-
2
-
-
34447542504
-
Cellular image analysis and imaging by flow cytometry
-
D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, "Cellular image analysis and imaging by flow cytometry," Clin. Lab. Med. 27, 653-670 (2007).
-
(2007)
Clin. Lab. Med.
, vol.27
, pp. 653-670
-
-
Basiji, D.A.1
Ortyn, W.E.2
Liang, L.3
Venkatachalam, V.4
Morrissey, P.5
-
3
-
-
84055182561
-
Microfabricated multiple field of view imaging flow cytometry
-
E. Schonbrun, S. S. Gorthi, and D. Schaak, "Microfabricated multiple field of view imaging flow cytometry," Lab. Chip 12, 268-273 (2012).
-
(2012)
Lab. Chip
, vol.12
, pp. 268-273
-
-
Schonbrun, E.1
Gorthi, S.S.2
Schaak, D.3
-
4
-
-
84961613417
-
Highthroughput miniaturized microfluidic microscopy with radially parallelized channel geometry
-
V. K. Jagannadh, B. P. Bhat, L. A. Nirupa, and S. S. Gorthi, "Highthroughput miniaturized microfluidic microscopy with radially parallelized channel geometry," Anal. Bioanal. Chem. 408, 1909-1916 (2016).
-
(2016)
Anal. Bioanal. Chem.
, vol.408
, pp. 1909-1916
-
-
Jagannadh, V.K.1
Bhat, B.P.2
Nirupa, L.A.3
Gorthi, S.S.4
-
5
-
-
84929912627
-
Automated quantitative cytological analysis using portable microfluidic microscopy
-
V. K. Jagannadh, R. S. Murthy, R. Srinivasan, and S. S. Gorthi, "Automated quantitative cytological analysis using portable microfluidic microscopy," J. Biophoton. 9, 586-595 (2016).
-
(2016)
J. Biophoton.
, vol.9
, pp. 586-595
-
-
Jagannadh, V.K.1
Murthy, R.S.2
Srinivasan, R.3
Gorthi, S.S.4
-
6
-
-
67549144549
-
Segmentation of nuclei in cancer tissue images: Contrasting active contours with morphology-based approach
-
S. Di Cataldo, E. Ficarra, A. Acquaviva, and E. Macii, "Segmentation of nuclei in cancer tissue images: contrasting active contours with morphology-based approach," in 8th IEEE International Conference on BioInformatics and BioEngineering (BIBE) (2008), pp. 1-6.
-
(2008)
8th IEEE International Conference on BioInformatics and BioEngineering (BIBE)
, pp. 1-6
-
-
Di Cataldo, S.1
Ficarra, E.2
Acquaviva, A.3
Macii, E.4
-
7
-
-
84900449424
-
Methods for nuclei detection, segmentation, and classification in digital histopathology: A review-2014; Current status and future potential
-
H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, "Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-2014; current status and future potential," IEEE Rev. Biomed. Eng. 7, 97-114 (2014).
-
(2014)
IEEE Rev. Biomed. Eng.
, vol.7
, pp. 97-114
-
-
Irshad, H.1
Veillard, A.2
Roux, L.3
Racoceanu, D.4
-
8
-
-
0030271485
-
Morphological feature extraction for the classification of digital images of cancerous tissues
-
J.-P. Thiran and B. Macq, "Morphological feature extraction for the classification of digital images of cancerous tissues," IEEE Trans. Biomed. Eng. 43, 1011-1020 (1996).
-
(1996)
IEEE Trans. Biomed. Eng.
, vol.43
, pp. 1011-1020
-
-
Thiran, J.-P.1
Macq, B.2
-
9
-
-
50949089019
-
The dynamic brain: From spiking neurons to neural masses and cortical fields
-
G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. J. Friston, "The dynamic brain: from spiking neurons to neural masses and cortical fields," PLoS Comput. Biol. 4, e1000092 (2008).
-
(2008)
PLoS Comput. Biol.
, vol.4
, pp. e1000092
-
-
Deco, G.1
Jirsa, V.K.2
Robinson, P.A.3
Breakspear, M.4
Friston, K.J.5
-
10
-
-
79960292241
-
Current status and future potential of neural networks used for medical image processing
-
Z. Shi and L. He, "Current status and future potential of neural networks used for medical image processing," J. Multimedia 6, 244-251 (2011).
-
(2011)
J. Multimedia
, vol.6
, pp. 244-251
-
-
Shi, Z.1
He, L.2
-
11
-
-
84982169467
-
Artificial neural networks as decision support tools in cytopathology: Past, present, and future
-
A. Pouliakis, E. Karakitsou, N. Margari, P. Bountris, M. Haritou, J. Panayiotides, D. Koutsouris, and P. Karakitsos, "Artificial neural networks as decision support tools in cytopathology: past, present, and future," Biomed. Eng. Comput. Biol. 7, 1-18 (2016).
-
(2016)
Biomed. Eng. Comput. Biol.
, vol.7
, pp. 1-18
-
-
Pouliakis, A.1
Karakitsou, E.2
Margari, N.3
Bountris, P.4
Haritou, M.5
Panayiotides, J.6
Koutsouris, D.7
Karakitsos, P.8
-
12
-
-
84958865234
-
Framework for morphometric classification of cells in imaging flow cytometry
-
G. Gopakumar, V. K. Jagannadh, S. S. Gorthi, and G. R. K. S. Subrahmanyam, "Framework for morphometric classification of cells in imaging flow cytometry," J. Microsc. 261, 307-319 (2016).
-
(2016)
J. Microsc.
, vol.261
, pp. 307-319
-
-
Gopakumar, G.1
Jagannadh, V.K.2
Gorthi, S.S.3
Subrahmanyam, G.R.K.S.4
-
13
-
-
84968661778
-
Guest editorial: Deep learning in medical imaging: Overview and future promise of an exciting new technique
-
H. Greenspan, B. van Ginneken, and R. M. Summers, "Guest editorial: deep learning in medical imaging: overview and future promise of an exciting new technique," IEEE Trans. Med. Imaging 35, 1153-1159 (2016).
-
(2016)
IEEE Trans. Med. Imaging
, vol.35
, pp. 1153-1159
-
-
Greenspan, H.1
Van Ginneken, B.2
Summers, R.M.3
-
15
-
-
84869824905
-
Imaging flow cytometry: Coping with heterogeneity in biological systems
-
N. Barteneva, E. Fasler-Kan, and I. Vorobjev, "Imaging flow cytometry: coping with heterogeneity in biological systems," J. Histochem. Cytochem. 60, 723-733 (2012).
-
(2012)
J. Histochem. Cytochem.
, vol.60
, pp. 723-733
-
-
Barteneva, N.1
Fasler-Kan, E.2
Vorobjev, I.3
-
16
-
-
84897113519
-
Improved quantitative analysis of primary bone marrow megakaryocytes utilising imaging flow cytometry
-
L. M. Niswander, K. E. McGrath, J. C. Kennedy, and J. Palis, "Improved quantitative analysis of primary bone marrow megakaryocytes utilising imaging flow cytometry," Cytometry Part A 85, 302-312 (2014).
-
(2014)
Cytometry Part A
, vol.85
, pp. 302-312
-
-
Niswander, L.M.1
McGrath, K.E.2
Kennedy, J.C.3
Palis, J.4
-
17
-
-
84900864121
-
Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease
-
E. J. Beers, L. Samsel, L. Mendelsohn, R. Saiyed, K. Y. Fertrin, C. A. Brantner, M. P. Daniels, J. Nichols, J. P. McCoy, and G. J. Kato, "Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease," Am. J. Hematol. 89, 598-603 (2014).
-
(2014)
Am. J. Hematol.
, vol.89
, pp. 598-603
-
-
Beers, E.J.1
Samsel, L.2
Mendelsohn, L.3
Saiyed, R.4
Fertrin, K.Y.5
Brantner, C.A.6
Daniels, M.P.7
Nichols, J.8
McCoy, J.P.9
Kato, G.J.10
-
19
-
-
85019817985
-
Microfluidic microscopy-assisted label-free approach for cancer screening: Automated microfluidic cytology for cancer screening
-
V. K. Jagannadh, G. Gopakumar, G. R. K. S. Subrahmanyam, and S. S. Gorthi, "Microfluidic microscopy-assisted label-free approach for cancer screening: automated microfluidic cytology for cancer screening," Med. Biol. Eng. Comput., 1-8 (2016).
-
(2016)
Med. Biol. Eng. Comput.
, pp. 1-8
-
-
Jagannadh, V.K.1
Gopakumar, G.2
Subrahmanyam, G.R.K.S.3
Gorthi, S.S.4
-
20
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "ImageNet: a large-scale hierarchical image database," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009).
-
(2009)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
22
-
-
84872506495
-
A practical guide to training restricted Boltzmann machines
-
G. Montavon, G. B. Orr, and K.-R. Müller, eds. (Springer)
-
G. E. Hinton, "A practical guide to training restricted Boltzmann machines," in Neural Networks: Tricks of the Trade, G. Montavon, G. B. Orr, and K.-R. Müller, eds. (Springer, 2012), pp. 599-619.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 599-619
-
-
Hinton, G.E.1
-
23
-
-
84859473821
-
Learning algorithms for the classification restricted Boltzmann machine
-
H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, "Learning algorithms for the classification restricted Boltzmann machine," J. Mach. Learn. Res. 13, 643-669 (2012).
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 643-669
-
-
Larochelle, H.1
Mandel, M.2
Pascanu, R.3
Bengio, Y.4
-
24
-
-
78149327745
-
Generative versus discriminative training of rbms for classification of fmri images
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds. (Curran Associates)
-
T. Schmah, G. E. Hinton, S. L. Small, S. Strother, and R. S. Zemel, "Generative versus discriminative training of rbms for classification of fmri images," in Advances in Neural Information Processing Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds. (Curran Associates, 2009), pp. 1409-1416.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1409-1416
-
-
Schmah, T.1
Hinton, G.E.2
Small, S.L.3
Strother, S.4
Zemel, R.S.5
-
25
-
-
84881643610
-
Classification of tumor histopathology via sparse feature learning
-
N. Nayak, H. Chang, A. Borowsky, P. Spellman, and B. Parvin, "Classification of tumor histopathology via sparse feature learning," in IEEE 10th International Symposium on Biomedical Imaging (ISBI) (2013), pp. 1348-1351.
-
(2013)
IEEE 10th International Symposium on Biomedical Imaging (ISBI)
, pp. 1348-1351
-
-
Nayak, N.1
Chang, H.2
Borowsky, A.3
Spellman, P.4
Parvin, B.5
-
26
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science 313, 504-507 (2006).
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
29
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn. 2, 1-127 (2009).
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
30
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 721-741 (1984).
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.PAMI-6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
31
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Comput. 14, 1771-1800 (2002).
-
(2002)
Neural Comput.
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
32
-
-
0002263996
-
Convolutional networks for images, speech, and time series
-
(MIT Press)
-
Y. LeCun and Y. Bengio, "Convolutional networks for images, speech, and time series," in The Handbook of Brain Theory and Neural Networks (MIT Press, 1998), pp. 255-258.
-
(1998)
The Handbook of Brain Theory and Neural Networks
, pp. 255-258
-
-
LeCun, Y.1
Bengio, Y.2
-
34
-
-
0030270445
-
Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
-
B. Sahiner, H.-P. Chan, N. Petrick, D. Wei, M. A. Helvie, D. D. Adler, and M. M. Goodsitt, "Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images," IEEE Trans. Med. Imag. 15, 598-610 (1996).
-
(1996)
IEEE Trans. Med. Imag.
, vol.15
, pp. 598-610
-
-
Sahiner, B.1
Chan, H.-P.2
Petrick, N.3
Wei, D.4
Helvie, M.A.5
Adler, D.D.6
Goodsitt, M.M.7
-
35
-
-
84905230329
-
Deep learning of feature representation with multiple instance learning for medical image analysis
-
Y. Xu, T. Mo, Q. Feng, P. Zhong, M. Lai, and E. I. C. Chang, "Deep learning of feature representation with multiple instance learning for medical image analysis," in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014), pp. 1626-1630.
-
(2014)
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, pp. 1626-1630
-
-
Xu, Y.1
Mo, T.2
Feng, Q.3
Zhong, P.4
Lai, M.5
Chang, E.I.C.6
-
36
-
-
0029569057
-
Artificial convolution neural network for medical image pattern recognition
-
S.-C. B. Lo, H.-P. Chan, J.-S. Lin, H. Li, M. T. Freedman, and S. K. Mun, "Artificial convolution neural network for medical image pattern recognition," Neural Netw. 8, 1201-1214 (1995).
-
(1995)
Neural Netw.
, vol.8
, pp. 1201-1214
-
-
Lo, S.-C.B.1
Chan, H.-P.2
Lin, J.-S.3
Li, H.4
Freedman, M.T.5
Mun, S.K.6
-
37
-
-
84949924589
-
Medical image classification with convolutional neural network
-
Q. Li, W. Cai, X. Wang, Y. Zhou, D. Feng, and M. Chen, "Medical image classification with convolutional neural network," in 13th International Conference on Control Automation Robotics Vision (ICARCV) (2014), pp. 844-848.
-
(2014)
13th International Conference on Control Automation Robotics Vision (ICARCV)
, pp. 844-848
-
-
Li, Q.1
Cai, W.2
Wang, X.3
Zhou, Y.4
Feng, D.5
Chen, M.6
-
38
-
-
84943754825
-
Deep learning with non-medical training used for chest pathology identification
-
L. W. Yaniv Bar, I. Diamant, and H. Greenspan, "Deep learning with non-medical training used for chest pathology identification," Proc. SPIE 9414, 94140V (2015).
-
(2015)
Proc. SPIE
, vol.9414
, pp. 94140V
-
-
Yaniv Bar, L.W.1
Diamant, I.2
Greenspan, H.3
-
39
-
-
84976273604
-
A deep semantic mobile application for thyroid cytopathology
-
E. Kim, M. Corte-Real, and Z. Baloch, "A deep semantic mobile application for thyroid cytopathology," Proc. SPIE 9789, 97890A (2016).
-
(2016)
Proc. SPIE
, vol.9789
, pp. 97890A
-
-
Kim, E.1
Corte-Real, M.2
Baloch, Z.3
-
40
-
-
84885899176
-
-
(Springer)
-
D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks (Springer, 2013), pp. 411-418.
-
(2013)
Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks
, pp. 411-418
-
-
Cireşan, D.C.1
Giusti, A.2
Gambardella, L.M.3
Schmidhuber, J.4
-
41
-
-
85009278384
-
Deep model based transfer and multi-task learning for biological image analysis
-
(IEEE)
-
W. Zhang, R. Li, T. Zeng, Q. Sun, S. Kumar, J. Ye, and S. Ji, "Deep model based transfer and multi-task learning for biological image analysis," in IEEE Transactions on Big Data (IEEE, 2016), p. 1.
-
(2016)
IEEE Transactions on Big Data
, pp. 1
-
-
Zhang, W.1
Li, R.2
Zeng, T.3
Sun, Q.4
Kumar, S.5
Ye, J.6
Ji, S.7
-
42
-
-
84930203768
-
Deep convolutional neural networks for annotating gene expression patterns in the mouse brain
-
T. Zeng, R. Li, R. Mukkamala, J. Ye, and S. Ji, "Deep convolutional neural networks for annotating gene expression patterns in the mouse brain," BMC Bioinf. 16, 1-10 (2015).
-
(2015)
BMC Bioinf.
, vol.16
, pp. 1-10
-
-
Zeng, T.1
Li, R.2
Mukkamala, R.3
Ye, J.4
Ji, S.5
-
44
-
-
84937118999
-
MatConvNet-convolutional neural networks for MATLAB
-
abs/1412.4564
-
A. Vedaldi and K. Lenc, "MatConvNet-convolutional neural networks for MATLAB," CoRR abs/1412.4564 (2014).
-
(2014)
CoRR
-
-
Vedaldi, A.1
Lenc, K.2
|