메뉴 건너뛰기




Volumn 16, Issue 11, 2016, Pages

Machine learning based single-frame super-resolution processing for lensless blood cell counting

Author keywords

CMOS image sensor; Convolutional neural network; Extreme learning machine; Microfluidic cytometer; Point of care testing; Super resolution

Indexed keywords

BLOOD; CMOS INTEGRATED CIRCUITS; CONVOLUTION; CYTOLOGY; DIGITAL CAMERAS; IMAGE ENHANCEMENT; IMAGE SENSORS; INTEGRATION TESTING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; LENSES; METAL TESTING; METALS; MICROFLUIDICS; MOS DEVICES; NEURAL NETWORKS; OPTICAL RESOLVING POWER; OXIDE SEMICONDUCTORS; PIXELS;

EID: 84994756552     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s16111836     Document Type: Article
Times cited : (55)

References (29)
  • 1
    • 84908361222 scopus 로고    scopus 로고
    • Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies
    • Jung, W.; Han, J.; Choi, J.-W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57.
    • (2015) Microelectron. Eng , vol.132 , pp. 46-57
    • Jung, W.1    Han, J.2    Choi, J.-W.3    Ahn, C.H.4
  • 3
  • 4
    • 84905862544 scopus 로고    scopus 로고
    • A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing
    • Huang, X.; Guo, J.; Yan, M.; Kang, Y.; Yu, H. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing. PLoS ONE 2014, 9, e104539.
    • (2014) Plos ONE , vol.9
    • Huang, X.1    Guo, J.2    Yan, M.3    Kang, Y.4    Yu, H.5
  • 5
    • 84944153396 scopus 로고    scopus 로고
    • A robust recognition error recovery for micro-flow cytometer by machine-learning enhanced single-frame super-resolution processing
    • Huang, X.; Wang, X.; Yan, M.; Yu, H. A robust recognition error recovery for micro-flow cytometer by machine-learning enhanced single-frame super-resolution processing. Integration 2015, 51, 208–218.
    • (2015) Integration , vol.51 , pp. 208-218
    • Huang, X.1    Wang, X.2    Yan, M.3    Yu, H.4
  • 6
    • 37349069969 scopus 로고    scopus 로고
    • Ultra wide-field lens-free monitoring of cells on-chip
    • Ozcan, A.; Demirci, U. Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip 2008, 8, 98–106.
    • (2008) Lab Chip , vol.8 , pp. 98-106
    • Ozcan, A.1    Demirci, U.2
  • 7
    • 78049266799 scopus 로고    scopus 로고
    • Sub-pixel resolving optofluidic microscope for on-chip cell imaging
    • Zheng, G.; Lee, S.A.; Yang, S.; Yang, C. Sub-pixel resolving optofluidic microscope for on-chip cell imaging. Lab Chip 2010, 10, 3125–3129.
    • (2010) Lab Chip , vol.10 , pp. 3125-3129
    • Zheng, G.1    Lee, S.A.2    Yang, S.3    Yang, C.4
  • 8
    • 78649724600 scopus 로고    scopus 로고
    • High-content analysis of single cells directly assembled on CMOS sensor based on color imaging
    • Tanaka, T.; Saeki, T.; Sunaga, Y.; Matsunaga, T. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging. Biosens. Bioelectron. 2010, 26, 1460–1465.
    • (2010) Biosens. Bioelectron , vol.26 , pp. 1460-1465
    • Tanaka, T.1    Saeki, T.2    Sunaga, Y.3    Matsunaga, T.4
  • 9
    • 84864380864 scopus 로고    scopus 로고
    • Lens-free shadow image based high-throughput continuous cell monitoring technique
    • Jin, G.; Yoo, I.; Pack, S.P.; Yang, J.; Ha, U.; Paek, S.; Seo, S. Lens-free shadow image based high-throughput continuous cell monitoring technique. Biosens. Bioelectron. 2012, 38, 126–131.
    • (2012) Biosens. Bioelectron , vol.38 , pp. 126-131
    • Jin, G.1    Yoo, I.2    Pack, S.P.3    Yang, J.4    Ha, U.5    Paek, S.6    Seo, S.7
  • 11
    • 84940049628 scopus 로고    scopus 로고
    • A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis
    • Huang, X.; Yu, H.; Liu, X.Y.; Jiang, Y.; Yan, M.; Wu, D. A dual-mode large-arrayed CMOS ISFET sensor for accurate and high-throughput pH sensing in biomedical diagnosis. IEEE Trans. Biomed. Eng. 2015, 62, 2224–2233.
    • (2015) IEEE Trans. Biomed. Eng. , vol.62 , pp. 2224-2233
    • Huang, X.1    Yu, H.2    Liu, X.Y.3    Jiang, Y.4    Yan, M.5    Wu, D.6
  • 12
    • 85032751363 scopus 로고    scopus 로고
    • Super-resolution image reconstruction: A technical overview
    • Park, S.C.; Park, M.K.; Kang, M.G. Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 2003, 20, 21–36.
    • (2003) IEEE Signal Process. Mag , vol.20 , pp. 21-36
    • Park, S.C.1    Park, M.K.2    Kang, M.G.3
  • 13
    • 79952639877 scopus 로고    scopus 로고
    • Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array
    • Bishara, W.; Sikora, U.; Mudanyali, O.; Su, T.; Yaglidere, O.; Luckhart, S.; Ozcan, A. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip 2011, 11, 1276–1279.
    • (2011) Lab Chip , vol.11 , pp. 1276-1279
    • Bishara, W.1    Sikora, U.2    Mudanyali, O.3    Su, T.4    Yaglidere, O.5    Luckhart, S.6    Ozcan, A.7
  • 15
    • 84947739200 scopus 로고    scopus 로고
    • A single-frame superresolution algorithm for lab-on-a-chip lensless microfluidic imaging
    • Huang, X.; Yu, H.; Liu, X.Y.; Jiang, Y.; Yan, M. A single-frame superresolution algorithm for lab-on-a-chip lensless microfluidic imaging. IEEE Des. Test. 2015, 32, 32–40.
    • (2015) IEEE Des. Test , vol.32 , pp. 32-40
    • Huang, X.1    Yu, H.2    Liu, X.Y.3    Jiang, Y.4    Yan, M.5
  • 17
    • 84923171880 scopus 로고    scopus 로고
    • Rapid imaging, detection and quantification of giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning
    • Koydemir, H.C.; Gorocs, Z.; Tseng, D.; Cortazar, B.; Feng, S.; Chan, R.Y.L.; Burbano, J.; McLeod, E.; Ozcan, A. Rapid imaging, detection and quantification of giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip 2015, 15, 1284–1293.
    • (2015) Lab Chip , vol.15 , pp. 1284-1293
    • Koydemir, H.C.1    Gorocs, Z.2    Tseng, D.3    Cortazar, B.4    Feng, S.5    Chan, R.Y.L.6    Burbano, J.7    McLeod, E.8    Ozcan, A.9
  • 18
    • 84890498817 scopus 로고    scopus 로고
    • Machine learning in cell biology—Teaching computers to recognize phenotypes
    • Sommer, C.; Gerlich, D.W. Machine learning in cell biology—Teaching computers to recognize phenotypes. J. Cell Sci. 2013, 126, 5529–5539.
    • (2013) J. Cell Sci , vol.126 , pp. 5529-5539
    • Sommer, C.1    Gerlich, D.W.2
  • 21
    • 79955668981 scopus 로고    scopus 로고
    • Image and video upscaling from local self-examples
    • Freedman, G.; Fattal, R. Image and video upscaling from local self-examples. ACM Trans. Graph. 2011, 30, 1–11.
    • (2011) ACM Trans. Graph , vol.30 , pp. 1-11
    • Freedman, G.1    Fattal, R.2
  • 26
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G.; Zhu, Q.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Siew, C.K.3
  • 28
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Wang, Z.; Bovik, A.C.; Sheikh, H.R. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612.
    • (2004) IEEE Trans. Image Process , vol.13 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3
  • 29
    • 78649755569 scopus 로고    scopus 로고
    • Bonding strength of pressurized microchannels fabricated by polydimethylsiloxane and silicon
    • Wu, G.; Shih, W.; Hui, C.; Chen, S.; Lee, C. Bonding strength of pressurized microchannels fabricated by polydimethylsiloxane and silicon. J. Micromech. Microeng. 2010, 20, 115032.
    • (2010) J. Micromech. Microeng , vol.20
    • Wu, G.1    Shih, W.2    Hui, C.3    Chen, S.4    Lee, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.