-
1
-
-
84977271048
-
Phenotype-specific treatment of heart failure with preserved ejection fraction: A multiorgan roadmap
-
Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134:73-90. doi: 10.1161/CIRCULATIONAHA.116.021884.
-
(2016)
Circulation
, vol.134
, pp. 73-90
-
-
Shah, S.J.1
Kitzman, D.W.2
Borlaug, B.A.3
Van Heerebeek, L.4
Zile, M.R.5
Kass, D.A.6
Paulus, W.J.7
-
2
-
-
84981715657
-
Developed with the special contribution of the Heart Failure Association (HFA) of the ESC
-
Ponikowski P, Voors AA, Anker SD, et al; Authors/Task Force Members; Document Reviewers. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891-975. doi: 10.1002/ejhf.592.
-
(2016)
Eur J Heart Fail
, vol.18
, pp. 891-975
-
-
Ponikowski, P.1
Voors, A.A.2
Anker, S.D.3
-
3
-
-
84940079857
-
Readers, writers, and erasers: Chromatin as the whiteboard of heart disease
-
Gillette TG, Hill JA. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res. 2015;116:1245-1253. doi: 10.1161/CIRCRESAHA.116.303630.
-
(2015)
Circ Res
, vol.116
, pp. 1245-1253
-
-
Gillette, T.G.1
Hill, J.A.2
-
4
-
-
79952057976
-
Divide and conquer: The application of organelle proteomics to heart failure
-
Agnetti G, Husberg C, Van Eyk JE. Divide and conquer: the application of organelle proteomics to heart failure. Circ Res. 2011;108:512-526. doi: 10.1161/CIRCRESAHA.110.226910.
-
(2011)
Circ Res
, vol.108
, pp. 512-526
-
-
Agnetti, G.1
Husberg, C.2
Van Eyk, J.E.3
-
5
-
-
85021898173
-
Calcium and excitation- contraction coupling in the heart
-
Eisner DA, Caldwell JL, Kistamás K, Trafford AW. Calcium and excitation- contraction coupling in the heart. Circ Res. 2017;121:181-195. doi: 10.1161/CIRCRESAHA.117.310230.
-
(2017)
Circ Res
, vol.121
, pp. 181-195
-
-
Eisner, D.A.1
Caldwell, J.L.2
Kistamás, K.3
Trafford, A.W.4
-
6
-
-
84924181684
-
Epigenetics and metabolism
-
Keating ST, El-Osta A. Epigenetics and metabolism. Circ Res. 2015;116:715-736. doi: 10.1161/CIRCRESAHA.116.303936.
-
(2015)
Circ Res
, vol.116
, pp. 715-736
-
-
Keating, S.T.1
El-Osta, A.2
-
7
-
-
84878396502
-
Myocardial energetics in heart failure
-
Nickel A, Löffler J, Maack C. Myocardial energetics in heart failure. Basic Res Cardiol. 2013;108:358. doi: 10.1007/s00395-013-0358-9.
-
(2013)
Basic Res Cardiol
, vol.108
, pp. 358
-
-
Nickel, A.1
Löffler, J.2
Maack, C.3
-
8
-
-
85029429291
-
Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series
-
Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J Am Coll Cardiol. 2017;70:212-229. doi: 10.1016/j.jacc.2017.05.035.
-
(2017)
J Am Coll Cardiol
, vol.70
, pp. 212-229
-
-
Münzel, T.1
Camici, G.G.2
Maack, C.3
Bonetti, N.R.4
Fuster, V.5
Kovacic, J.C.6
-
9
-
-
85031038777
-
Calcium signaling and transcriptional regulation in cardiomyocytes
-
Dewenter M, von der Lieth A, Katus HA, Backs J. Calcium signaling and transcriptional regulation in cardiomyocytes. Circ Res. 2017;121:1000- 1020. doi: 10.1161/CIRCRESAHA.117.310355.
-
(2017)
Circ Res
, vol.121
, pp. 1000-1020
-
-
Dewenter, M.1
Von Der Lieth, A.2
Katus, H.A.3
Backs, J.4
-
10
-
-
84897133718
-
Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling
-
Jian Z, Han H, Zhang T, et al. Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Sci Signal. 2014;7:ra27. doi: 10.1126/scisignal.2005046.
-
(2014)
Sci Signal
, vol.7
, pp. ra27
-
-
Jian, Z.1
Han, H.2
Zhang, T.3
-
11
-
-
80052623359
-
X-ROS signaling: Rapid mechano- chemo transduction in heart
-
Prosser BL, Ward CW, Lederer WJ. X-ROS signaling: rapid mechano- chemo transduction in heart. Science. 2011;333:1440-1445. doi: 10.1126/science.1202768.
-
(2011)
Science
, vol.333
, pp. 1440-1445
-
-
Prosser, B.L.1
Ward, C.W.2
Lederer, W.J.3
-
12
-
-
44649184557
-
A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy
-
Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, Vatner SF, Sadoshima J. A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell. 2008;133:978-993. doi: 10.1016/j.cell.2008.04.041.
-
(2008)
Cell
, vol.133
, pp. 978-993
-
-
Ago, T.1
Liu, T.2
Zhai, P.3
Chen, W.4
Li, H.5
Molkentin, J.D.6
Vatner, S.F.7
Sadoshima, J.8
-
13
-
-
42949085382
-
A dynamic pathway for calcium- independent activation of CaMKII by methionine oxidation
-
Erickson JR, Joiner ML, Guan X, et al. A dynamic pathway for calcium- independent activation of CaMKII by methionine oxidation. Cell. 2008;133:462-474. doi: 10.1016/j.cell.2008.02.048.
-
(2008)
Cell
, vol.133
, pp. 462-474
-
-
Erickson, J.R.1
Joiner, M.L.2
Guan, X.3
-
14
-
-
84866929338
-
Redox signaling in cardiac physiology and pathology
-
Burgoyne JR, Mongue-Din H, Eaton P, Shah AM. Redox signaling in cardiac physiology and pathology. Circ Res. 2012;111:1091-1106. doi: 10.1161/CIRCRESAHA.111.255216.
-
(2012)
Circ Res
, vol.111
, pp. 1091-1106
-
-
Burgoyne, J.R.1
Mongue-Din, H.2
Eaton, P.3
Shah, A.M.4
-
15
-
-
84901848946
-
Mitochondrial reactive oxygen species production and elimination
-
Nickel A, Kohlhaas M, Maack C. Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol. 2014;73:26-33. doi: 10.1016/j.yjmcc.2014.03.011.
-
(2014)
J Mol Cell Cardiol
, vol.73
, pp. 26-33
-
-
Nickel, A.1
Kohlhaas, M.2
Maack, C.3
-
16
-
-
0037049977
-
Cardiac excitation-contraction coupling
-
Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198-205. doi: 10.1038/415198a.
-
(2002)
Nature
, vol.415
, pp. 198-205
-
-
Bers, D.M.1
-
17
-
-
33845296446
-
Altered cardiac myocyte Ca regulation in heart failure
-
Bers DM. Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda). 2006;21:380-387. doi: 10.1152/physiol.00019.2006.
-
(2006)
Physiology (Bethesda)
, vol.21
, pp. 380-387
-
-
Bers, D.M.1
-
18
-
-
13944278132
-
Mitochondria, oxidants, and aging
-
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483-495. doi: 10.1016/j.cell.2005.02.001.
-
(2005)
Cell
, vol.120
, pp. 483-495
-
-
Balaban, R.S.1
Nemoto, S.2
Finkel, T.3
-
19
-
-
67349244350
-
Domestication of the cardiac mitochondrion for energy conversion
-
Balaban RS. Domestication of the cardiac mitochondrion for energy conversion. J Mol Cell Cardiol. 2009;46:832-841. doi: 10.1016/j.yjmcc.2009.02.018.
-
(2009)
J Mol Cell Cardiol
, vol.46
, pp. 832-841
-
-
Balaban, R.S.1
-
20
-
-
33947239659
-
The failing heart-an engine out of fuel
-
Neubauer S. The failing heart-an engine out of fuel. N Engl J Med. 2007;356:1140-1151. doi: 10.1056/NEJMra063052.
-
(2007)
N Engl J Med
, vol.356
, pp. 1140-1151
-
-
Neubauer, S.1
-
21
-
-
0031035444
-
Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart
-
Tian R, Christe ME, Spindler M, Hopkins JC, Halow JM, Camacho SA, Ingwall JS. Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart. J Clin Invest. 1997;99:745-751. doi: 10.1172/JCI119220.
-
(1997)
J Clin Invest
, vol.99
, pp. 745-751
-
-
Tian, R.1
Christe, M.E.2
Spindler, M.3
Hopkins, J.C.4
Halow, J.M.5
Camacho, S.A.6
Ingwall, J.S.7
-
22
-
-
84859560882
-
Role of mitochondrial Ca2+ in the regulation of cellular energetics
-
Glancy B, Balaban RS. Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry. 2012;51:2959-2973. doi: 10.1021/bi2018909.
-
(2012)
Biochemistry
, vol.51
, pp. 2959-2973
-
-
Glancy, B.1
Balaban, R.S.2
-
23
-
-
0036773295
-
Cardiac energy metabolism homeostasis: Role of cytosolic calcium
-
Balaban RS. Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol. 2002;34:1259-1271.
-
(2002)
J Mol Cell Cardiol
, vol.34
, pp. 1259-1271
-
-
Balaban, R.S.1
-
24
-
-
0022505605
-
Relation between work and phosphate metabolite in the in vivo paced mammalian heart
-
Balaban RS, Kantor HL, Katz LA, Briggs RW. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science. 1986;232:1121-1123.
-
(1986)
Science
, vol.232
, pp. 1121-1123
-
-
Balaban, R.S.1
Kantor, H.L.2
Katz, L.A.3
Briggs, R.W.4
-
25
-
-
0024496705
-
Relation between phosphate metabolites and oxygen consumption of heart in vivo
-
Katz LA, Swain JA, Portman MA, Balaban RS. Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol. 1989;256:H265-H274. doi: 10.1152/ajpheart.1989.256.1.H265.
-
(1989)
Am J Physiol
, vol.256
, pp. H265-H274
-
-
Katz, L.A.1
Swain, J.A.2
Portman, M.A.3
Balaban, R.S.4
-
26
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1-13. doi: 10.1042/BJ20081386.
-
(2009)
Biochem J
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
27
-
-
77950940176
-
Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes
-
Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, O'Rourke B, Maack C. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation. 2010;121:1606-1613. doi: 10.1161/CIRCULATIONAHA.109.914911.
-
(2010)
Circulation
, vol.121
, pp. 1606-1613
-
-
Kohlhaas, M.1
Liu, T.2
Knopp, A.3
Zeller, T.4
Ong, M.F.5
Böhm, M.6
O'Rourke, B.7
Maack, C.8
-
28
-
-
84971426673
-
Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes
-
Dey S, Sidor A, O'Rourke B. Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J Biol Chem. 2016;291:11185-11197. doi: 10.1074/jbc.M116.726968.
-
(2016)
J Biol Chem
, vol.291
, pp. 11185-11197
-
-
Dey, S.1
Sidor, A.2
O'Rourke, B.3
-
29
-
-
77953809992
-
Redox-optimized ROS balance: A unifying hypothesis
-
Aon MA, Cortassa S, O'Rourke B. Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta. 2010;1797:865-877. doi: 10.1016/j.bbabio.2010.02.016.
-
(2010)
Biochim Biophys Acta
, vol.1797
, pp. 865-877
-
-
Aon, M.A.1
Cortassa, S.2
O'Rourke, B.3
-
30
-
-
80051936634
-
A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter
-
De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011;476:336-340. doi: 10.1038/nature10230.
-
(2011)
Nature
, vol.476
, pp. 336-340
-
-
De Stefani, D.1
Raffaello, A.2
Teardo, E.3
Szabò, I.4
Rizzuto, R.5
-
31
-
-
80051946060
-
Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
-
Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature. 2011;476:341-345. doi: 10.1038/nature10234.
-
(2011)
Nature
, vol.476
, pp. 341-345
-
-
Baughman, J.M.1
Perocchi, F.2
Girgis, H.S.3
Plovanich, M.4
Belcher-Timme, C.A.5
Sancak, Y.6
Bao, X.R.7
Strittmatter, L.8
Goldberger, O.9
Bogorad, R.L.10
Koteliansky, V.11
Mootha, V.K.12
-
32
-
-
84969194530
-
Architecture of the mitochondrial calcium uniporter
-
Oxenoid K, Dong Y, Cao C, Cui T, Sancak Y, Markhard AL, Grabarek Z, Kong L, Liu Z, Ouyang B, Cong Y, Mootha VK, Chou JJ. Architecture of the mitochondrial calcium uniporter. Nature. 2016;533:269-273. doi: 10.1038/nature17656.
-
(2016)
Nature
, vol.533
, pp. 269-273
-
-
Oxenoid, K.1
Dong, Y.2
Cao, C.3
Cui, T.4
Sancak, Y.5
Markhard, A.L.6
Grabarek, Z.7
Kong, L.8
Liu, Z.9
Ouyang, B.10
Cong, Y.11
Mootha, V.K.12
Chou, J.J.13
-
33
-
-
84883286784
-
The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit
-
Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, Checchetto V, Moro S, Szabò I, Rizzuto R. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 2013;32:2362-2376. doi: 10.1038/emboj.2013.157.
-
(2013)
EMBO J
, vol.32
, pp. 2362-2376
-
-
Raffaello, A.1
De Stefani, D.2
Sabbadin, D.3
Teardo, E.4
Merli, G.5
Picard, A.6
Checchetto, V.7
Moro, S.8
Szabò, I.9
Rizzuto, R.10
-
34
-
-
84890116192
-
EMRE is an essential component of the mitochondrial calcium uniporter complex
-
Sancak Y, Markhard AL, Kitami T, Kovács-Bogdán E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science. 2013;342:1379-1382. doi: 10.1126/science.1242993.
-
(2013)
Science
, vol.342
, pp. 1379-1382
-
-
Sancak, Y.1
Markhard, A.L.2
Kitami, T.3
Kovács-Bogdán, E.4
Kamer, K.J.5
Udeshi, N.D.6
Carr, S.A.7
Chaudhuri, D.8
Clapham, D.E.9
Li, A.A.10
Calvo, S.E.11
Goldberger, O.12
Mootha, V.K.13
-
35
-
-
84902579068
-
Reconstitution of the mitochondrial calcium uniporter in yeast
-
Kovács-Bogdán E, Sancak Y, Kamer KJ, Plovanich M, Jambhekar A, Huber RJ, Myre MA, Blower MD, Mootha VK. Reconstitution of the mitochondrial calcium uniporter in yeast. Proc Natl Acad Sci USA. 2014;111:8985-8990. doi: 10.1073/pnas.1400514111.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 8985-8990
-
-
Kovács-Bogdán, E.1
Sancak, Y.2
Kamer, K.J.3
Plovanich, M.4
Jambhekar, A.5
Huber, R.J.6
Myre, M.A.7
Blower, M.D.8
Mootha, V.K.9
-
36
-
-
77956928316
-
MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake
-
Perocchi F, Gohil VM, Girgis HS, Bao XR, McCombs JE, Palmer AE, Mootha VK. MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature. 2010;467:291-296. doi: 10.1038/nature09358.
-
(2010)
Nature
, vol.467
, pp. 291-296
-
-
Perocchi, F.1
Gohil, V.M.2
Girgis, H.S.3
Bao, X.R.4
McCombs, J.E.5
Palmer, A.E.6
Mootha, V.K.7
-
37
-
-
84873572862
-
MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling
-
Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J, Speciner L, Taneja N, Oshea J, Koteliansky V, Mootha VK. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One. 2013;8:e55785. doi: 10.1371/journal.pone.0055785.
-
(2013)
PLoS One
, vol.8
, pp. e55785
-
-
Plovanich, M.1
Bogorad, R.L.2
Sancak, Y.3
Kamer, K.J.4
Strittmatter, L.5
Li, A.A.6
Girgis, H.S.7
Kuchimanchi, S.8
De Groot, J.9
Speciner, L.10
Taneja, N.11
Oshea, J.12
Koteliansky, V.13
Mootha, V.K.14
-
38
-
-
85037839706
-
MICU2 restricts spatial crosstalk between InsP3R and MCU channels by regulating threshold and gain of MICU1-mediated inhibition and activation of MCU
-
Payne R, Hoff H, Roskowski A, Foskett JK. MICU2 restricts spatial crosstalk between InsP3R and MCU channels by regulating threshold and gain of MICU1-mediated inhibition and activation of MCU. Cell Rep. 2017;21:3141-3154. doi: 10.1016/j.celrep.2017.11.064.
-
(2017)
Cell Rep
, vol.21
, pp. 3141-3154
-
-
Payne, R.1
Hoff, H.2
Roskowski, A.3
Foskett, J.K.4
-
39
-
-
84878796986
-
MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter
-
Csordás G, Golenár T, Seifert EL, Kamer KJ, Sancak Y, Perocchi F, Moffat C, Weaver D, de la Fuente Perez S, Bogorad R, Koteliansky V, Adijanto J, Mootha VK, Hajnóczky G. MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca2+ uniporter. Cell Metab. 2013;17:976-987. doi: 10.1016/j.cmet.2013.04.020.
-
(2013)
Cell Metab
, vol.17
, pp. 976-987
-
-
Csordás, G.1
Golenár, T.2
Seifert, E.L.3
Kamer, K.J.4
Sancak, Y.5
Perocchi, F.6
Moffat, C.7
Weaver, D.8
De La Fuente Perez, S.9
Bogorad, R.10
Koteliansky, V.11
Adijanto, J.12
Mootha, V.K.13
Hajnóczky, G.14
-
40
-
-
85020692763
-
High-affinity cooperative Ca2+ binding by MICU1-MICU2 serves as an on-off switch for the uniporter
-
Kamer KJ, Grabarek Z, Mootha VK. High-affinity cooperative Ca2+ binding by MICU1-MICU2 serves as an on-off switch for the uniporter. EMBO Rep. 2017;18:1397-1411. doi: 10.15252/embr.201643748.
-
(2017)
EMBO Rep
, vol.18
, pp. 1397-1411
-
-
Kamer, K.J.1
Grabarek, Z.2
Mootha, V.K.3
-
41
-
-
84898644111
-
MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter
-
Kamer KJ, Mootha VK. MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep. 2014;15:299-307. doi: 10.1002/embr.201337946.
-
(2014)
EMBO Rep
, vol.15
, pp. 299-307
-
-
Kamer, K.J.1
Mootha, V.K.2
-
42
-
-
84868027665
-
MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival
-
Mallilankaraman K, Doonan P, Cárdenas C, Chandramoorthy HC, Müller M, Miller R, Hoffman NE, Gandhirajan RK, Molgó J, Birnbaum MJ, Rothberg BS, Mak DO, Foskett JK, Madesh M. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival. Cell. 2012;151:630-644. doi: 10.1016/j.cell.2012.10.011.
-
(2012)
Cell
, vol.151
, pp. 630-644
-
-
Mallilankaraman, K.1
Doonan, P.2
Cárdenas, C.3
Chandramoorthy, H.C.4
Müller, M.5
Miller, R.6
Hoffman, N.E.7
Gandhirajan, R.K.8
Molgó, J.9
Birnbaum, M.J.10
Rothberg, B.S.11
Mak, D.O.12
Foskett, J.K.13
Madesh, M.14
-
43
-
-
84895426147
-
Loss-offunction mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling
-
Logan CV, Szabadkai G, Sharpe JA, et al; UK10K Consortium. Loss-offunction mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat Genet. 2014;46:188-193. doi: 10.1038/ng.2851.
-
(2014)
Nat Genet
, vol.46
, pp. 188-193
-
-
Logan, C.V.1
Szabadkai, G.2
Sharpe, J.A.3
-
44
-
-
34548050205
-
Excitation-contraction coupling and mitochondrial energetics
-
Maack C, O'Rourke B. Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol. 2007;102:369-392. doi: 10.1007/s00395-007-0666-z.
-
(2007)
Basic Res Cardiol
, vol.102
, pp. 369-392
-
-
Maack, C.1
O'Rourke, B.2
-
45
-
-
84870621600
-
MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism
-
Mallilankaraman K, Cárdenas C, Doonan PJ, et al. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol. 2012;14:1336-1343. doi: 10.1038/ncb2622.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 1336-1343
-
-
Mallilankaraman, K.1
Cárdenas, C.2
Doonan, P.J.3
-
46
-
-
84920617467
-
CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter
-
Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA. CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell Metab. 2015;21:109-116. doi: 10.1016/j.cmet.2014.12.004.
-
(2015)
Cell Metab
, vol.21
, pp. 109-116
-
-
Paupe, V.1
Prudent, J.2
Dassa, E.P.3
Rendon, O.Z.4
Shoubridge, E.A.5
-
47
-
-
84962091374
-
Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition
-
Chaudhuri D, Artiga DJ, Abiria SA, Clapham DE. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition. Proc Natl Acad Sci USA. 2016;113:E1872-E1880. doi: 10.1073/pnas.1602264113.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. E1872-E1880
-
-
Chaudhuri, D.1
Artiga, D.J.2
Abiria, S.A.3
Clapham, D.E.4
-
48
-
-
84896262743
-
SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress-mediated cell death
-
Hoffman NE, Chandramoorthy HC, Shanmughapriya S, Zhang XQ, Vallem S, Doonan PJ, Malliankaraman K, Guo S, Rajan S, Elrod JW, Koch WJ, Cheung JY, Madesh M. SLC25A23 augments mitochondrial Ca2+ uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol Biol Cell. 2014;25:936-947. doi: 10.1091/mbc.E13-08-0502.
-
(2014)
Mol Biol Cell
, vol.25
, pp. 936-947
-
-
Hoffman, N.E.1
Chandramoorthy, H.C.2
Shanmughapriya, S.3
Zhang, X.Q.4
Vallem, S.5
Doonan, P.J.6
Malliankaraman, K.7
Guo, S.8
Rajan, S.9
Elrod, J.W.10
Koch, W.J.11
Cheung, J.Y.12
Madesh, M.13
-
50
-
-
1642540210
-
The mitochondrial calcium uniporter is a highly selective ion channel
-
Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004;427:360-364. doi: 10.1038/nature02246.
-
(2004)
Nature
, vol.427
, pp. 360-364
-
-
Kirichok, Y.1
Krapivinsky, G.2
Clapham, D.E.3
-
51
-
-
0032511112
-
Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses
-
Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 1998;280:1763-1766.
-
(1998)
Science
, vol.280
, pp. 1763-1766
-
-
Rizzuto, R.1
Pinton, P.2
Carrington, W.3
Fay, F.S.4
Fogarty, K.E.5
Lifshitz, L.M.6
Tuft, R.A.7
Pozzan, T.8
-
52
-
-
77950888855
-
Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels
-
Giacomello M, Drago I, Bortolozzi M, Scorzeto M, Gianelle A, Pizzo P, Pozzan T. Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization from stores, but not by activation of store-operated Ca2+ channels. Mol Cell. 2010;38:280-290. doi: 10.1016/j.molcel.2010.04.003.
-
(2010)
Mol Cell
, vol.38
, pp. 280-290
-
-
Giacomello, M.1
Drago, I.2
Bortolozzi, M.3
Scorzeto, M.4
Gianelle, A.5
Pizzo, P.6
Pozzan, T.7
-
53
-
-
33746824336
-
Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitationcontraction coupling and impairs energetic adaptation in cardiac myocytes
-
Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O'Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitationcontraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 2006;99:172-182. doi: 10.1161/01.RES.0000232546.92777.05.
-
(2006)
Circ Res
, vol.99
, pp. 172-182
-
-
Maack, C.1
Cortassa, S.2
Aon, M.A.3
Ganesan, A.N.4
Liu, T.5
O'Rourke, B.6
-
54
-
-
85013443440
-
Rapid frequency-dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes
-
Wüst RC, Helmes M, Martin JL, van der Wardt TJ, Musters RJ, van der Velden J, Stienen GJ. Rapid frequency-dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes. J Physiol. 2017;595:2001-2019. doi: 10.1113/JP273589.
-
(2017)
J Physiol
, vol.595
, pp. 2001-2019
-
-
Wüst, R.C.1
Helmes, M.2
Martin, J.L.3
Van Der Wardt, T.J.4
Musters, R.J.5
Van Der Velden, J.6
Stienen, G.J.7
-
55
-
-
84994034038
-
Strategic positioning and biased activity of the mitochondrial calcium uniporter in cardiac muscle
-
De La Fuente S, Fernandez-Sanz C, Vail C, Agra EJ, Holmstrom K, Sun J, Mishra J, Williams D, Finkel T, Murphy E, Joseph SK, Sheu SS, Csordas G. Strategic positioning and biased activity of the mitochondrial calcium uniporter in cardiac muscle. J Biol Chem. 2016;291:23343-23362.
-
(2016)
J Biol Chem
, vol.291
, pp. 23343-23362
-
-
De La Fuente, S.1
Fernandez-Sanz, C.2
Vail, C.3
Agra, E.J.4
Holmstrom, K.5
Sun, J.6
Mishra, J.7
Williams, D.8
Finkel, T.9
Murphy, E.10
Joseph, S.K.11
Sheu, S.S.12
Csordas, G.13
-
56
-
-
66549102938
-
Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels
-
Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, Wahlers T, Hoppe UC. Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels. Circulation. 2009;119:2435-2443. doi: 10.1161/CIRCULATIONAHA.108.835389.
-
(2009)
Circulation
, vol.119
, pp. 2435-2443
-
-
Michels, G.1
Khan, I.F.2
Endres-Becker, J.3
Rottlaender, D.4
Herzig, S.5
Ruhparwar, A.6
Wahlers, T.7
Hoppe, U.C.8
-
57
-
-
84864007645
-
Dynamics of matrix-free Ca2+ in cardiac mitochondria: Two components of Ca2+ uptake and role of phosphate buffering
-
Wei AC, Liu T, Winslow RL, O'Rourke B. Dynamics of matrix-free Ca2+ in cardiac mitochondria: two components of Ca2+ uptake and role of phosphate buffering. J Gen Physiol. 2012;139:465-478. doi: 10.1085/jgp.201210784.
-
(2012)
J Gen Physiol
, vol.139
, pp. 465-478
-
-
Wei, A.C.1
Liu, T.2
Winslow, R.L.3
O'Rourke, B.4
-
58
-
-
0028865759
-
Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode
-
Sparagna GC, Gunter KK, Sheu SS, Gunter TE. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem. 1995;270:27510-27515.
-
(1995)
J Biol Chem
, vol.270
, pp. 27510-27515
-
-
Sparagna, G.C.1
Gunter, K.K.2
Sheu, S.S.3
Gunter, T.E.4
-
59
-
-
84879838556
-
Characterization of distinct single-channel properties of Ca2+ inward currents in mitochondria
-
Bondarenko AI, Jean-Quartier C, Malli R, Graier WF. Characterization of distinct single-channel properties of Ca2+ inward currents in mitochondria. Pflugers Arch. 2013;465:997-1010. doi: 10.1007/s00424-013-1224-1.
-
(2013)
Pflugers Arch
, vol.465
, pp. 997-1010
-
-
Bondarenko, A.I.1
Jean-Quartier, C.2
Malli, R.3
Graier, W.F.4
-
60
-
-
70349669093
-
Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter
-
Jiang D, Zhao L, Clapham DE. Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science. 2009;326:144-147. doi: 10.1126/science.1175145.
-
(2009)
Science
, vol.326
, pp. 144-147
-
-
Jiang, D.1
Zhao, L.2
Clapham, D.E.3
-
61
-
-
0035877582
-
Identification of a ryanodine receptor in rat heart mitochondria
-
Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS. Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem. 2001;276:21482-21488. doi: 10.1074/jbc.M101486200.
-
(2001)
J Biol Chem
, vol.276
, pp. 21482-21488
-
-
Beutner, G.1
Sharma, V.K.2
Giovannucci, D.R.3
Yule, D.I.4
Sheu, S.S.5
-
62
-
-
84992646087
-
Inositol 1, 4, 5-trisphosphate-mediated sarcoplasmic reticulummitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca2+ uptake through the mitochondrial ryanodine receptor in cardiac myocytes
-
Seidlmayer LK, Kuhn J, Berbner A, Arias-Loza PA, Williams T, Kaspar M, Czolbe M, Kwong JQ, Molkentin JD, Heinze KG, Dedkova EN, Ritter O. Inositol 1, 4, 5-trisphosphate-mediated sarcoplasmic reticulummitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca2+ uptake through the mitochondrial ryanodine receptor in cardiac myocytes. Cardiovasc Res. 2016;112:491-501. doi: 10.1093/cvr/cvw185.
-
(2016)
Cardiovasc Res
, vol.112
, pp. 491-501
-
-
Seidlmayer, L.K.1
Kuhn, J.2
Berbner, A.3
Arias-Loza, P.A.4
Williams, T.5
Kaspar, M.6
Czolbe, M.7
Kwong, J.Q.8
Molkentin, J.D.9
Heinze, K.G.10
Dedkova, E.N.11
Ritter, O.12
-
63
-
-
84879736816
-
Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake
-
Feng S, Li H, Tai Y, Huang J, Su Y, Abramowitz J, Zhu MX, Birnbaumer L, Wang Y. Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. Proc Natl Acad Sci USA. 2013;110:11011- 11016. doi: 10.1073/pnas.1309531110.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 11011-11016
-
-
Feng, S.1
Li, H.2
Tai, Y.3
Huang, J.4
Su, Y.5
Abramowitz, J.6
Zhu, M.X.7
Birnbaumer, L.8
Wang, Y.9
-
64
-
-
67349220678
-
Mitochondrial Ca2+ uptake: Tortoise or hare?
-
O'Rourke B, Blatter LA. Mitochondrial Ca2+ uptake: tortoise or hare? J Mol Cell Cardiol. 2009;46:767-774. doi: 10.1016/j.yjmcc.2008.12.011.
-
(2009)
J Mol Cell Cardiol
, vol.46
, pp. 767-774
-
-
O'Rourke, B.1
Blatter, L.A.2
-
65
-
-
84879520256
-
Mitochondrial calcium uptake
-
Williams GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ. Mitochondrial calcium uptake. Proc Natl Acad Sci USA. 2013;110:10479- 10486. doi: 10.1073/pnas.1300410110.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 10479-10486
-
-
Williams, G.S.1
Boyman, L.2
Chikando, A.C.3
Khairallah, R.J.4
Lederer, W.J.5
-
66
-
-
0017391545
-
Development of mitochondrial calcium transport activity in rat liver
-
Bygrave FL, Ash GR. Development of mitochondrial calcium transport activity in rat liver. FEBS Lett. 1977;80:271-274.
-
(1977)
FEBS Lett
, vol.80
, pp. 271-274
-
-
Bygrave, F.L.1
Ash, G.R.2
-
67
-
-
84871891066
-
Activity of the mitochondrial calcium uniporter varies greatly between tissues
-
Fieni F, Lee SB, Jan YN, Kirichok Y. Activity of the mitochondrial calcium uniporter varies greatly between tissues. Nat Commun. 2012;3:1317. doi: 10.1038/ncomms2325.
-
(2012)
Nat Commun
, vol.3
, pp. 1317
-
-
Fieni, F.1
Lee, S.B.2
Jan, Y.N.3
Kirichok, Y.4
-
68
-
-
0033600735
-
Species dependence of mitochondrial calcium transients during excitation-contraction coupling in isolated cardiomyocytes
-
Griffiths EJ. Species dependence of mitochondrial calcium transients during excitation-contraction coupling in isolated cardiomyocytes. Biochem Biophys Res Commun. 1999;263:554-559. doi: 10.1006/bbrc.1999.1311.
-
(1999)
Biochem Biophys Res Commun
, vol.263
, pp. 554-559
-
-
Griffiths, E.J.1
-
69
-
-
0027375706
-
Changes in mitochondrial calcium concentration during the cardiac contraction cycle
-
Isenberg G, Han S, Schiefer A, Wendt-Gallitelli MF. Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovasc Res. 1993;27:1800-1809.
-
(1993)
Cardiovasc Res
, vol.27
, pp. 1800-1809
-
-
Isenberg, G.1
Han, S.2
Schiefer, A.3
Wendt-Gallitelli, M.F.4
-
70
-
-
84864645903
-
Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes
-
Drago I, De Stefani D, Rizzuto R, Pozzan T. Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Natl Acad Sci USA. 2012;109:12986-12991. doi: 10.1073/pnas.1210718109.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 12986-12991
-
-
Drago, I.1
De Stefani, D.2
Rizzuto, R.3
Pozzan, T.4
-
71
-
-
0028300397
-
Relaxation in rabbit and rat cardiac cells: Species-dependent differences in cellular mechanisms
-
Bassani JW, Bassani RA, Bers DM. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol. 1994;476:279-293.
-
(1994)
J Physiol
, vol.476
, pp. 279-293
-
-
Bassani, J.W.1
Bassani, R.A.2
Bers, D.M.3
-
72
-
-
0032031664
-
Cytosolic and mitochondrial Ca2+ signals in patch clamped mammalian ventricular myocytes
-
Zhou Z, Matlib MA, Bers DM. Cytosolic and mitochondrial Ca2+ signals in patch clamped mammalian ventricular myocytes. J Physiol. 1998;507(pt 2):379-403.
-
(1998)
J Physiol
, vol.507
, pp. 379-403
-
-
Zhou, Z.1
Matlib, M.A.2
Bers, D.M.3
-
73
-
-
84873410873
-
Measuring local gradients of intramitochondrial [Ca(2+)] in cardiac myocytes during sarcoplasmic reticulum Ca(2+) release
-
Lu X, Ginsburg KS, Kettlewell S, Bossuyt J, Smith GL, Bers DM. Measuring local gradients of intramitochondrial [Ca(2+)] in cardiac myocytes during sarcoplasmic reticulum Ca(2+) release. Circ Res. 2013;112:424-431. doi: 10.1161/CIRCRESAHA.111.300501.
-
(2013)
Circ Res
, vol.112
, pp. 424-431
-
-
Lu, X.1
Ginsburg, K.S.2
Kettlewell, S.3
Bossuyt, J.4
Smith, G.L.5
Bers, D.M.6
-
74
-
-
84909592216
-
Calcium movement in cardiac mitochondria
-
Boyman L, Chikando AC, Williams GS, Khairallah RJ, Kettlewell S, Ward CW, Smith GL, Kao JP, Lederer WJ. Calcium movement in cardiac mitochondria. Biophys J. 2014;107:1289-1301. doi: 10.1016/j.bpj.2014.07.045.
-
(2014)
Biophys J
, vol.107
, pp. 1289-1301
-
-
Boyman, L.1
Chikando, A.C.2
Williams, G.S.3
Khairallah, R.J.4
Kettlewell, S.5
Ward, C.W.6
Smith, G.L.7
Kao, J.P.8
Lederer, W.J.9
-
75
-
-
33644847375
-
Microdomains of intracellular Ca2+: Molecular determinants and functional consequences
-
Rizzuto R, Pozzan T. Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev. 2006;86:369-408. doi: 10.1152/physrev.00004.2005.
-
(2006)
Physiol Rev
, vol.86
, pp. 369-408
-
-
Rizzuto, R.1
Pozzan, T.2
-
76
-
-
0343527972
-
Mitochondrial calcium in heart cells: Beatto- beat oscillations or slow integration of cytosolic transients?
-
Hüser J, Blatter LA, Sheu SS. Mitochondrial calcium in heart cells: beatto- beat oscillations or slow integration of cytosolic transients? J Bioenerg Biomembr. 2000;32:27-33.
-
(2000)
J Bioenerg Biomembr
, vol.32
, pp. 27-33
-
-
Hüser, J.1
Blatter, L.A.2
Sheu, S.S.3
-
77
-
-
84876320977
-
Calcium signaling in cardiac mitochondria
-
Dedkova EN, Blatter LA. Calcium signaling in cardiac mitochondria. J Mol Cell Cardiol. 2013;58:125-133. doi: 10.1016/j.yjmcc.2012.12.021.
-
(2013)
J Mol Cell Cardiol
, vol.58
, pp. 125-133
-
-
Dedkova, E.N.1
Blatter, L.A.2
-
78
-
-
53549099939
-
Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching
-
Liu T, O'Rourke B. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res. 2008;103:279-288. doi: 10.1161/CIRCRESAHA.108.175919.
-
(2008)
Circ Res
, vol.103
, pp. 279-288
-
-
Liu, T.1
O'Rourke, B.2
-
79
-
-
85014549297
-
Tissue-specific mitochondrial decoding of cytoplasmic Ca2+ signals is controlled by the stoichiometry of MICU1/2 and MCU
-
Paillard M, Csordás G, Szanda G, Golenár T, Debattisti V, Bartok A, Wang N, Moffat C, Seifert EL, Spät A, Hajnóczky G. Tissue-specific mitochondrial decoding of cytoplasmic Ca2+ signals is controlled by the stoichiometry of MICU1/2 and MCU. Cell Rep. 2017;18:2291-2300. doi: 10.1016/j.celrep.2017.02.032.
-
(2017)
Cell Rep
, vol.18
, pp. 2291-2300
-
-
Paillard, M.1
Csordás, G.2
Szanda, G.3
Golenár, T.4
Debattisti, V.5
Bartok, A.6
Wang, N.7
Moffat, C.8
Seifert, E.L.9
Spät, A.10
Hajnóczky, G.11
-
80
-
-
0016213035
-
The release of calcium from heart mitochondria by sodium
-
Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C. The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol. 1974;6:361-371.
-
(1974)
J Mol Cell Cardiol
, vol.6
, pp. 361-371
-
-
Carafoli, E.1
Tiozzo, R.2
Lugli, G.3
Crovetti, F.4
Kratzing, C.5
-
81
-
-
76249133414
-
NCLX is an essential component of mitochondrial Na+/Ca2+ exchange
-
Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I. NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA. 2010;107:436-441. doi: 10.1073/pnas.0908099107.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 436-441
-
-
Palty, R.1
Silverman, W.F.2
Hershfinkel, M.3
Caporale, T.4
Sensi, S.L.5
Parnis, J.6
Nolte, C.7
Fishman, D.8
Shoshan-Barmatz, V.9
Herrmann, S.10
Khananshvili, D.11
Sekler, I.12
-
82
-
-
2942623673
-
Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger
-
Palty R, Ohana E, Hershfinkel M, Volokita M, Elgazar V, Beharier O, Silverman WF, Argaman M, Sekler I. Lithium-calcium exchange is mediated by a distinct potassium-independent sodium-calcium exchanger. J Biol Chem. 2004;279:25234-25240. doi: 10.1074/jbc.M401229200.
-
(2004)
J Biol Chem
, vol.279
, pp. 25234-25240
-
-
Palty, R.1
Ohana, E.2
Hershfinkel, M.3
Volokita, M.4
Elgazar, V.5
Beharier, O.6
Silverman, W.F.7
Argaman, M.8
Sekler, I.9
-
83
-
-
84919343757
-
Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation
-
Marinelli F, Almagor L, Hiller R, Giladi M, Khananshvili D, Faraldo- Gómez JD. Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation. Proc Natl Acad Sci USA. 2014;111:E5354- E5362. doi: 10.1073/pnas.1415751111.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. E5354-E5362
-
-
Marinelli, F.1
Almagor, L.2
Hiller, R.3
Giladi, M.4
Khananshvili, D.5
Faraldo-Gómez, J.D.6
-
84
-
-
0027399979
-
A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria
-
Cox DA, Matlib MA. A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. J Biol Chem. 1993;268:938-947.
-
(1993)
J Biol Chem
, vol.268
, pp. 938-947
-
-
Cox, D.A.1
Matlib, M.A.2
-
85
-
-
7044231596
-
Kinetics and ion specificity of Na(+)/Ca(2+) exchange mediated by the reconstituted beef heart mitochondrial Na(+)/ Ca(2+) antiporter
-
Paucek P, Jabůrek M. Kinetics and ion specificity of Na(+)/Ca(2+) exchange mediated by the reconstituted beef heart mitochondrial Na(+)/ Ca(2+) antiporter. Biochim Biophys Acta. 2004;1659:83-91. doi: 10.1016/j.bbabio.2004.03.019.
-
(2004)
Biochim Biophys Acta
, vol.1659
, pp. 83-91
-
-
Paucek, P.1
Jabůrek, M.2
-
86
-
-
84880324424
-
Na+ transport in the normal and failing heart- remember the balance
-
Despa S, Bers DM. Na+ transport in the normal and failing heart- remember the balance. J Mol Cell Cardiol. 2013;61:2-10. doi: 10.1016/j.yjmcc.2013.04.011.
-
(2013)
J Mol Cell Cardiol
, vol.61
, pp. 2-10
-
-
Despa, S.1
Bers, D.M.2
-
87
-
-
85018437204
-
The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability
-
Luongo TS, Lambert JP, Gross P, et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature. 2017;545:93-97. doi: 10.1038/nature22082.
-
(2017)
Nature
, vol.545
, pp. 93-97
-
-
Luongo, T.S.1
Lambert, J.P.2
Gross, P.3
-
88
-
-
84888128971
-
Threedimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: This organization is perturbed in heart failure
-
Pinali C, Bennett H, Davenport JB, Trafford AW, Kitmitto A. Threedimensional reconstruction of cardiac sarcoplasmic reticulum reveals a continuous network linking transverse-tubules: this organization is perturbed in heart failure. Circ Res. 2013;113:1219-1230. doi: 10.1161/CIRCRESAHA.113.301348.
-
(2013)
Circ Res
, vol.113
, pp. 1219-1230
-
-
Pinali, C.1
Bennett, H.2
Davenport, J.B.3
Trafford, A.W.4
Kitmitto, A.5
-
89
-
-
84872680832
-
SR and mitochondria: Calcium cross-talk between kissing cousins
-
Dorn GW 2nd, Maack C. SR and mitochondria: calcium cross-talk between kissing cousins. J Mol Cell Cardiol. 2013;55:42-49. doi: 10.1016/j.yjmcc.2012.07.015.
-
(2013)
J Mol Cell Cardiol
, vol.55
, pp. 42-49
-
-
Dorn, G.W.1
Maack, C.2
-
90
-
-
80355139289
-
Alignment of sarcoplasmic reticulum-mitochondrial junctions with mitochondrial contact points
-
García-Pérez C, Schneider TG, Hajnóczky G, Csordás G. Alignment of sarcoplasmic reticulum-mitochondrial junctions with mitochondrial contact points. Am J Physiol Heart Circ Physiol. 2011;301:H1907-H1915. doi: 10.1152/ajpheart.00397.2011.
-
(2011)
Am J Physiol Heart Circ Physiol
, vol.301
, pp. H1907-H1915
-
-
García-Pérez, C.1
Schneider, T.G.2
Hajnóczky, G.3
Csordás, G.4
-
91
-
-
66849134930
-
Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart
-
Hayashi T, Martone ME, Yu Z, Thor A, Doi M, Holst MJ, Ellisman MH, Hoshijima M. Three-dimensional electron microscopy reveals new details of membrane systems for Ca2+ signaling in the heart. J Cell Sci. 2009;122:1005-1013. doi: 10.1242/jcs.028175.
-
(2009)
J Cell Sci
, vol.122
, pp. 1005-1013
-
-
Hayashi, T.1
Martone, M.E.2
Yu, Z.3
Thor, A.4
Doi, M.5
Holst, M.J.6
Ellisman, M.H.7
Hoshijima, M.8
-
92
-
-
0027340729
-
Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria
-
Rizzuto R, Brini M, Murgia M, Pozzan T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 1993;262:744-747.
-
(1993)
Science
, vol.262
, pp. 744-747
-
-
Rizzuto, R.1
Brini, M.2
Murgia, M.3
Pozzan, T.4
-
93
-
-
84877307518
-
Calcium release microdomains and mitochondria
-
Kohlhaas M, Maack C. Calcium release microdomains and mitochondria. Cardiovasc Res. 2013;98:259-268. doi: 10.1093/cvr/cvt032.
-
(2013)
Cardiovasc Res
, vol.98
, pp. 259-268
-
-
Kohlhaas, M.1
Maack, C.2
-
94
-
-
0034686014
-
Calcium signal transmission between ryanodine receptors and mitochondria
-
Szalai G, Csordás G, Hantash BM, Thomas AP, Hajnóczky G. Calcium signal transmission between ryanodine receptors and mitochondria. J Biol Chem. 2000;275:15305-15313.
-
(2000)
J Biol Chem
, vol.275
, pp. 15305-15313
-
-
Szalai, G.1
Csordás, G.2
Hantash, B.M.3
Thomas, A.P.4
Hajnóczky, G.5
-
95
-
-
57749113106
-
Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle
-
García-Pérez C, Hajnóczky G, Csordás G. Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle. J Biol Chem. 2008;283:32771-32780. doi: 10.1074/jbc.M803385200.
-
(2008)
J Biol Chem
, vol.283
, pp. 32771-32780
-
-
García-Pérez, C.1
Hajnóczky, G.2
Csordás, G.3
-
96
-
-
57349100367
-
Mitofusin 2 tethers endoplasmic reticulum to mitochondria
-
de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456:605-610. doi: 10.1038/nature07534.
-
(2008)
Nature
, vol.456
, pp. 605-610
-
-
De Brito, O.M.1
Scorrano, L.2
-
97
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160:189-200. doi: 10.1083/jcb.200211046.
-
(2003)
J Cell Biol
, vol.160
, pp. 189-200
-
-
Chen, H.1
Detmer, S.A.2
Ewald, A.J.3
Griffin, E.E.4
Fraser, S.E.5
Chan, D.C.6
-
98
-
-
84866530818
-
Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2+) crosstalk
-
Chen Y, Csordás G, Jowdy C, Schneider TG, Csordás N, Wang W, Liu Y, Kohlhaas M, Meiser M, Bergem S, Nerbonne JM, Dorn GW 2nd, Maack C. Mitofusin 2-containing mitochondrial-reticular microdomains direct rapid cardiomyocyte bioenergetic responses via interorganelle Ca(2+) crosstalk. Circ Res. 2012;111:863-875. doi: 10.1161/CIRCRESAHA.112.266585.
-
(2012)
Circ Res
, vol.111
, pp. 863-875
-
-
Chen, Y.1
Csordás, G.2
Jowdy, C.3
Schneider, T.G.4
Csordás, N.5
Wang, W.6
Liu, Y.7
Kohlhaas, M.8
Meiser, M.9
Bergem, S.10
Nerbonne, J.M.11
Dorn, G.W.12
Maack, C.13
-
99
-
-
84876531457
-
PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
-
Chen Y, Dorn GW 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science. 2013;340:471-475. doi: 10.1126/science.1231031.
-
(2013)
Science
, vol.340
, pp. 471-475
-
-
Chen, Y.1
Dorn, G.W.2
-
100
-
-
84928600551
-
Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling
-
Filadi R, Greotti E, Turacchio G, Luini A, Pozzan T, Pizzo P. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc Natl Acad Sci USA. 2015;112:E2174-E2181. doi: 10.1073/pnas.1504880112.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. E2174-E2181
-
-
Filadi, R.1
Greotti, E.2
Turacchio, G.3
Luini, A.4
Pozzan, T.5
Pizzo, P.6
-
101
-
-
84989964357
-
Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether
-
Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F, Lakshminaranayan S, Serafini A, Semenzato M, Herkenne S, Hernández- Alvarez MI, Zorzano A, De Stefani D, Dorn GW 2nd, Scorrano L. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci USA. 2016;113:11249-11254. doi: 10.1073/pnas.1606786113.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 11249-11254
-
-
Naon, D.1
Zaninello, M.2
Giacomello, M.3
Varanita, T.4
Grespi, F.5
Lakshminaranayan, S.6
Serafini, A.7
Semenzato, M.8
Herkenne, S.9
Hernández-Alvarez, M.I.10
Zorzano, A.11
De Stefani, D.12
Dorn, G.W.13
Scorrano, L.14
-
102
-
-
79952265711
-
Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes
-
Papanicolaou KN, Khairallah RJ, Ngoh GA, Chikando A, Luptak I, O'Shea KM, Riley DD, Lugus JJ, Colucci WS, Lederer WJ, Stanley WC, Walsh K. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31:1309-1328. doi: 10.1128/MCB.00911-10.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 1309-1328
-
-
Papanicolaou, K.N.1
Khairallah, R.J.2
Ngoh, G.A.3
Chikando, A.4
Luptak, I.5
O'Shea, K.M.6
Riley, D.D.7
Lugus, J.J.8
Colucci, W.S.9
Lederer, W.J.10
Stanley, W.C.11
Walsh, K.12
-
103
-
-
20144385980
-
PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis
-
Simmen T, Aslan JE, Blagoveshchenskaya AD, Thomas L, Wan L, Xiang Y, Feliciangeli SF, Hung CH, Crump CM, Thomas G. PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J. 2005;24:717-729. doi: 10.1038/sj.emboj.7600559.
-
(2005)
EMBO J
, vol.24
, pp. 717-729
-
-
Simmen, T.1
Aslan, J.E.2
Blagoveshchenskaya, A.D.3
Thomas, L.4
Wan, L.5
Xiang, Y.6
Feliciangeli, S.F.7
Hung, C.H.8
Crump, C.M.9
Thomas, G.10
-
104
-
-
33845692166
-
Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels
-
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175:901-911. doi: 10.1083/jcb.200608073.
-
(2006)
J Cell Biol
, vol.175
, pp. 901-911
-
-
Szabadkai, G.1
Bianchi, K.2
Várnai, P.3
De Stefani, D.4
Wieckowski, M.R.5
Cavagna, D.6
Nagy, A.I.7
Balla, T.8
Rizzuto, R.9
-
105
-
-
35549006797
-
Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival
-
Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell. 2007;131:596-610. doi: 10.1016/j.cell.2007.08.036.
-
(2007)
Cell
, vol.131
, pp. 596-610
-
-
Hayashi, T.1
Su, T.P.2
-
106
-
-
84901925681
-
ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43
-
Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, Vizcay-Barrena G, Lin WL, Xu YF, Lewis J, Dickson DW, Petrucelli L, Mitchell JC, Shaw CE, Miller CC. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun. 2014;5:3996. doi: 10.1038/ncomms4996.
-
(2014)
Nat Commun
, vol.5
, pp. 3996
-
-
Stoica, R.1
De Vos, K.J.2
Paillusson, S.3
Mueller, S.4
Sancho, R.M.5
Lau, K.F.6
Vizcay-Barrena, G.7
Lin, W.L.8
Xu, Y.F.9
Lewis, J.10
Dickson, D.W.11
Petrucelli, L.12
Mitchell, J.C.13
Shaw, C.E.14
Miller, C.C.15
-
107
-
-
85037115439
-
Binding of FUN14 domain containing 1 with inositol 1, 4, 5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo
-
Wu S, Lu Q, Wang Q, Ding Y, Ma Z, Mao X, Huang K, Xie Z, Zou MH. Binding of FUN14 domain containing 1 with inositol 1, 4, 5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation. 2017;136:2248-2266. doi: 10.1161/CIRCULATIONAHA.117.030235.
-
(2017)
Circulation
, vol.136
, pp. 2248-2266
-
-
Wu, S.1
Lu, Q.2
Wang, Q.3
Ding, Y.4
Ma, Z.5
Mao, X.6
Huang, K.7
Xie, Z.8
Zou, M.H.9
-
108
-
-
84937525656
-
The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition
-
Luongo TS, Lambert JP, Yuan A, Zhang X, Gross P, Song J, Shanmughapriya S, Gao E, Jain M, Houser SR, Koch WJ, Cheung JY, Madesh M, Elrod JW. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 2015;12:23-34. doi: 10.1016/j.celrep.2015.06.017.
-
(2015)
Cell Rep
, vol.12
, pp. 23-34
-
-
Luongo, T.S.1
Lambert, J.P.2
Yuan, A.3
Zhang, X.4
Gross, P.5
Song, J.6
Shanmughapriya, S.7
Gao, E.8
Jain, M.9
Houser, S.R.10
Koch, W.J.11
Cheung, J.Y.12
Madesh, M.13
Elrod, J.W.14
-
109
-
-
34250027274
-
The mitochondrial ryanodine receptor in rat heart: A pharmacokinetic profile
-
Altschafl BA, Beutner G, Sharma VK, Sheu SS, Valdivia HH. The mitochondrial ryanodine receptor in rat heart: a pharmacokinetic profile. Biochim Biophys Acta. 2007;1768:1784-1795. doi: 10.1016/j.bbamem.2007.04.011.
-
(2007)
Biochim Biophys Acta
, vol.1768
, pp. 1784-1795
-
-
Altschafl, B.A.1
Beutner, G.2
Sharma, V.K.3
Sheu, S.S.4
Valdivia, H.H.5
-
110
-
-
84864011241
-
Molecular identities of mitochondrial Ca2+ influx mechanism: Updated passwords for accessing mitochondrial Ca2+- linked health and disease
-
O-Uchi J, Pan S, Sheu SS. Molecular identities of mitochondrial Ca2+ influx mechanism: updated passwords for accessing mitochondrial Ca2+- linked health and disease. J Gen Physiol. 2012;139:435-443.
-
(2012)
J Gen Physiol
, vol.139
, pp. 435-443
-
-
O-Uchi, J.1
Pan, S.2
Sheu, S.S.3
-
111
-
-
0029776469
-
Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery
-
Brandes R, Bers DM. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery. Biophys J. 1996;71:1024-1035. doi: 10.1016/S0006-3495(96)79303-7.
-
(1996)
Biophys J
, vol.71
, pp. 1024-1035
-
-
Brandes, R.1
Bers, D.M.2
-
112
-
-
0030614778
-
Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle
-
Brandes R, Bers DM. Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle. Circ Res. 1997;80:82-87.
-
(1997)
Circ Res
, vol.80
, pp. 82-87
-
-
Brandes, R.1
Bers, D.M.2
-
113
-
-
0032818671
-
Analysis of the mechanisms of mitochondrial NADH regulation in cardiac trabeculae
-
Brandes R, Bers DM. Analysis of the mechanisms of mitochondrial NADH regulation in cardiac trabeculae. Biophys J. 1999;77:1666-1682. doi: 10.1016/S0006-3495(99)77014-1.
-
(1999)
Biophys J
, vol.77
, pp. 1666-1682
-
-
Brandes, R.1
Bers, D.M.2
-
114
-
-
0035996962
-
Simultaneous measurements of mitochondrial NADH and Ca(2+) during increased work in intact rat heart trabeculae
-
Brandes R, Bers DM. Simultaneous measurements of mitochondrial NADH and Ca(2+) during increased work in intact rat heart trabeculae. Biophys J. 2002;83:587-604. doi: 10.1016/S0006-3495(02)75194-1.
-
(2002)
Biophys J
, vol.83
, pp. 587-604
-
-
Brandes, R.1
Bers, D.M.2
-
115
-
-
0037380954
-
An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics
-
Cortassa S, Aon MA, Marbán E, Winslow RL, O'Rourke B. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J. 2003;84:2734-2755. doi: 10.1016/S0006-3495(03)75079-6.
-
(2003)
Biophys J
, vol.84
, pp. 2734-2755
-
-
Cortassa, S.1
Aon, M.A.2
Marbán, E.3
Winslow, R.L.4
O'Rourke, B.5
-
116
-
-
33746809102
-
A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte
-
Cortassa S, Aon MA, O'Rourke B, Jacques R, Tseng HJ, Marbán E, Winslow RL. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J. 2006;91:1564-1589. doi: 10.1529/biophysj.105.076174.
-
(2006)
Biophys J
, vol.91
, pp. 1564-1589
-
-
Cortassa, S.1
Aon, M.A.2
O'Rourke, B.3
Jacques, R.4
Tseng, H.J.5
Marbán, E.6
Winslow, R.L.7
-
117
-
-
66149107066
-
Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function
-
Cortassa S, O'Rourke B, Winslow RL, Aon MA. Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. Biophys J. 2009;96:2466-2478. doi: 10.1016/j.bpj.2008.12.3893.
-
(2009)
Biophys J
, vol.96
, pp. 2466-2478
-
-
Cortassa, S.1
O'Rourke, B.2
Winslow, R.L.3
Aon, M.A.4
-
118
-
-
84891393224
-
The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter
-
Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol. 2013;15:1464-1472. doi: 10.1038/ncb2868.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1464-1472
-
-
Pan, X.1
Liu, J.2
Nguyen, T.3
Liu, C.4
Sun, J.5
Teng, Y.6
Fergusson, M.M.7
Rovira, I.I.8
Allen, M.9
Springer, D.A.10
Aponte, A.M.11
Gucek, M.12
Balaban, R.S.13
Murphy, E.14
Finkel, T.15
-
119
-
-
84937689030
-
Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart
-
Rasmussen TP, Wu Y, Joiner ML, et al. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Proc Natl Acad Sci USA. 2015;112:9129-9134.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 9129-9134
-
-
Rasmussen, T.P.1
Wu, Y.2
Joiner, M.L.3
-
120
-
-
85006248689
-
Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia
-
Diaz-Juarez J, Suarez J, Cividini F, Scott BT, Diemer T, Dai A, Dillmann WH. Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. Am J Physiol Cell Physiol. 2016;311:C1005-C1013. doi: 10.1152/ajpcell.00236.2016.
-
(2016)
Am J Physiol Cell Physiol
, vol.311
, pp. C1005-C1013
-
-
Diaz-Juarez, J.1
Suarez, J.2
Cividini, F.3
Scott, B.T.4
Diemer, T.5
Dai, A.6
Dillmann, W.H.7
-
121
-
-
84931273624
-
Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter
-
Holmström KM, Pan X, Liu JC, Menazza S, Liu J, Nguyen TT, Pan H, Parks RJ, Anderson S, Noguchi A, Springer D, Murphy E, Finkel T. Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter. J Mol Cell Cardiol. 2015;85:178-182. doi: 10.1016/j.yjmcc.2015.05.022.
-
(2015)
J Mol Cell Cardiol
, vol.85
, pp. 178-182
-
-
Holmström, K.M.1
Pan, X.2
Liu, J.C.3
Menazza, S.4
Liu, J.5
Nguyen, T.T.6
Pan, H.7
Parks, R.J.8
Anderson, S.9
Noguchi, A.10
Springer, D.11
Murphy, E.12
Finkel, T.13
-
122
-
-
84937515068
-
The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart
-
Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA, York AJ, Zhang J, Bers DM, Molkentin JD. The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep. 2015;12:15-22. doi: 10.1016/j.celrep.2015.06.002.
-
(2015)
Cell Rep
, vol.12
, pp. 15-22
-
-
Kwong, J.Q.1
Lu, X.2
Correll, R.N.3
Schwanekamp, J.A.4
Vagnozzi, R.J.5
Sargent, M.A.6
York, A.J.7
Zhang, J.8
Bers, D.M.9
Molkentin, J.D.10
-
123
-
-
84930394045
-
The mitochondrial uniporter controls fight or flight heart rate increases
-
Wu Y, Rasmussen TP, Koval OM, Joiner ML, Hall DD, Chen B, Luczak ED, Wang Q, Rokita AG, Wehrens XH, Song LS, Anderson ME. The mitochondrial uniporter controls fight or flight heart rate increases. Nat Commun. 2015;6:6081. doi: 10.1038/ncomms7081.
-
(2015)
Nat Commun
, vol.6
, pp. 6081
-
-
Wu, Y.1
Rasmussen, T.P.2
Koval, O.M.3
Joiner, M.L.4
Hall, D.D.5
Chen, B.6
Luczak, E.D.7
Wang, Q.8
Rokita, A.G.9
Wehrens, X.H.10
Song, L.S.11
Anderson, M.E.12
-
124
-
-
85014788686
-
Mitochondrial energetics and calcium coupling in the heart
-
Kohlhaas M, Nickel AG, Maack C. Mitochondrial energetics and calcium coupling in the heart. J Physiol. 2017;595:3753-3763. doi: 10.1113/JP273609.
-
(2017)
J Physiol
, vol.595
, pp. 3753-3763
-
-
Kohlhaas, M.1
Nickel, A.G.2
Maack, C.3
-
125
-
-
80052627393
-
Mitochondrial permeability transition in Ca(2+)- dependent apoptosis and necrosis
-
Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)- dependent apoptosis and necrosis. Cell Calcium. 2011;50:222-233. doi: 10.1016/j.ceca.2011.04.007.
-
(2011)
Cell Calcium
, vol.50
, pp. 222-233
-
-
Rasola, A.1
Bernardi, P.2
-
127
-
-
33845195897
-
Ru360, a specific mitochondrial calcium uptake inhibitor, improves cardiac post-ischaemic functional recovery in rats in vivo
-
García-Rivas Gde J, Carvajal K, Correa F, Zazueta C. Ru360, a specific mitochondrial calcium uptake inhibitor, improves cardiac post-ischaemic functional recovery in rats in vivo. Br J Pharmacol. 2006;149:829-837. doi: 10.1038/sj.bjp.0706932.
-
(2006)
Br J Pharmacol
, vol.149
, pp. 829-837
-
-
García-Rivas Gde, J.1
Carvajal, K.2
Correa, F.3
Zazueta, C.4
-
128
-
-
84872117185
-
Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25
-
Marchi S, Lupini L, Patergnani S, et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol. 2013;23:58-63. doi: 10.1016/j.cub.2012.11.026.
-
(2013)
Curr Biol
, vol.23
, pp. 58-63
-
-
Marchi, S.1
Lupini, L.2
Patergnani, S.3
-
129
-
-
84925857762
-
MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter
-
Pan L, Huang BJ, Ma XE, Wang SY, Feng J, Lv F, Liu Y, Liu Y, Li CM, Liang DD, Li J, Xu L, Chen YH. MiR-25 protects cardiomyocytes against oxidative damage by targeting the mitochondrial calcium uniporter. Int J Mol Sci. 2015;16:5420-5433. doi: 10.3390/ijms16035420.
-
(2015)
Int J Mol Sci
, vol.16
, pp. 5420-5433
-
-
Pan, L.1
Huang, B.J.2
Ma, X.E.3
Wang, S.Y.4
Feng, J.5
Lv, F.6
Liu, Y.7
Liu, Y.8
Li, C.M.9
Liang, D.D.10
Li, J.11
Xu, L.12
Chen, Y.H.13
-
130
-
-
84883592437
-
Mechanisms of altered Ca2+ handling in heart failure
-
Luo M, Anderson ME. Mechanisms of altered Ca2+ handling in heart failure. Circ Res. 2013;113:690-708. doi: 10.1161/CIRCRESAHA.113.301651.
-
(2013)
Circ Res
, vol.113
, pp. 690-708
-
-
Luo, M.1
Anderson, M.E.2
-
131
-
-
0033583244
-
Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: Experimental studies
-
O'Rourke B, Kass DA, Tomaselli GF, Kääb S, Tunin R, Marbán E. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res. 1999;84:562-570.
-
(1999)
Circ Res
, vol.84
, pp. 562-570
-
-
O'Rourke, B.1
Kass, D.A.2
Tomaselli, G.F.3
Kääb, S.4
Tunin, R.5
Marbán, E.6
-
132
-
-
0035916903
-
Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure
-
Hobai IA, O'Rourke B. Decreased sarcoplasmic reticulum calcium content is responsible for defective excitation-contraction coupling in canine heart failure. Circulation. 2001;103:1577-1584.
-
(2001)
Circulation
, vol.103
, pp. 1577-1584
-
-
Hobai, I.A.1
O'Rourke, B.2
-
133
-
-
0033105384
-
Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation
-
Schwinger RH, Münch G, Bölck B, Karczewski P, Krause EG, Erdmann E. Reduced Ca(2+)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol. 1999;31:479-491.
-
(1999)
J Mol Cell Cardiol
, vol.31
, pp. 479-491
-
-
Schwinger, R.H.1
Münch, G.2
Bölck, B.3
Karczewski, P.4
Krause, E.G.5
Erdmann, E.6
-
134
-
-
0032144074
-
Frequency-dependence of myocardial energetics in failing human myocardium as quantified by a new method for the measurement of oxygen consumption in muscle strip preparations
-
Meyer M, Keweloh B, Güth K, Holmes JW, Pieske B, Lehnart SE, Just H, Hasenfuss G. Frequency-dependence of myocardial energetics in failing human myocardium as quantified by a new method for the measurement of oxygen consumption in muscle strip preparations. J Mol Cell Cardiol. 1998;30:1459-1470. doi: 10.1006/jmcc.1998.0706.
-
(1998)
J Mol Cell Cardiol
, vol.30
, pp. 1459-1470
-
-
Meyer, M.1
Keweloh, B.2
Güth, K.3
Holmes, J.W.4
Pieske, B.5
Lehnart, S.E.6
Just, H.7
Hasenfuss, G.8
-
135
-
-
0037188622
-
Intracellular Na(+) concentration is elevated in heart failure but Na/K pump function is unchanged
-
Despa S, Islam MA, Weber CR, Pogwizd SM, Bers DM. Intracellular Na(+) concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation. 2002;105:2543-2548.
-
(2002)
Circulation
, vol.105
, pp. 2543-2548
-
-
Despa, S.1
Islam, M.A.2
Weber, C.R.3
Pogwizd, S.M.4
Bers, D.M.5
-
136
-
-
14744290314
-
Increased late sodium current in myocytes from a canine heart failure model and from failing human heart
-
Valdivia CR, Chu WW, Pu J, Foell JD, Haworth RA, Wolff MR, Kamp TJ, Makielski JC. Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol. 2005;38:475-483. doi: 10.1016/j.yjmcc.2004.12.012.
-
(2005)
J Mol Cell Cardiol
, vol.38
, pp. 475-483
-
-
Valdivia, C.R.1
Chu, W.W.2
Pu, J.3
Foell, J.D.4
Haworth, R.A.5
Wolff, M.R.6
Kamp, T.J.7
Makielski, J.C.8
-
137
-
-
0037376574
-
Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model
-
Baartscheer A, Schumacher CA, van Borren MM, Belterman CN, Coronel R, Fiolet JW. Increased Na+/H+-exchange activity is the cause of increased [Na+]i and underlies disturbed calcium handling in the rabbit pressure and volume overload heart failure model. Cardiovasc Res. 2003;57:1015-1024.
-
(2003)
Cardiovasc Res
, vol.57
, pp. 1015-1024
-
-
Baartscheer, A.1
Schumacher, C.A.2
Van Borren, M.M.3
Belterman, C.N.4
Coronel, R.5
Fiolet, J.W.6
-
138
-
-
0033609089
-
Reduced sodium pump alpha1, alpha3, and beta1-isoform protein levels and Na+, K+-ATPase activity but unchanged Na+-Ca2+ exchanger protein levels in human heart failure
-
Schwinger RH, Wang J, Frank K, Müller-Ehmsen J, Brixius K, McDonough AA, Erdmann E. Reduced sodium pump alpha1, alpha3, and beta1-isoform protein levels and Na+, K+-ATPase activity but unchanged Na+-Ca2+ exchanger protein levels in human heart failure. Circulation. 1999;99:2105-2112.
-
(1999)
Circulation
, vol.99
, pp. 2105-2112
-
-
Schwinger, R.H.1
Wang, J.2
Frank, K.3
Müller-Ehmsen, J.4
Brixius, K.5
McDonough, A.A.6
Erdmann, E.7
-
139
-
-
41149087204
-
Altered Na+/Ca2+-exchanger activity due to downregulation of Na+/K+-ATPase alpha2-isoform in heart failure
-
Swift F, Birkeland JA, Tovsrud N, Enger UH, Aronsen JM, Louch WE, Sjaastad I, Sejersted OM. Altered Na+/Ca2+-exchanger activity due to downregulation of Na+/K+-ATPase alpha2-isoform in heart failure. Cardiovasc Res. 2008;78:71-78. doi: 10.1093/cvr/cvn013.
-
(2008)
Cardiovasc Res
, vol.78
, pp. 71-78
-
-
Swift, F.1
Birkeland, J.A.2
Tovsrud, N.3
Enger, U.H.4
Aronsen, J.M.5
Louch, W.E.6
Sjaastad, I.7
Sejersted, O.M.8
-
140
-
-
0028040849
-
Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure
-
Studer R, Reinecke H, Bilger J, Eschenhagen T, Böhm M, Hasenfuss G, Just H, Holtz J, Drexler H. Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res. 1994;75:443-453.
-
(1994)
Circ Res
, vol.75
, pp. 443-453
-
-
Studer, R.1
Reinecke, H.2
Bilger, J.3
Eschenhagen, T.4
Böhm, M.5
Hasenfuss, G.6
Just, H.7
Holtz, J.8
Drexler, H.9
-
141
-
-
0034644637
-
Enhanced Ca(2+)-activated Na(+)-Ca(2+) exchange activity in canine pacing-induced heart failure
-
Hobai IA, O'Rourke B. Enhanced Ca(2+)-activated Na(+)-Ca(2+) exchange activity in canine pacing-induced heart failure. Circ Res. 2000;87:690-698.
-
(2000)
Circ Res
, vol.87
, pp. 690-698
-
-
Hobai, I.A.1
O'Rourke, B.2
-
142
-
-
0037488534
-
Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts
-
Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O'Rourke B. Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res. 2003;93:46-53. doi: 10.1161/01.RES.0000080932.98903.D8.
-
(2003)
Circ Res
, vol.93
, pp. 46-53
-
-
Armoundas, A.A.1
Hobai, I.A.2
Tomaselli, G.F.3
Winslow, R.L.4
O'Rourke, B.5
-
143
-
-
0242298644
-
Dynamic regulation of sodium/calcium exchange function in human heart failure
-
Weber CR, Piacentino V 3rd, Houser SR, Bers DM. Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation. 2003;108:2224-2229. doi: 10.1161/01.CIR.0000095274.72486.94.
-
(2003)
Circulation
, vol.108
, pp. 2224-2229
-
-
Weber, C.R.1
Piacentino, V.2
Houser, S.R.3
Bers, D.M.4
-
144
-
-
0037376146
-
Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes
-
Weisser-Thomas J, Piacentino V 3rd, Gaughan JP, Margulies K, Houser SR. Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes. Cardiovasc Res. 2003;57:974-985.
-
(2003)
Cardiovasc Res
, vol.57
, pp. 974-985
-
-
Weisser-Thomas, J.1
Piacentino, V.2
Gaughan, J.P.3
Margulies, K.4
Houser, S.R.5
-
145
-
-
0037162348
-
Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium
-
Pieske B, Maier LS, Piacentino V 3rd, Weisser J, Hasenfuss G, Houser S. Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium. Circulation. 2002;106:447-453.
-
(2002)
Circulation
, vol.106
, pp. 447-453
-
-
Pieske, B.1
Maier, L.S.2
Piacentino, V.3
Weisser, J.4
Hasenfuss, G.5
Houser, S.6
-
146
-
-
84937391053
-
Mitochondria-derived ROS bursts disturb Ca2+ cycling and induce abnormal automaticity in Guinea pig cardiomyocytes: A theoretical study
-
Li Q, Su D, O'Rourke B, Pogwizd SM, Zhou L. Mitochondria-derived ROS bursts disturb Ca2+ cycling and induce abnormal automaticity in guinea pig cardiomyocytes: a theoretical study. Am J Physiol Heart Circ Physiol. 2015;308:H623-H636. doi: 10.1152/ajpheart.00493.2014.
-
(2015)
Am J Physiol Heart Circ Physiol
, vol.308
, pp. H623-H636
-
-
Li, Q.1
Su, D.2
O'Rourke, B.3
Pogwizd, S.M.4
Zhou, L.5
-
147
-
-
84908061188
-
Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure
-
Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM, Tesi C, Cerbai E, Poggesi C, Pavone FS, Sacconi L. Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proc Natl Acad Sci USA. 2014;111:15196-15201. doi: 10.1073/pnas.1411557111.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 15196-15201
-
-
Crocini, C.1
Coppini, R.2
Ferrantini, C.3
Yan, P.4
Loew, L.M.5
Tesi, C.6
Cerbai, E.7
Poggesi, C.8
Pavone, F.S.9
Sacconi, L.10
-
148
-
-
78650090134
-
Adverse bioenergetic consequences of Na+- Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes
-
Kohlhaas M, Maack C. Adverse bioenergetic consequences of Na+- Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes. Circulation. 2010;122:2273-2280. doi: 10.1161/CIRCULATIONAHA.110.968057.
-
(2010)
Circulation
, vol.122
, pp. 2273-2280
-
-
Kohlhaas, M.1
Maack, C.2
-
149
-
-
84959903452
-
Impaired mitochondrial network excitability in failing Guinea-pig cardiomyocytes
-
Goh KY, Qu J, Hong H, Liu T, Dell'Italia LJ, Wu Y, O'Rourke B, Zhou L. Impaired mitochondrial network excitability in failing guinea-pig cardiomyocytes. Cardiovasc Res. 2016;109:79-89. doi: 10.1093/cvr/cvv230.
-
(2016)
Cardiovasc Res
, vol.109
, pp. 79-89
-
-
Goh, K.Y.1
Qu, J.2
Hong, H.3
Liu, T.4
Dell'Italia, L.J.5
Wu, Y.6
O'Rourke, B.7
Zhou, L.8
-
150
-
-
84959864799
-
Orphaned mitochondria in heart failure
-
Maack C. Orphaned mitochondria in heart failure. Cardiovasc Res. 2016;109:6-8. doi: 10.1093/cvr/cvv262.
-
(2016)
Cardiovasc Res
, vol.109
, pp. 6-8
-
-
Maack, C.1
-
151
-
-
84987858739
-
MiR-106a promotes cardiac hypertrophy by targeting mitofusin 2
-
Guan X, Wang L, Liu Z, Guo X, Jiang Y, Lu Y, Peng Y, Liu T, Yang B, Shan H, Zhang Y, Xu C. miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol. 2016;99:207-217. doi: 10.1016/j.yjmcc.2016.08.016.
-
(2016)
J Mol Cell Cardiol
, vol.99
, pp. 207-217
-
-
Guan, X.1
Wang, L.2
Liu, Z.3
Guo, X.4
Jiang, Y.5
Lu, Y.6
Peng, Y.7
Liu, T.8
Yang, B.9
Shan, H.10
Zhang, Y.11
Xu, C.12
-
152
-
-
84903195508
-
Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure
-
Liu T, Takimoto E, Dimaano VL, DeMazumder D, Kettlewell S, Smith G, Sidor A, Abraham TP, O'Rourke B. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a Guinea pig model of heart failure. Circ Res. 2014;115:44-54. doi: 10.1161/CIRCRESAHA.115.303062.
-
(2014)
Circ Res
, vol.115
, pp. 44-54
-
-
Liu, T.1
Takimoto, E.2
Dimaano, V.L.3
DeMazumder, D.4
Kettlewell, S.5
Smith, G.6
Sidor, A.7
Abraham, T.P.8
O'Rourke, B.9
-
153
-
-
77957242874
-
Role of mitochondrial dysfunction in cardiac glycoside toxicity
-
Liu T, Brown DA, O'Rourke B. Role of mitochondrial dysfunction in cardiac glycoside toxicity. J Mol Cell Cardiol. 2010;49:728-736. doi: 10.1016/j.yjmcc.2010.06.012.
-
(2010)
J Mol Cell Cardiol
, vol.49
, pp. 728-736
-
-
Liu, T.1
Brown, D.A.2
O'Rourke, B.3
-
154
-
-
77957227614
-
Digitalis and Na/Ca exchange: Old dog learns new mitochondrial tricks
-
Bers DM. Digitalis and Na/Ca exchange: old dog learns new mitochondrial tricks. J Mol Cell Cardiol. 2010;49:713-714. doi: 10.1016/j.yjmcc.2010.08.004.
-
(2010)
J Mol Cell Cardiol
, vol.49
, pp. 713-714
-
-
Bers, D.M.1
-
155
-
-
84941243899
-
Mitochondrial calcium overload is a key determinant in heart failure
-
Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci USA. 2015;112:11389-11394. doi: 10.1073/pnas.1513047112.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 11389-11394
-
-
Santulli, G.1
Xie, W.2
Reiken, S.R.3
Marks, A.R.4
-
156
-
-
77957842939
-
Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice
-
Elrod JW, Wong R, Mishra S, Vagnozzi RJ, Sakthievel B, Goonasekera SA, Karch J, Gabel S, Farber J, Force T, Brown JH, Murphy E, Molkentin JD. Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest. 2010;120:3680-3687. doi: 10.1172/JCI43171.
-
(2010)
J Clin Invest
, vol.120
, pp. 3680-3687
-
-
Elrod, J.W.1
Wong, R.2
Mishra, S.3
Vagnozzi, R.J.4
Sakthievel, B.5
Goonasekera, S.A.6
Karch, J.7
Gabel, S.8
Farber, J.9
Force, T.10
Brown, J.H.11
Murphy, E.12
Molkentin, J.D.13
-
157
-
-
0030971394
-
Cardiovascular indexes in the mouse at rest and with exercise: New tools to study models of cardiac disease
-
Desai KH, Sato R, Schauble E, Barsh GS, Kobilka BK, Bernstein D. Cardiovascular indexes in the mouse at rest and with exercise: new tools to study models of cardiac disease. Am J Physiol. 1997;272:H1053- H1061. doi: 10.1152/ajpheart.1997.272.2.H1053.
-
(1997)
Am J Physiol
, vol.272
, pp. H1053-H1061
-
-
Desai, K.H.1
Sato, R.2
Schauble, E.3
Barsh, G.S.4
Kobilka, B.K.5
Bernstein, D.6
-
158
-
-
0035878625
-
Minimal force-frequency modulation of inotropy and relaxation of in situ murine heart
-
Georgakopoulos D, Kass D. Minimal force-frequency modulation of inotropy and relaxation of in situ murine heart. J Physiol. 2001;534:535-545.
-
(2001)
J Physiol
, vol.534
, pp. 535-545
-
-
Georgakopoulos, D.1
Kass, D.2
-
159
-
-
1442295698
-
Behavior of stroke volume at rest and during exercise in human beings
-
Chapman CB, Fisher JN, Sproule BJ. Behavior of stroke volume at rest and during exercise in human beings. J Clin Invest. 1960;39:1208-1213. doi: 10.1172/JCI104136.
-
(1960)
J Clin Invest
, vol.39
, pp. 1208-1213
-
-
Chapman, C.B.1
Fisher, J.N.2
Sproule, B.J.3
-
160
-
-
0013933511
-
Cardiac output during submaximal and maximal exercise in active middle-aged athletes
-
Grimby G, Nilsson NJ, Saltin B. Cardiac output during submaximal and maximal exercise in active middle-aged athletes. J Appl Physiol. 1966;21:1150-1156. doi: 10.1152/jappl.1966.21.4.1150.
-
(1966)
J Appl Physiol
, vol.21
, pp. 1150-1156
-
-
Grimby, G.1
Nilsson, N.J.2
Saltin, B.3
-
161
-
-
84940646298
-
Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure
-
Nickel AG, von Hardenberg A, Hohl M, et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab. 2015;22:472-484. doi: 10.1016/j.cmet.2015.07.008.
-
(2015)
Cell Metab
, vol.22
, pp. 472-484
-
-
Nickel, A.G.1
Von Hardenberg, A.2
Hohl, M.3
-
162
-
-
85041797730
-
Decreased ATP production and myocardial contractile reserve in metabolic heart disease
-
Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, Siwik DA, Ingwall JS, Bachschmid MM, Balschi JA, Colucci WS. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol. 2018;116:106-114. doi: 10.1016/j.yjmcc.2018.01.017.
-
(2018)
J Mol Cell Cardiol
, vol.116
, pp. 106-114
-
-
Luptak, I.1
Sverdlov, A.L.2
Panagia, M.3
Qin, F.4
Pimentel, D.R.5
Croteau, D.6
Siwik, D.A.7
Ingwall, J.S.8
Bachschmid, M.M.9
Balschi, J.A.10
Colucci, W.S.11
-
163
-
-
41549126311
-
Calcineurin-induced energy wasting in a transgenic mouse model of heart failure
-
Pinz I, Ostroy SE, Hoyer K, Osinska H, Robbins J, Molkentin JD, Ingwall JS. Calcineurin-induced energy wasting in a transgenic mouse model of heart failure. Am J Physiol Heart Circ Physiol. 2008;294:H1459-H1466. doi: 10.1152/ajpheart.00911.2007.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.294
, pp. H1459-H1466
-
-
Pinz, I.1
Ostroy, S.E.2
Hoyer, K.3
Osinska, H.4
Robbins, J.5
Molkentin, J.D.6
Ingwall, J.S.7
-
164
-
-
0032523194
-
Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy
-
Spindler M, Saupe KW, Christe ME, Sweeney HL, Seidman CE, Seidman JG, Ingwall JS. Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J Clin Invest. 1998;101:1775-1783. doi: 10.1172/JCI1940.
-
(1998)
J Clin Invest
, vol.101
, pp. 1775-1783
-
-
Spindler, M.1
Saupe, K.W.2
Christe, M.E.3
Sweeney, H.L.4
Seidman, C.E.5
Seidman, J.G.6
Ingwall, J.S.7
-
165
-
-
33745871211
-
Mitochondrial transhydrogenase-a key enzyme in insulin secretion and, potentially, diabetes
-
Rydström J. Mitochondrial transhydrogenase-a key enzyme in insulin secretion and, potentially, diabetes. Trends Biochem Sci. 2006;31:355-358. doi: 10.1016/j.tibs.2006.05.003.
-
(2006)
Trends Biochem Sci
, vol.31
, pp. 355-358
-
-
Rydström, J.1
-
166
-
-
20944448234
-
A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice
-
Toye AA, Lippiat JD, Proks P, Shimomura K, Bentley L, Hugill A, Mijat V, Goldsworthy M, Moir L, Haynes A, Quarterman J, Freeman HC, Ashcroft FM, Cox RD. A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice. Diabetologia. 2005;48:675-686. doi: 10.1007/s00125-005-1680-z.
-
(2005)
Diabetologia
, vol.48
, pp. 675-686
-
-
Toye, A.A.1
Lippiat, J.D.2
Proks, P.3
Shimomura, K.4
Bentley, L.5
Hugill, A.6
Mijat, V.7
Goldsworthy, M.8
Moir, L.9
Haynes, A.10
Quarterman, J.11
Freeman, H.C.12
Ashcroft, F.M.13
Cox, R.D.14
-
168
-
-
84881348520
-
Mitochondrial complex i deficiency increases protein acetylation and accelerates heart failure
-
Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz SC Jr, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 2013;18:239-250. doi: 10.1016/j.cmet.2013.07.002.
-
(2013)
Cell Metab
, vol.18
, pp. 239-250
-
-
Karamanlidis, G.1
Lee, C.F.2
Garcia-Menendez, L.3
Kolwicz, S.C.4
Suthammarak, W.5
Gong, G.6
Sedensky, M.M.7
Morgan, P.G.8
Wang, W.9
Tian, R.10
-
169
-
-
84902687763
-
SIRT3 deficiency exacerbates ischemia-reperfusion injury: Implication for aged hearts
-
Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol. 2014;306:H1602-H1609. doi: 10.1152/ajpheart.00027.2014.
-
(2014)
Am J Physiol Heart Circ Physiol
, vol.306
, pp. H1602-H1609
-
-
Porter, G.A.1
Urciuoli, W.R.2
Brookes, P.S.3
Nadtochiy, S.M.4
-
170
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010;12:662-667. doi: 10.1016/j.cmet.2010.11.015.
-
(2010)
Cell Metab
, vol.12
, pp. 662-667
-
-
Qiu, X.1
Brown, K.2
Hirschey, M.D.3
Verdin, E.4
Chen, D.5
-
171
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3adependent antioxidant defense mechanisms in mice
-
Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3adependent antioxidant defense mechanisms in mice. J Clin Invest. 2009;119:2758-2771. doi: 10.1172/JCI39162.
-
(2009)
J Clin Invest
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
Gupta, M.2
Kim, G.3
Rajamohan, S.B.4
Isbatan, A.5
Gupta, M.P.6
-
172
-
-
84981156632
-
Normalization of NAD+ redox balance as a therapy for heart failure
-
Lee CF, Chavez JD, Garcia-Menendez L, Choi Y, Roe ND, Chiao YA, Edgar JS, Goo YA, Goodlett DR, Bruce JE, Tian R. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation. 2016;134:883-894. doi: 10.1161/CIRCULATIONAHA.116.022495.
-
(2016)
Circulation
, vol.134
, pp. 883-894
-
-
Lee, C.F.1
Chavez, J.D.2
Garcia-Menendez, L.3
Choi, Y.4
Roe, N.D.5
Chiao, Y.A.6
Edgar, J.S.7
Goo, Y.A.8
Goodlett, D.R.9
Bruce, J.E.10
Tian, R.11
-
173
-
-
84988848622
-
Mitochondrial protein hyperacetylation in the failing heart
-
Horton JL, Martin OJ, Lai L, Riley NM, Richards AL, Vega RB, Leone TC, Pagliarini DJ, Muoio DM, Bedi KC Jr, Margulies KB, Coon JJ, Kelly DP. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight. 2016;2:1-14.
-
(2016)
JCI Insight
, vol.2
, pp. 1-14
-
-
Horton, J.L.1
Martin, O.J.2
Lai, L.3
Riley, N.M.4
Richards, A.L.5
Vega, R.B.6
Leone, T.C.7
Pagliarini, D.J.8
Muoio, D.M.9
Bedi, K.C.10
Margulies, K.B.11
Coon, J.J.12
Kelly, D.P.13
-
174
-
-
85028913391
-
Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure
-
Zhang R, Shen Y, Zhou L, Sangwung P, Fujioka H, Zhang L, Liao X. Short-term administration of nicotinamide mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure. J Mol Cell Cardiol. 2017;112:64-73. doi: 10.1016/j.yjmcc.2017.09.001.
-
(2017)
J Mol Cell Cardiol
, vol.112
, pp. 64-73
-
-
Zhang, R.1
Shen, Y.2
Zhou, L.3
Sangwung, P.4
Fujioka, H.5
Zhang, L.6
Liao, X.7
-
175
-
-
0033588198
-
Mitochondrial electron transport complex i is a potential source of oxygen free radicals in the failing myocardium
-
Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura Ki, Egashira K, Takeshita A. Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res. 1999;85:357-363.
-
(1999)
Circ Res
, vol.85
, pp. 357-363
-
-
Ide, T.1
Tsutsui, H.2
Kinugawa, S.3
Utsumi, H.4
Kang, D.5
Hattori, N.6
Uchida, K.7
Ki, A.8
Egashira, K.9
Takeshita, A.10
-
176
-
-
84906937056
-
Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure
-
Schwarzer M, Osterholt M, Lunkenbein A, Schrepper A, Amorim P, Doenst T. Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure. J Physiol. 2014;592:3767-3782. doi: 10.1113/jphysiol.2014.274704.
-
(2014)
J Physiol
, vol.592
, pp. 3767-3782
-
-
Schwarzer, M.1
Osterholt, M.2
Lunkenbein, A.3
Schrepper, A.4
Amorim, P.5
Doenst, T.6
-
177
-
-
84975775436
-
Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure
-
Bedi KC Jr, Snyder NW, Brandimarto J, Aziz M, Mesaros C, Worth AJ, Wang LL, Javaheri A, Blair IA, Margulies KB, Rame JE. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016;133:706-716. doi: 10.1161/CIRCULATIONAHA.115.017545.
-
(2016)
Circulation
, vol.133
, pp. 706-716
-
-
Bedi, K.C.1
Snyder, N.W.2
Brandimarto, J.3
Aziz, M.4
Mesaros, C.5
Worth, A.J.6
Wang, L.L.7
Javaheri, A.8
Blair, I.A.9
Margulies, K.B.10
Rame, J.E.11
-
178
-
-
17544379019
-
Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium
-
Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K, Utsumi H, Machida Y, Egashira K, Takeshita A. Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res. 2000;86:152-157.
-
(2000)
Circ Res
, vol.86
, pp. 152-157
-
-
Ide, T.1
Tsutsui, H.2
Kinugawa, S.3
Suematsu, N.4
Hayashidani, S.5
Ichikawa, K.6
Utsumi, H.7
Machida, Y.8
Egashira, K.9
Takeshita, A.10
-
179
-
-
84856556021
-
There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells
-
Brown GC, Borutaite V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion. 2012;12:1-4. doi: 10.1016/j.mito.2011.02.001.
-
(2012)
Mitochondrion
, vol.12
, pp. 1-4
-
-
Brown, G.C.1
Borutaite, V.2
-
180
-
-
76749088967
-
A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network
-
Zhou L, Aon MA, Almas T, Cortassa S, Winslow RL, O'Rourke B. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol. 2010;6:e1000657. doi: 10.1371/journal.pcbi.1000657.
-
(2010)
PLoS Comput Biol
, vol.6
, pp. e1000657
-
-
Zhou, L.1
Aon, M.A.2
Almas, T.3
Cortassa, S.4
Winslow, R.L.5
O'Rourke, B.6
-
181
-
-
0242582202
-
Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes
-
Aon MA, Cortassa S, Marbán E, O'Rourke B. Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem. 2003;278:44735-44744. doi: 10.1074/jbc.M302673200.
-
(2003)
J Biol Chem
, vol.278
, pp. 44735-44744
-
-
Aon, M.A.1
Cortassa, S.2
Marbán, E.3
O'Rourke, B.4
-
182
-
-
31044442642
-
The mitochondrial origin of postischemic arrhythmias
-
Akar FG, Aon MA, Tomaselli GF, O'Rourke B. The mitochondrial origin of postischemic arrhythmias. J Clin Invest. 2005;115:3527-3535. doi: 10.1172/JCI25371.
-
(2005)
J Clin Invest
, vol.115
, pp. 3527-3535
-
-
Akar, F.G.1
Aon, M.A.2
Tomaselli, G.F.3
O'Rourke, B.4
-
183
-
-
0034596947
-
Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes
-
Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 2000;192:1001-1014.
-
(2000)
J Exp Med
, vol.192
, pp. 1001-1014
-
-
Zorov, D.B.1
Filburn, C.R.2
Klotz, L.O.3
Zweier, J.L.4
Sollott, S.J.5
-
184
-
-
79954694973
-
Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure
-
Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintrón M, Chen T, Marcinek DJ, Dorn GW 2nd, Kang YJ, Prolla TA, Santana LF, Rabinovitch PS. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res. 2011;108:837-846. doi: 10.1161/CIRCRESAHA.110.232306.
-
(2011)
Circ Res
, vol.108
, pp. 837-846
-
-
Dai, D.F.1
Johnson, S.C.2
Villarin, J.J.3
Chin, M.T.4
Nieves-Cintrón, M.5
Chen, T.6
Marcinek, D.J.7
Dorn, G.W.8
Kang, Y.J.9
Prolla, T.A.10
Santana, L.F.11
Rabinovitch, P.S.12
-
185
-
-
20944442518
-
Role of NAD(P)H oxidase- and mitochondria- derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II
-
Kimura S, Zhang GX, Nishiyama A, Shokoji T, Yao L, Fan YY, Rahman M, Suzuki T, Maeta H, Abe Y. Role of NAD(P)H oxidase- and mitochondria- derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension. 2005;45:860-866. doi: 10.1161/01.HYP.0000163462.98381.7f.
-
(2005)
Hypertension
, vol.45
, pp. 860-866
-
-
Kimura, S.1
Zhang, G.X.2
Nishiyama, A.3
Shokoji, T.4
Yao, L.5
Fan, Y.Y.6
Rahman, M.7
Suzuki, T.8
Maeta, H.9
Abe, Y.10
-
186
-
-
84890307737
-
Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models
-
Kröller-Schön S, Steven S, Kossmann S, et al. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal. 2014;20:247-266. doi: 10.1089/ars.2012.4953.
-
(2014)
Antioxid Redox Signal
, vol.20
, pp. 247-266
-
-
Kröller-Schön, S.1
Steven, S.2
Kossmann, S.3
-
187
-
-
79959492723
-
Targeting mitochondrial oxidative stress in heart failure throttling the afterburner
-
Maack C, Böhm M. Targeting mitochondrial oxidative stress in heart failure throttling the afterburner. J Am Coll Cardiol. 2011;58:83-86. doi: 10.1016/j.jacc.2011.01.032.
-
(2011)
J Am Coll Cardiol
, vol.58
, pp. 83-86
-
-
Maack, C.1
Böhm, M.2
-
188
-
-
33646679144
-
Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice
-
Matsushima S, Ide T, Yamato M, Matsusaka H, Hattori F, Ikeuchi M, Kubota T, Sunagawa K, Hasegawa Y, Kurihara T, Oikawa S, Kinugawa S, Tsutsui H. Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation. 2006;113:1779-1786. doi: 10.1161/CIRCULATIONAHA.105.582239.
-
(2006)
Circulation
, vol.113
, pp. 1779-1786
-
-
Matsushima, S.1
Ide, T.2
Yamato, M.3
Matsusaka, H.4
Hattori, F.5
Ikeuchi, M.6
Kubota, T.7
Sunagawa, K.8
Hasegawa, Y.9
Kurihara, T.10
Oikawa, S.11
Kinugawa, S.12
Tsutsui, H.13
-
189
-
-
84555188518
-
Mitochondrial proteome remodelling in pressure overload- induced heart failure: The role of mitochondrial oxidative stress
-
Dai DF, Hsieh EJ, Liu Y, Chen T, Beyer RP, Chin MT, MacCoss MJ, Rabinovitch PS. Mitochondrial proteome remodelling in pressure overload- induced heart failure: the role of mitochondrial oxidative stress. Cardiovasc Res. 2012;93:79-88. doi: 10.1093/cvr/cvr274.
-
(2012)
Cardiovasc Res
, vol.93
, pp. 79-88
-
-
Dai, D.F.1
Hsieh, E.J.2
Liu, Y.3
Chen, T.4
Beyer, R.P.5
Chin, M.T.6
MacCoss, M.J.7
Rabinovitch, P.S.8
-
190
-
-
84940413152
-
Mechanisms of sudden cardiac death: Oxidants and metabolism
-
Yang KC, Kyle JW, Makielski JC, Dudley SC Jr. Mechanisms of sudden cardiac death: oxidants and metabolism. Circ Res. 2015;116:1937-1955. doi: 10.1161/CIRCRESAHA.116.304691.
-
(2015)
Circ Res
, vol.116
, pp. 1937-1955
-
-
Yang, K.C.1
Kyle, J.W.2
Makielski, J.C.3
Dudley, S.C.4
-
191
-
-
0032498185
-
Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation
-
Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 1998;279:234-237.
-
(1998)
Science
, vol.279
, pp. 234-237
-
-
Xu, L.1
Eu, J.P.2
Meissner, G.3
Stamler, J.S.4
-
192
-
-
38849097073
-
Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes
-
Yan Y, Liu J, Wei C, Li K, Xie W, Wang Y, Cheng H. Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes. Cardiovasc Res. 2008;77:432-441. doi: 10.1093/cvr/cvm047.
-
(2008)
Cardiovasc Res
, vol.77
, pp. 432-441
-
-
Yan, Y.1
Liu, J.2
Wei, C.3
Li, K.4
Xie, W.5
Wang, Y.6
Cheng, H.7
-
193
-
-
0029859988
-
Sarcoplasmic reticulum Ca(2+)-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals
-
Morris TE, Sulakhe PV. Sarcoplasmic reticulum Ca(2+)-pump dysfunction in rat cardiomyocytes briefly exposed to hydroxyl radicals. Free Radic Biol Med. 1997;22:37-47.
-
(1997)
Free Radic Biol Med
, vol.22
, pp. 37-47
-
-
Morris, T.E.1
Sulakhe, P.V.2
-
194
-
-
0033609455
-
Effect of beta-blockers on free radical-induced cardiac contractile dysfunction
-
Flesch M, Maack C, Cremers B, Bäumer AT, Südkamp M, Böhm M. Effect of beta-blockers on free radical-induced cardiac contractile dysfunction. Circulation. 1999;100:346-353.
-
(1999)
Circulation
, vol.100
, pp. 346-353
-
-
Flesch, M.1
Maack, C.2
Cremers, B.3
Bäumer, A.T.4
Südkamp, M.5
Böhm, M.6
-
195
-
-
33750740174
-
Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes
-
Goldhaber JI. Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. Am J Physiol. 1996;271:H823-H833. doi: 10.1152/ajpheart.1996.271.3.H823.
-
(1996)
Am J Physiol
, vol.271
, pp. H823-H833
-
-
Goldhaber, J.I.1
-
196
-
-
0038643583
-
Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: Reduced SR Ca2+ load and activated SR Ca2+ release
-
Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM. Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res. 2003;92:904-911. doi: 10.1161/01.RES.0000069685.20258.F1.
-
(2003)
Circ Res
, vol.92
, pp. 904-911
-
-
Maier, L.S.1
Zhang, T.2
Chen, L.3
DeSantiago, J.4
Brown, J.H.5
Bers, D.M.6
-
197
-
-
33747881612
-
L-type Ca2+ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII
-
Grueter CE, Abiria SA, Dzhura I, Wu Y, Ham AJ, Mohler PJ, Anderson ME, Colbran RJ. L-type Ca2+ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII. Mol Cell. 2006;23:641-650. doi: 10.1016/j.molcel.2006.07.006.
-
(2006)
Mol Cell
, vol.23
, pp. 641-650
-
-
Grueter, C.E.1
Abiria, S.A.2
Dzhura, I.3
Wu, Y.4
Ham, A.J.5
Mohler, P.J.6
Anderson, M.E.7
Colbran, R.J.8
-
198
-
-
79952772425
-
Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload
-
Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, Anderson ME, Grandi E, Bers DM, Backs J, Belardinelli L, Maier LS. Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circ Res. 2011;108:555-565. doi: 10.1161/CIRCRESAHA.110.221911.
-
(2011)
Circ Res
, vol.108
, pp. 555-565
-
-
Wagner, S.1
Ruff, H.M.2
Weber, S.L.3
Bellmann, S.4
Sowa, T.5
Schulte, T.6
Anderson, M.E.7
Grandi, E.8
Bers, D.M.9
Backs, J.10
Belardinelli, L.11
Maier, L.S.12
-
199
-
-
84942886554
-
Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death
-
Wagner S, Maier LS, Bers DM. Role of sodium and calcium dysregulation in tachyarrhythmias in sudden cardiac death. Circ Res. 2015;116:1956-1970. doi: 10.1161/CIRCRESAHA.116.304678.
-
(2015)
Circ Res
, vol.116
, pp. 1956-1970
-
-
Wagner, S.1
Maier, L.S.2
Bers, D.M.3
-
200
-
-
59649127713
-
Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling
-
Xie LH, Chen F, Karagueuzian HS, Weiss JN. Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ Res. 2009;104:79-86. doi: 10.1161/CIRCRESAHA.108.183475.
-
(2009)
Circ Res
, vol.104
, pp. 79-86
-
-
Xie, L.H.1
Chen, F.2
Karagueuzian, H.S.3
Weiss, J.N.4
-
201
-
-
33745812011
-
CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy
-
Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest. 2006;116:1853-1864. doi: 10.1172/JCI27438.
-
(2006)
J Clin Invest
, vol.116
, pp. 1853-1864
-
-
Backs, J.1
Song, K.2
Bezprozvannaya, S.3
Chang, S.4
Olson, E.N.5
-
203
-
-
84897388046
-
Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis
-
Birk AV, Chao WM, Bracken C, Warren JD, Szeto HH. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br J Pharmacol. 2014;171:2017-2028. doi: 10.1111/bph.12468.
-
(2014)
Br J Pharmacol
, vol.171
, pp. 2017-2028
-
-
Birk, A.V.1
Chao, W.M.2
Bracken, C.3
Warren, J.D.4
Szeto, H.H.5
-
204
-
-
84897457350
-
First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics
-
Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014;171:2029-2050. doi: 10.1111/bph.12461.
-
(2014)
Br J Pharmacol
, vol.171
, pp. 2029-2050
-
-
Szeto, H.H.1
-
205
-
-
84887454400
-
Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial- targeted peptides
-
Dai DF, Hsieh EJ, Chen T, Menendez LG, Basisty NB, Tsai L, Beyer RP, Crispin DA, Shulman NJ, Szeto HH, Tian R, MacCoss MJ, Rabinovitch PS. Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial- targeted peptides. Circ Heart Fail. 2013;6:1067-1076. doi: 10.1161/CIRCHEARTFAILURE.113.000406.
-
(2013)
Circ Heart Fail
, vol.6
, pp. 1067-1076
-
-
Dai, D.F.1
Hsieh, E.J.2
Chen, T.3
Menendez, L.G.4
Basisty, N.B.5
Tsai, L.6
Beyer, R.P.7
Crispin, D.A.8
Shulman, N.J.9
Szeto, H.H.10
Tian, R.11
MacCoss, M.J.12
Rabinovitch, P.S.13
-
206
-
-
84959520012
-
Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure
-
Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail. 2016;9:e002206. doi: 10.1161/CIRCHEARTFAILURE.115.002206.
-
(2016)
Circ Heart Fail
, vol.9
, pp. e002206
-
-
Sabbah, H.N.1
Gupta, R.C.2
Kohli, S.3
Wang, M.4
Hachem, S.5
Zhang, K.6
-
207
-
-
85038394392
-
Novel mitochondria- targeting peptide in heart failure treatment: A randomized, placebocontrolled trial of elamipretide
-
Daubert MA, Yow E, Dunn G, Marchev S, Barnhart H, Douglas PS, O'Connor C, Goldstein S, Udelson JE, Sabbah HN. Novel mitochondria- targeting peptide in heart failure treatment: a randomized, placebocontrolled trial of elamipretide. Circ Heart Fail. 2017;10:e004389. doi: 10.1161/CIRCHEARTFAILURE.117.004389.
-
(2017)
Circ Heart Fail
, vol.10
, pp. e004389
-
-
Daubert, M.A.1
Yow, E.2
Dunn, G.3
Marchev, S.4
Barnhart, H.5
Douglas, P.S.6
O'Connor, C.7
Goldstein, S.8
Udelson, J.E.9
Sabbah, H.N.10
-
208
-
-
34447558681
-
Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases
-
James AM, Sharpley MS, Manas AR, Frerman FE, Hirst J, Smith RA, Murphy MP. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem. 2007;282:14708-14718. doi: 10.1074/jbc.M611463200.
-
(2007)
J Biol Chem
, vol.282
, pp. 14708-14718
-
-
James, A.M.1
Sharpley, M.S.2
Manas, A.R.3
Frerman, F.E.4
Hirst, J.5
Smith, R.A.6
Murphy, M.P.7
-
209
-
-
21744450416
-
Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury
-
Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088-1095. doi: 10.1096/fj.05-3718com.
-
(2005)
FASEB J
, vol.19
, pp. 1088-1095
-
-
Adlam, V.J.1
Harrison, J.C.2
Porteous, C.M.3
James, A.M.4
Smith, R.A.5
Murphy, M.P.6
Sammut, I.A.7
-
210
-
-
68549112975
-
Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy
-
Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, Murphy MP, Dominiczak AF. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009;54:322-328. doi: 10.1161/HYPERTENSIONAHA.109.130351.
-
(2009)
Hypertension
, vol.54
, pp. 322-328
-
-
Graham, D.1
Huynh, N.N.2
Hamilton, C.A.3
Beattie, E.4
Smith, R.A.5
Cochemé, H.M.6
Murphy, M.P.7
Dominiczak, A.F.8
-
211
-
-
62649160560
-
Doxorubicin inactivates myocardial cytochrome c oxidase in rats: Cardioprotection by Mito-Q
-
Chandran K, Aggarwal D, Migrino RQ, Joseph J, McAllister D, Konorev EA, Antholine WE, Zielonka J, Srinivasan S, Avadhani NG, Kalyanaraman B. Doxorubicin inactivates myocardial cytochrome c oxidase in rats: cardioprotection by Mito-Q. Biophys J. 2009;96:1388-1398. doi: 10.1016/j.bpj.2008.10.042.
-
(2009)
Biophys J
, vol.96
, pp. 1388-1398
-
-
Chandran, K.1
Aggarwal, D.2
Migrino, R.Q.3
Joseph, J.4
McAllister, D.5
Konorev, E.A.6
Antholine, W.E.7
Zielonka, J.8
Srinivasan, S.9
Avadhani, N.G.10
Kalyanaraman, B.11
-
212
-
-
57649221155
-
The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle
-
Leo S, Szabadkai G, Rizzuto R. The mitochondrial antioxidants MitoE(2) and MitoQ(10) increase mitochondrial Ca(2+) load upon cell stimulation by inhibiting Ca(2+) efflux from the organelle. Ann N Y Acad Sci. 2008;1147:264-274. doi: 10.1196/annals.1427.019.
-
(2008)
Ann N y Acad Sci
, vol.1147
, pp. 264-274
-
-
Leo, S.1
Szabadkai, G.2
Rizzuto, R.3
-
213
-
-
35448968884
-
Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis
-
Doughan AK, Dikalov SI. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal. 2007;9:1825-1836. doi: 10.1089/ars.2007.1693.
-
(2007)
Antioxid Redox Signal
, vol.9
, pp. 1825-1836
-
-
Doughan, A.K.1
Dikalov, S.I.2
-
214
-
-
84879481183
-
Mitochondrially targeted compounds and their impact on cellular bioenergetics
-
Reily C, Mitchell T, Chacko BK, Benavides G, Murphy MP, Darley-Usmar V. Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol. 2013;1:86-93. doi: 10.1016/j.redox.2012.11.009.
-
(2013)
Redox Biol
, vol.1
, pp. 86-93
-
-
Reily, C.1
Mitchell, T.2
Chacko, B.K.3
Benavides, G.4
Murphy, M.P.5
Darley-Usmar, V.6
-
215
-
-
84880253528
-
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex i
-
Chouchani ET, Methner C, Nadtochiy SM, et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med. 2013;19:753-759. doi: 10.1038/nm.3212.
-
(2013)
Nat Med
, vol.19
, pp. 753-759
-
-
Chouchani, E.T.1
Methner, C.2
Nadtochiy, S.M.3
-
216
-
-
51749113618
-
Cardiac mitochondria in heart failure: Decrease in respirasomes and oxidative phosphorylation
-
Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 2008;80:30-39. doi: 10.1093/cvr/cvn184.
-
(2008)
Cardiovasc Res
, vol.80
, pp. 30-39
-
-
Rosca, M.G.1
Vazquez, E.J.2
Kerner, J.3
Parland, W.4
Chandler, M.P.5
Stanley, W.6
Sabbah, H.N.7
Hoppel, C.L.8
-
217
-
-
84862776882
-
Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity
-
Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, Zeng D, Belardinelli L, Sorescu D, Solaro RJ, Dudley SC Jr. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res. 2012;110:841-850. doi: 10.1161/CIRCRESAHA.111.258251.
-
(2012)
Circ Res
, vol.110
, pp. 841-850
-
-
Lovelock, J.D.1
Monasky, M.M.2
Jeong, E.M.3
Lardin, H.A.4
Liu, H.5
Patel, B.G.6
Taglieri, D.M.7
Gu, L.8
Kumar, P.9
Pokhrel, N.10
Zeng, D.11
Belardinelli, L.12
Sorescu, D.13
Solaro, R.J.14
Dudley, S.C.15
-
218
-
-
84966318444
-
Long-term administration of ranolazine attenuates diastolic dysfunction and adverse myocardial remodeling in a model of heart failure with preserved ejection fraction
-
De Angelis A, Cappetta D, Piegari E, Rinaldi B, Ciuffreda LP, Esposito G, Ferraiolo FA, Rivellino A, Russo R, Donniacuo M, Rossi F, Urbanek K, Berrino L. Long-term administration of ranolazine attenuates diastolic dysfunction and adverse myocardial remodeling in a model of heart failure with preserved ejection fraction. Int J Cardiol. 2016;217:69-79. doi: 10.1016/j.ijcard.2016.04.168.
-
(2016)
Int J Cardiol
, vol.217
, pp. 69-79
-
-
De Angelis, A.1
Cappetta, D.2
Piegari, E.3
Rinaldi, B.4
Ciuffreda, L.P.5
Esposito, G.6
Ferraiolo, F.A.7
Rivellino, A.8
Russo, R.9
Donniacuo, M.10
Rossi, F.11
Urbanek, K.12
Berrino, L.13
-
219
-
-
85019432649
-
Effects of ranolazine in a model of doxorubicin- induced left ventricle diastolic dysfunction
-
Cappetta D, Esposito G, Coppini R, Piegari E, Russo R, Ciuffreda LP, Rivellino A, Santini L, Rafaniello C, Scavone C, Rossi F, Berrino L, Urbanek K, De Angelis A. Effects of ranolazine in a model of doxorubicin- induced left ventricle diastolic dysfunction. Br J Pharmacol. 2017;174:3696-3712. doi: 10.1111/bph.13791.
-
(2017)
Br J Pharmacol
, vol.174
, pp. 3696-3712
-
-
Cappetta, D.1
Esposito, G.2
Coppini, R.3
Piegari, E.4
Russo, R.5
Ciuffreda, L.P.6
Rivellino, A.7
Santini, L.8
Rafaniello, C.9
Scavone, C.10
Rossi, F.11
Berrino, L.12
Urbanek, K.13
De Angelis, A.14
-
220
-
-
79957795565
-
Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδ© can be reversed by inhibition of late Na(+) current
-
Sossalla S, Maurer U, Schotola H, Hartmann N, Didié M, Zimmermann WH, Jacobshagen C, Wagner S, Maier LS. Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδ© can be reversed by inhibition of late Na(+) current. Basic Res Cardiol. 2011;106:263-272. doi: 10.1007/s00395-010-0136-x.
-
(2011)
Basic Res Cardiol
, vol.106
, pp. 263-272
-
-
Sossalla, S.1
Maurer, U.2
Schotola, H.3
Hartmann, N.4
Didié, M.5
Zimmermann, W.H.6
Jacobshagen, C.7
Wagner, S.8
Maier, L.S.9
-
221
-
-
84876400116
-
RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: The RALI-DHF proof-of-concept study
-
Maier LS, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Lee S, Sander J, Lang C, Wachter R, Edelmann F, Hasenfuss G, Jacobshagen C. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail. 2013;1:115-122. doi: 10.1016/j.jchf.2012.12.002.
-
(2013)
JACC Heart Fail
, vol.1
, pp. 115-122
-
-
Maier, L.S.1
Layug, B.2
Karwatowska-Prokopczuk, E.3
Belardinelli, L.4
Lee, S.5
Sander, J.6
Lang, C.7
Wachter, R.8
Edelmann, F.9
Hasenfuss, G.10
Jacobshagen, C.11
-
222
-
-
85027498209
-
Relaxation and the role of calcium in isolated contracting myocardium from patients with hypertensive heart disease and heart failure with preserved ejection fraction
-
Runte KE, Bell SP, Selby DE, Haussler TN, Ashikaga T, LeWinter MM, Palmer BM, Meyer M. Relaxation and the role of calcium in isolated contracting myocardium from patients with hypertensive heart disease and heart failure with preserved ejection fraction. Circ Heart Fail. 2017;10:e004311. doi: 10.1161/CIRCHEARTFAILURE.117.004311.
-
(2017)
Circ Heart Fail
, vol.10
, pp. e004311
-
-
Runte, K.E.1
Bell, S.P.2
Selby, D.E.3
Haussler, T.N.4
Ashikaga, T.5
LeWinter, M.M.6
Palmer, B.M.7
Meyer, M.8
-
223
-
-
84944800184
-
Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
-
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117-2128. doi: 10.1056/NEJMoa1504720.
-
(2015)
N Engl J Med
, vol.373
, pp. 2117-2128
-
-
Zinman, B.1
Wanner, C.2
Lachin, J.M.3
Fitchett, D.4
Bluhmki, E.5
Hantel, S.6
Mattheus, M.7
Devins, T.8
Johansen, O.E.9
Woerle, H.J.10
Broedl, U.C.11
Inzucchi, S.E.12
-
224
-
-
84952637177
-
EMPA-REG-the "diuretic hypothesis
-
McMurray J. EMPA-REG-the "diuretic hypothesis". J Diabetes Complications. 2016;30:3-4. doi: 10.1016/j.jdiacomp.2015.10.012.
-
(2016)
J Diabetes Complications
, vol.30
, pp. 3-4
-
-
McMurray, J.1
-
225
-
-
84975853831
-
CV protection in the EMPAREG outcome trial: A "thrifty substrate" hypothesis
-
Ferrannini E, Mark M, Mayoux E. CV protection in the EMPAREG outcome trial: a "thrifty substrate" hypothesis. Diabetes Care. 2016;39:1108-1114. doi: 10.2337/dc16-0330.
-
(2016)
Diabetes Care
, vol.39
, pp. 1108-1114
-
-
Ferrannini, E.1
Mark, M.2
Mayoux, E.3
-
226
-
-
84975840750
-
Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG outcome study? A unifying hypothesis
-
Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG outcome study? A unifying hypothesis. Diabetes Care. 2016;39:1115-1122. doi: 10.2337/dc16-0542.
-
(2016)
Diabetes Care
, vol.39
, pp. 1115-1122
-
-
Mudaliar, S.1
Alloju, S.2
Henry, R.R.3
-
227
-
-
84991712516
-
Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits
-
Baartscheer A, Schumacher CA, Wüst RC, Fiolet JW, Stienen GJ, Coronel R, Zuurbier CJ. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60:568-573. doi: 10.1007/s00125-016-4134-x.
-
(2017)
Diabetologia
, vol.60
, pp. 568-573
-
-
Baartscheer, A.1
Schumacher, C.A.2
Wüst, R.C.3
Fiolet, J.W.4
Stienen, G.J.5
Coronel, R.6
Zuurbier, C.J.7
-
228
-
-
85035777138
-
Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation
-
Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, Jancev M, Hollmann MW, Weber NC, Coronel R, Zuurbier CJ. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia. 2018;61:722-726. doi: 10.1007/s00125-017-4509-7.
-
(2018)
Diabetologia
, vol.61
, pp. 722-726
-
-
Uthman, L.1
Baartscheer, A.2
Bleijlevens, B.3
Schumacher, C.A.4
Fiolet, J.W.T.5
Koeman, A.6
Jancev, M.7
Hollmann, M.W.8
Weber, N.C.9
Coronel, R.10
Zuurbier, C.J.11
-
229
-
-
85040582993
-
Cardiac effects of SGLT2 inhibitors: The sodium hypothesis
-
Bertero E, Prates Roma L, Ameri P, Maack C. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc Res. 2018;114:12-18. doi: 10.1093/cvr/cvx149.
-
(2018)
Cardiovasc Res
, vol.114
, pp. 12-18
-
-
Bertero, E.1
Prates Roma, L.2
Ameri, P.3
Maack, C.4
-
230
-
-
85032620814
-
Effects of sodium- glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: Proposal of a novel mechanism of action
-
Packer M, Anker SD, Butler J, Filippatos G, Zannad F. Effects of sodium- glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2017;2:1025-1029. doi: 10.1001/jamacardio.2017.2275.
-
(2017)
JAMA Cardiol
, vol.2
, pp. 1025-1029
-
-
Packer, M.1
Anker, S.D.2
Butler, J.3
Filippatos, G.4
Zannad, F.5
-
231
-
-
85032165629
-
Sodium glucose cotransporter-2 inhibition in heart failure: Potential mechanisms, clinical applications, and summary of clinical trials
-
Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation. 2017;136:1643-1658. doi: 10.1161/CIRCULATIONAHA.117.030012.
-
(2017)
Circulation
, vol.136
, pp. 1643-1658
-
-
Lytvyn, Y.1
Bjornstad, P.2
Udell, J.A.3
Lovshin, J.A.4
Cherney, D.Z.I.5
|