메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 3194-3203

Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; COMPUTER VISION; NEURAL NETWORKS; PATTERN RECOGNITION; RANDOM PROCESSES; SEMANTICS;

EID: 84986261676     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.348     Document Type: Conference Paper
Times cited : (908)

References (48)
  • 1
    • 0017751656 scopus 로고
    • Efficiency of pseudolikelihood estimation for simple Gaussian fields
    • J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrika, 1977.
    • (1977) Biometrika
    • Besag, J.1
  • 5
    • 84973890848 scopus 로고    scopus 로고
    • BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • J. Dai, K. He, and J. Sun. BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proc. Int. Conf. Comp. Vis., 2015.
    • (2015) Proc. Int. Conf. Comp. Vis.
    • Dai, J.1    He, K.2    Sun, J.3
  • 10
  • 20
    • 77955176201 scopus 로고    scopus 로고
    • Markov random fields with asymmetric interactions for modelling spatial context in structured scene labelling
    • D. Heesch and M. Petrou. Markov random fields with asymmetric interactions for modelling spatial context in structured scene labelling. Journal of Signal Processing Systems, 2010.
    • (2010) Journal of Signal Processing Systems
    • Heesch, D.1    Petrou, M.2
  • 25
    • 84897536915 scopus 로고    scopus 로고
    • Parameter learning and convergent inference for dense random fields
    • P. Krähenbühl and V. Koltun. Parameter learning and convergent inference for dense random fields. In Proc. Int. Conf. Mach. Learn., 2013.
    • (2013) Proc. Int. Conf. Mach. Learn.
    • Krähenbühl, P.1    Koltun, V.2
  • 26
  • 35
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proc. Int. Conf. Comp. Vis., 2015.
    • (2015) Proc. Int. Conf. Comp. Vis.
    • Noh, H.1    Hong, S.2    Han, B.3
  • 47
    • 33845597355 scopus 로고    scopus 로고
    • The layout consistent random field for recognizing and segmenting partially occluded objects
    • J. Winn and J. Shotton. The layout consistent random field for recognizing and segmenting partially occluded objects. In Proc. IEEE Conf. Comp. Vis. Pattern Recogn., 2006.
    • (2006) Proc. IEEE Conf. Comp. Vis. Pattern Recogn.
    • Winn, J.1    Shotton, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.