flow cytometry
    • E. Schonbrun, S. S. Gorthi, and D. Schaak, "Microfabricated multiple field of view imaging flow cytometry," Lab. Chip 12, 268-273 (2012).
    • (2012) Lab. Chip , vol.12 , pp. 268-273
    • Schonbrun, E.1    Gorthi, S.S.2    Schaak, D.3
  • 4
    • 84961613417 scopus 로고    scopus 로고
    • Highthroughput miniaturized microfluidic microscopy with radially parallelized channel geometry
    • V. K. Jagannadh, B. P. Bhat, L. A. Nirupa, and S. S. Gorthi, "Highthroughput miniaturized microfluidic microscopy with radially parallelized channel geometry," Anal. Bioanal. Chem. 408, 1909-1916 (2016).
    • (2016) Anal. Bioanal. Chem. , vol.408 , pp. 1909-1916
    • Jagannadh, V.K.1    Bhat, B.P.2    Nirupa, L.A.3    Gorthi, S.S.4
  • 5
    • 84929912627 scopus 로고    scopus 로고
    • Automated quantitative cytological analysis using portable microfluidic microscopy
    • V. K. Jagannadh, R. S. Murthy, R. Srinivasan, and S. S. Gorthi, "Automated quantitative cytological analysis using portable microfluidic microscopy," J. Biophoton. 9, 586-595 (2016).
    • (2016) J. Biophoton. , vol.9 , pp. 586-595
    • Jagannadh, V.K.1    Murthy, R.S.2    Srinivasan, R.3    Gorthi, S.S.4
  • 7
    • 84900449424 scopus 로고    scopus 로고
    • Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-2014; Current status and future potential
    • H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, "Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-2014; current status and future potential," IEEE Rev. Biomed. Eng. 7, 97-114 (2014).
    • (2014) IEEE Rev. Biomed. Eng. , vol.7 , pp. 97-114
    • Irshad, H.1    Veillard, A.2    Roux, L.3    Racoceanu, D.4
  • 8
    • 0030271485 scopus 로고    scopus 로고
    • Morphological feature extraction for the classification of digital images of cancerous tissues
    • J.-P. Thiran and B. Macq, "Morphological feature extraction for the classification of digital images of cancerous tissues," IEEE Trans. Biomed. Eng. 43, 1011-1020 (1996).
    • (1996) IEEE Trans. Biomed. Eng. , vol.43 , pp. 1011-1020
    • Thiran, J.-P.1    Macq, B.2
  • 9
    • 50949089019 scopus 로고    scopus 로고
    • The dynamic brain: From spiking neurons to neural masses and cortical fields
    • G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. J. Friston, "The dynamic brain: from spiking neurons to neural masses and cortical fields," PLoS Comput. Biol. 4, e1000092 (2008).
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000092
    • Deco, G.1    Jirsa, V.K.2    Robinson, P.A.3    Breakspear, M.4    Friston, K.J.5
  • 10
    • 79960292241 scopus 로고    scopus 로고
    • Current status and future potential of neural networks used for medical image processing
    • Z. Shi and L. He, "Current status and future potential of neural networks used for medical image processing," J. Multimedia 6, 244-251 (2011).
    • (2011) J. Multimedia , vol.6 , pp. 244-251
    • Shi, Z.1    He, L.2
  • 12
    • 84958865234 scopus 로고    scopus 로고
    • Framework for morphometric classification of cells in imaging flow cytometry
    • G. Gopakumar, V. K. Jagannadh, S. S. Gorthi, and G. R. K. S. Subrahmanyam, "Framework for morphometric classification of cells in imaging flow cytometry," J. Microsc. 261, 307-319 (2016).
    • (2016) J. Microsc. , vol.261 , pp. 307-319
    • Gopakumar, G.1    Jagannadh, V.K.2    Gorthi, S.S.3    Subrahmanyam, G.R.K.S.4
  • 13
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial: Deep learning in medical imaging: Overview and future promise of an exciting new technique
    • H. Greenspan, B. van Ginneken, and R. M. Summers, "Guest editorial: deep learning in medical imaging: overview and future promise of an exciting new technique," IEEE Trans. Med. Imaging 35, 1153-1159 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , pp. 1153-1159
    • Greenspan, H.1    Van Ginneken, B.2    Summers, R.M.3
  • 15
    • 84869824905 scopus 로고    scopus 로고
    • Imaging flow cytometry: Coping with heterogeneity in biological systems
    • N. Barteneva, E. Fasler-Kan, and I. Vorobjev, "Imaging flow cytometry: coping with heterogeneity in biological systems," J. Histochem. Cytochem. 60, 723-733 (2012).
    • (2012) J. Histochem. Cytochem. , vol.60 , pp. 723-733
    • Barteneva, N.1    Fasler-Kan, E.2    Vorobjev, I.3
  • 16
    • 84897113519 scopus 로고    scopus 로고
    • Improved quantitative analysis of primary bone marrow megakaryocytes utilising imaging flow cytometry
    • L. M. Niswander, K. E. McGrath, J. C. Kennedy, and J. Palis, "Improved quantitative analysis of primary bone marrow megakaryocytes utilising imaging flow cytometry," Cytometry Part A 85, 302-312 (2014).
    • (2014) Cytometry Part A , vol.85 , pp. 302-312
    • Niswander, L.M.1    McGrath, K.E.2    Kennedy, J.C.3    Palis, J.4
  • 19
    • 85019817985 scopus 로고    scopus 로고
    • Microfluidic microscopy-assisted label-free approach for cancer screening: Automated microfluidic cytology for cancer screening
    • V. K. Jagannadh, G. Gopakumar, G. R. K. S. Subrahmanyam, and S. S. Gorthi, "Microfluidic microscopy-assisted label-free approach for cancer screening: automated microfluidic cytology for cancer screening," Med. Biol. Eng. Comput., 1-8 (2016).
    • (2016) Med. Biol. Eng. Comput. , pp. 1-8
    • Jagannadh, V.K.1    Gopakumar, G.2    Subrahmanyam, G.R.K.S.3    Gorthi, S.S.4
  • 22
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • G. Montavon, G. B. Orr, and K.-R. Müller, eds. (Springer)
    • G. E. Hinton, "A practical guide to training restricted Boltzmann machines," in Neural Networks: Tricks of the Trade, G. Montavon, G. B. Orr, and K.-R. Müller, eds. (Springer, 2012), pp. 599-619.
    • (2012) Neural Networks: Tricks of the Trade , pp. 599-619
    • Hinton, G.E.1
  • 23
    • 84859473821 scopus 로고    scopus 로고
    • Learning algorithms for the classification restricted Boltzmann machine
    • H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, "Learning algorithms for the classification restricted Boltzmann machine," J. Mach. Learn. Res. 13, 643-669 (2012).
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 643-669
    • Larochelle, H.1    Mandel, M.2    Pascanu, R.3    Bengio, Y.4
  • 24
    • 78149327745 scopus 로고    scopus 로고
    • Generative versus discriminative training of rbms for classification of fmri images
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds. (Curran Associates)
    • T. Schmah, G. E. Hinton, S. L. Small, S. Strother, and R. S. Zemel, "Generative versus discriminative training of rbms for classification of fmri images," in Advances in Neural Information Processing Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds. (Curran Associates, 2009), pp. 1409-1416.
    • (2009) Advances in Neural Information Processing Systems , vol.21 , pp. 1409-1416
    • Schmah, T.1    Hinton, G.E.2    Small, S.L.3    Strother, S.4    Zemel, R.S.5
  • 26
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science 313, 504-507 (2006).
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 29
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn. 2, 1-127 (2009).
    • (2009) Found. Trends Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 30
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721-741 (1984).
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.PAMI-6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 31
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Comput. 14, 1771-1800 (2002).
    • (2002) Neural Comput. , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 32
    • 0002263996 scopus 로고    scopus 로고
    • Convolutional networks for images, speech, and time series
    • (MIT Press)
    • Y. LeCun and Y. Bengio, "Convolutional networks for images, speech, and time series," in The Handbook of Brain Theory and Neural Networks (MIT Press, 1998), pp. 255-258.
    • (1998) The Handbook of Brain Theory and Neural Networks , pp. 255-258
    • LeCun, Y.1    Bengio, Y.2
  • 34
    • 0030270445 scopus 로고    scopus 로고
    • Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
    • B. Sahiner, H.-P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, and M. M. Goodsitt, "Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images," IEEE Trans. Med. Imag. 15, 598-610 (1996).
    • (1996) IEEE Trans. Med. Imag. , vol.15 , pp. 598-610
    • Sahiner, B.1    Chan, H.-P.2    Petrick, N.3    Wei, D.4    Helvie, M.A.5    Adler, D.D.6    Goodsitt, M.M.7
  • 36
    • 0029569057 scopus 로고
    • Artificial convolution neural network for medical image pattern recognition
    • S.-C. B. Lo, H.-P. Chan, J.-S. Lin, H. Li, M. T. Freedman, and S. K. Mun, "Artificial convolution neural network for medical image pattern recognition," Neural Netw. 8, 1201-1214 (1995).
    • (1995) Neural Netw. , vol.8 , pp. 1201-1214
    • Lo, S.-C.B.1    Chan, H.-P.2    Lin, J.-S.3    Li, H.4    Freedman, M.T.5    Mun, S.K.6
  • 38
    • 84943754825 scopus 로고    scopus 로고
    • Deep learning with non-medical training used for chest pathology identification
    • L. W. Yaniv Bar, I. Diamant, and H. Greenspan, "Deep learning with non-medical training used for chest pathology identification," Proc. SPIE 9414, 94140V (2015).
    • (2015) Proc. SPIE , vol.9414 , pp. 94140V
    • Yaniv Bar, L.W.1    Diamant, I.2    Greenspan, H.3
  • 39
    • 84976273604 scopus 로고    scopus 로고
    • A deep semantic mobile application for thyroid cytopathology
    • E. Kim, M. Corte-Real, and Z. Baloch, "A deep semantic mobile application for thyroid cytopathology," Proc. SPIE 9789, 97890A (2016).
    • (2016) Proc. SPIE , vol.9789 , pp. 97890A
    • Kim, E.1    Corte-Real, M.2    Baloch, Z.3
  • 41
  • 42
    • 84930203768 scopus 로고    scopus 로고
    • Deep convolutional neural networks for annotating gene expression patterns in the mouse brain
    • T. Zeng, R. Li, R. Mukkamala, J. Ye, and S. Ji, "Deep convolutional neural networks for annotating gene expression patterns in the mouse brain," BMC Bioinf. 16, 1-10 (2015).
    • (2015) BMC Bioinf. , vol.16 , pp. 1-10
    • Zeng, T.1    Li, R.2    Mukkamala, R.3    Ye, J.4    Ji, S.5
  • 44
    • 84937118999 scopus 로고    scopus 로고
    • MatConvNet-convolutional neural networks for MATLAB
    • abs/1412.4564
    • A. Vedaldi and K. Lenc, "MatConvNet-convolutional neural networks for MATLAB," CoRR abs/1412.4564 (2014).
    • (2014) CoRR
    • Vedaldi, A.1    Lenc, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.