메뉴 건너뛰기




Volumn 54, Issue 5, 2018, Pages 758-790

A survey towards an integration of big data analytics to big insights for value-creation

Author keywords

Big data; Big data visualization; Data analytics; Decision making; Machine learning; Smart agriculture; Smart city application; Value creation; Value discover; Value realization

Indexed keywords

AGRICULTURE; DATA ACQUISITION; DATA VISUALIZATION; DECISION MAKING; DIGITAL STORAGE; LEARNING SYSTEMS; OBJECT ORIENTED PROGRAMMING; SMART CITY; VISUALIZATION;

EID: 85041554154     PISSN: 03064573     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ipm.2018.01.010     Document Type: Article
Times cited : (321)

References (220)
  • 2
    • 85048632030 scopus 로고    scopus 로고
    • Digital Library. Accessed 30 Dec 2017.
    • ACM, Digital Library. http://www.acm.org/dl/ Accessed 30 Dec 2017.
    • ACM1
  • 3
    • 85000765414 scopus 로고    scopus 로고
    • Big data applications in operations/supply-chain management: A literature review
    • Addo-Tenkorang, R., Helo, P.T., Big data applications in operations/supply-chain management: A literature review. Computers & Industrial Engineering 101 (2016), 528–543.
    • (2016) Computers & Industrial Engineering , vol.101 , pp. 528-543
    • Addo-Tenkorang, R.1    Helo, P.T.2
  • 4
    • 84941145658 scopus 로고    scopus 로고
    • Neural network techniques for cancer prediction: a survey
    • Agrawal, S., Agrawal, J., Neural network techniques for cancer prediction: a survey. Procedia Computer Science 60 (2015), 769–774.
    • (2015) Procedia Computer Science , vol.60 , pp. 769-774
    • Agrawal, S.1    Agrawal, J.2
  • 9
    • 84971373627 scopus 로고    scopus 로고
    • Mobile big data analytics using deep learning and apache spark
    • Alsheikh, M.A., Niyato, D., Lin, S., Tan, H.P., Han, Z., Mobile big data analytics using deep learning and apache spark. IEEE Network 30:3 (2016), 22–29.
    • (2016) IEEE Network , vol.30 , Issue.3 , pp. 22-29
    • Alsheikh, M.A.1    Niyato, D.2    Lin, S.3    Tan, H.P.4    Han, Z.5
  • 11
    • 84937439828 scopus 로고    scopus 로고
    • A survey of big data analytics in healthcare and government
    • Archenaa, J., Anita, E.M., A survey of big data analytics in healthcare and government. Procedia Computer Science 50 (2015), 408–413.
    • (2015) Procedia Computer Science , vol.50 , pp. 408-413
    • Archenaa, J.1    Anita, E.M.2
  • 12
  • 13
    • 34548269664 scopus 로고    scopus 로고
    • Eligibility procedures and accreditation standards for accounting accreditation
    • AACSB Tampa, FL Accessed 12 Nov 2016
    • Association to Advance Collegiate Schools of Business International (AACSB). Eligibility procedures and accreditation standards for accounting accreditation. 2013, AACSB, Tampa, FL http://www.aacsb.edu/accreditation/standards/2013-business Accessed 12 Nov 2016.
    • (2013)
  • 16
    • 85048627709 scopus 로고    scopus 로고
    • Apache Spark. Accessed 20 Dec 2017.
    • Apache Spark, 2014. https://spark.apache.org/ Accessed 20 Dec 2017.
    • (2014)
  • 17
    • 85048603114 scopus 로고    scopus 로고
    • Apache SparkR. Accessed 20 Dec 2017.
    • Apache SparkR. https://docs.databricks.com/spark/latest/sparkr/overview.html/ Accessed 20 Dec 2017.
  • 18
    • 85048624503 scopus 로고    scopus 로고
    • Apache MapReduce. Accessed 20 Dec 2017.
    • Apache MapReduce, 2008. https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html/ Accessed 20 Dec 2017.
    • (2008)
  • 19
    • 85048642671 scopus 로고    scopus 로고
    • Apache Mahout. Accessed 20 Dec 2017.
    • Apache Mahout, 2011. https://mahout.apache.org/ Accessed 20 Dec 2017.
    • (2011)
  • 20
    • 85048613381 scopus 로고    scopus 로고
    • A. Accessed 20 Dec 2017.
    • Apache MOA, 2011. https://en.wikipedia.org/wiki/Massive_Online_Analysis/ Accessed 20 Dec 2017.
    • (2011)
    • Apache, M.O.1
  • 21
    • 85048609040 scopus 로고    scopus 로고
    • Apache Giraph. Accessed 20 Dec 2017.
    • Apache Giraph. http://giraph.apache.org/ Accessed 20 Dec 2017.
  • 22
    • 77954605151 scopus 로고    scopus 로고
    • The state of educational data mining in 2009: A review and future visions
    • Baker, R.S., Yacef, K., The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining 1:1 (2009), 3–17.
    • (2009) Journal of Educational Data Mining , vol.1 , Issue.1 , pp. 3-17
    • Baker, R.S.1    Yacef, K.2
  • 24
  • 25
    • 84894546324 scopus 로고    scopus 로고
    • From data to actionable knowledge: Big data challenges in the web of things
    • Barnaghi, P., Sheth, A., Henson, C., From data to actionable knowledge: Big data challenges in the web of things. IEEE Intelligent Systems 28:6 (2013), 6–11.
    • (2013) IEEE Intelligent Systems , vol.28 , Issue.6 , pp. 6-11
    • Barnaghi, P.1    Sheth, A.2    Henson, C.3
  • 27
    • 84939566731 scopus 로고    scopus 로고
    • Five pillars of prescriptive analytics success
    • Accessed 20 Dec 2017
    • Basu, A., Five pillars of prescriptive analytics success. Analytics magazine, 2013, 8–12 http://analytics-magazine.org/executive-edge-five-pillars-of-prescriptive-analytics-success/. Accessed 20 Dec 2017.
    • (2013) Analytics magazine , pp. 8-12
    • Basu, A.1
  • 28
    • 84947584456 scopus 로고    scopus 로고
    • Assessing the quality of service using big data analytics: With application to healthcare
    • Batarseh, F.A., Latif, E.A., Assessing the quality of service using big data analytics: With application to healthcare. Big Data Research 4 (2016), 13–24.
    • (2016) Big Data Research , vol.4 , pp. 13-24
    • Batarseh, F.A.1    Latif, E.A.2
  • 32
    • 84901294435 scopus 로고    scopus 로고
    • Digitisation,‘Big Data'and the transformation of accounting information
    • Bhimani, A., Willcocks, L., Digitisation,‘Big Data'and the transformation of accounting information. Accounting and Business Research 44:4 (2014), 469–490.
    • (2014) Accounting and Business Research , vol.44 , Issue.4 , pp. 469-490
    • Bhimani, A.1    Willcocks, L.2
  • 33
    • 84978529080 scopus 로고    scopus 로고
    • Big Data in the construction industry: A review of present status, opportunities, and future trends
    • Bilal, M., Oyedele, L.O., Qadir, J., Munir, K., Ajayi, S.O., Akinade, O.O., et al. Big Data in the construction industry: A review of present status, opportunities, and future trends. Advanced Engineering Informatics 30:3 (2016), 500–521.
    • (2016) Advanced Engineering Informatics , vol.30 , Issue.3 , pp. 500-521
    • Bilal, M.1    Oyedele, L.O.2    Qadir, J.3    Munir, K.4    Ajayi, S.O.5    Akinade, O.O.6
  • 34
    • 85048597842 scopus 로고    scopus 로고
    • Big data analytics – this time it's personal
    • Accessed 14 April 2016
    • Bloor, R., Big data analytics – this time it's personal. The Bloor Group, 2011 https://www.1010data.com/media/1073/1010data_bloorgroup_whitepaper_big_data_analytics.pdf/ Accessed 14 April 2016.
    • (2011) The Bloor Group
    • Bloor, R.1
  • 36
    • 33847286844 scopus 로고    scopus 로고
    • Lessons from applying the systematic literature review process within the software engineering domain
    • Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., Lessons from applying the systematic literature review process within the software engineering domain. Journal of systems and software 80:4 (2007), 571–583.
    • (2007) Journal of systems and software , vol.80 , Issue.4 , pp. 571-583
    • Brereton, P.1    Kitchenham, B.A.2    Budgen, D.3    Turner, M.4    Khalil, M.5
  • 37
    • 84871651156 scopus 로고    scopus 로고
    • Reservoir computing and extreme learning machines for non-linear time-series data analysis
    • Butcher, J.B., Verstraeten, D., Schrauwen, B., Day, C.R., Haycock, P.W., Reservoir computing and extreme learning machines for non-linear time-series data analysis. Neural Networks 38 (2013), 76–89.
    • (2013) Neural Networks , vol.38 , pp. 76-89
    • Butcher, J.B.1    Verstraeten, D.2    Schrauwen, B.3    Day, C.R.4    Haycock, P.W.5
  • 38
    • 84988843483 scopus 로고    scopus 로고
    • Big Data: principles and paradigms
    • Morgan Kaufmann
    • Buyya, R., Calheiros, R.N., Dastjerdi, A.V., Big Data: principles and paradigms. 2016, Morgan Kaufmann.
    • (2016)
    • Buyya, R.1    Calheiros, R.N.2    Dastjerdi, A.V.3
  • 39
    • 84893477212 scopus 로고    scopus 로고
    • Storage-optimizing clustering algorithms for high-dimensional tick data
    • Buza, K., Nagy, G.I., Nanopoulos, A., Storage-optimizing clustering algorithms for high-dimensional tick data. Expert Systems with Applications 41:9 (2014), 4148–4157.
    • (2014) Expert Systems with Applications , vol.41 , Issue.9 , pp. 4148-4157
    • Buza, K.1    Nagy, G.I.2    Nanopoulos, A.3
  • 40
    • 84943558103 scopus 로고    scopus 로고
    • Big data analytics in financial statement audits
    • Cao, M., Chychyla, R., Stewart, T., Big data analytics in financial statement audits. Accounting Horizons 29:2 (2015), 423–429.
    • (2015) Accounting Horizons , vol.29 , Issue.2 , pp. 423-429
    • Cao, M.1    Chychyla, R.2    Stewart, T.3
  • 42
    • 33846982119 scopus 로고    scopus 로고
    • Effective web crawling
    • ACM Centro de Operações Rio Accessed 05 October 2016
    • Castillo, C., Effective web crawling. Acmsigir forum, 39, 2005, ACM, Centro de Operações Rio, 55–56 http://centrodeoperacoes.rio/ Accessed 05 October 2016.
    • (2005) Acmsigir forum , vol.39 , pp. 55-56
    • Castillo, C.1
  • 43
    • 85013970526 scopus 로고    scopus 로고
    • Big data analysis for financial risk management
    • Cerchiello, P., Giudici, P., Big data analysis for financial risk management. Journal of Big Data 3:1 (2016), 1–12.
    • (2016) Journal of Big Data , vol.3 , Issue.1 , pp. 1-12
    • Cerchiello, P.1    Giudici, P.2
  • 47
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on Big Data
    • Chen, C.P., Zhang, C.Y., Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences 275 (2014), 314–347.
    • (2014) Information Sciences , vol.275 , pp. 314-347
    • Chen, C.P.1    Zhang, C.Y.2
  • 48
    • 85014709685 scopus 로고    scopus 로고
    • Agile big data analytics for web-based systems: An architecture-centric approach
    • Chen, H.M., Kazman, R., Haziyev, S., Agile big data analytics for web-based systems: An architecture-centric approach. IEEE Transactions on Big Data 2:3 (2016), 234–248.
    • (2016) IEEE Transactions on Big Data , vol.2 , Issue.3 , pp. 234-248
    • Chen, H.M.1    Kazman, R.2    Haziyev, S.3
  • 49
    • 84916597404 scopus 로고    scopus 로고
    • Business intelligence and analytics: From big data to big impact
    • Chen, H., Chiang, R.H., Storey, V.C., Business intelligence and analytics: From big data to big impact. MIS quarterly 36:4 (2012), 1165–1188.
    • (2012) MIS quarterly , vol.36 , Issue.4 , pp. 1165-1188
    • Chen, H.1    Chiang, R.H.2    Storey, V.C.3
  • 52
    • 84923318381 scopus 로고    scopus 로고
    • Big data deep learning: Challenges and perspectives
    • Chen, X.W., Lin, X., Big data deep learning: Challenges and perspectives. IEEE access 2 (2014), 514–525.
    • (2014) IEEE access , vol.2 , pp. 514-525
    • Chen, X.W.1    Lin, X.2
  • 53
    • 84975726332 scopus 로고    scopus 로고
    • Leveraging high-performance computing infrastructures to web data analytic applications by means of message-passing interface
    • Cheptsov, A., Koller, B., Leveraging high-performance computing infrastructures to web data analytic applications by means of message-passing interface. Proceedings of modeling and processing for next-generation big-data technologies, 4, 2015, 167–185.
    • (2015) Proceedings of modeling and processing for next-generation big-data technologies , vol.4 , pp. 167-185
    • Cheptsov, A.1    Koller, B.2
  • 54
    • 84893847729 scopus 로고    scopus 로고
    • BizPro: Extracting and categorizing business intelligence factors from textual news articles
    • Chung, W., BizPro: Extracting and categorizing business intelligence factors from textual news articles. International Journal of Information Management 34:2 (2014), 272–284.
    • (2014) International Journal of Information Management , vol.34 , Issue.2 , pp. 272-284
    • Chung, W.1
  • 55
    • 84860890595 scopus 로고    scopus 로고
    • Data mining and wind power prediction: A literature review
    • Colak, I., Sagiroglu, S., Yesilbudak, M., Data mining and wind power prediction: A literature review. Renewable Energy 46 (2012), 241–247.
    • (2012) Renewable Energy , vol.46 , pp. 241-247
    • Colak, I.1    Sagiroglu, S.2    Yesilbudak, M.3
  • 57
    • 84906052061 scopus 로고    scopus 로고
    • Analytics in empirical/archival financial accounting research
    • Crawley, M., Wahlen, J., Analytics in empirical/archival financial accounting research. Business Horizons 57:5 (2014), 583–593.
    • (2014) Business Horizons , vol.57 , Issue.5 , pp. 583-593
    • Crawley, M.1    Wahlen, J.2
  • 58
    • 84961566695 scopus 로고    scopus 로고
    • A formal definition of big data based on its essential features
    • De Mauro, A., Greco, M., Grimaldi, M., A formal definition of big data based on its essential features. Library Review 65:3 (2016), 122–135.
    • (2016) Library Review , vol.65 , Issue.3 , pp. 122-135
    • De Mauro, A.1    Greco, M.2    Grimaldi, M.3
  • 59
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • Dean, J., Ghemawat, S., MapReduce: Simplified data processing on large clusters. Communications of the ACM 51:1 (2008), 107–113.
    • (2008) Communications of the ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 60
    • 84886462349 scopus 로고    scopus 로고
    • A smart healthcare systems framework
    • Demirkan, H., A smart healthcare systems framework. It Professional 15:5 (2013), 38–45.
    • (2013) It Professional , vol.15 , Issue.5 , pp. 38-45
    • Demirkan, H.1
  • 61
    • 84929522825 scopus 로고    scopus 로고
    • Extreme learning machine: Algorithm, theory and applications
    • Ding, S., Zhao, H., Zhang, Y., Xu, X., Nie, R., Extreme learning machine: Algorithm, theory and applications. Artificial Intelligence Review 44:1 (2015), 103–115.
    • (2015) Artificial Intelligence Review , vol.44 , Issue.1 , pp. 103-115
    • Ding, S.1    Zhao, H.2    Zhang, Y.3    Xu, X.4    Nie, R.5
  • 62
    • 84921283366 scopus 로고    scopus 로고
    • Health level seven interoperability strategy: Big data, incrementally structured
    • Dolin, R.H., Rogers, B., Jaffe, C., Health level seven interoperability strategy: Big data, incrementally structured. Methods of information in medicine 54:1 (2015), 75–82.
    • (2015) Methods of information in medicine , vol.54 , Issue.1 , pp. 75-82
    • Dolin, R.H.1    Rogers, B.2    Jaffe, C.3
  • 65
    • 84994049278 scopus 로고    scopus 로고
    • Using knowledge management to give context to Analytics and big data and reduce strategic risk
    • Edwards, J.S., Taborda, E.R., Using knowledge management to give context to Analytics and big data and reduce strategic risk. Procedia Computer Science 99 (2016), 36–49.
    • (2016) Procedia Computer Science , vol.99 , pp. 36-49
    • Edwards, J.S.1    Taborda, E.R.2
  • 68
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., From data mining to knowledge discovery in databases. AI Magazine, 17(3), 1996, 37.
    • (1996) AI Magazine , vol.17 , Issue.3 , pp. 37
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 69
    • 84881049936 scopus 로고    scopus 로고
    • Big data processing and mining for next generation intelligent transportation systems
    • Fiosina, J., Fiosins, M., Müller, J.P., Big data processing and mining for next generation intelligent transportation systems. Journal Teknologi 63:3 (2013), 21–38.
    • (2013) Journal Teknologi , vol.63 , Issue.3 , pp. 21-38
    • Fiosina, J.1    Fiosins, M.2    Müller, J.P.3
  • 71
    • 85048637653 scopus 로고    scopus 로고
    • Present trends in research on application of artificial neural networks in agricultural engineering
    • Francik, S., Ślipek, Z., Frączek, J., Knapczyk, A., Present trends in research on application of artificial neural networks in agricultural engineering. Agricultural Engineering 20:4 (2016), 15–25.
    • (2016) Agricultural Engineering , vol.20 , Issue.4 , pp. 15-25
    • Francik, S.1    Ślipek, Z.2    Frączek, J.3    Knapczyk, A.4
  • 75
    • 84864133585 scopus 로고    scopus 로고
    • Extracting value from chaos
    • Accessed 12 Feb 2016
    • Gantz, J., Reinsel, D., Extracting value from chaos. IDC iview 1142 (2011), 1–12 https://www.emcgrandprix.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf/ Accessed 12 Feb 2016.
    • (2011) IDC iview , vol.1142 , pp. 1-12
    • Gantz, J.1    Reinsel, D.2
  • 76
    • 85048625856 scopus 로고    scopus 로고
    • Gartner, Inc., (2011). Pattern-based strategy: getting value from big data. Accessed 12 Feb 2016.
    • Gartner, Inc., (2011). Pattern-based strategy: getting value from big data. http://www.gartner.com/it/page.jsp?id=1731916 Accessed 12 Feb 2016.
  • 77
    • 85048610511 scopus 로고    scopus 로고
    • Google Scholar, Digital library. Accessed 20 Dec 2017.
    • Google Scholar, Digital library. http://www.scholar.google.co.in/ Accessed 20 Dec 2017.
  • 78
    • 84876943063 scopus 로고    scopus 로고
    • Internet of Things (IoT): A vision, architectural elements, and future directions
    • Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M., Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems 29:7 (2013), 1645–1660.
    • (2013) Future generation computer systems , vol.29 , Issue.7 , pp. 1645-1660
    • Gubbi, J.1    Buyya, R.2    Marusic, S.3    Palaniswami, M.4
  • 80
    • 85048639166 scopus 로고    scopus 로고
    • Apache hadoop. Accessed 12 Nov 2017.
    • Hadoop, A. (2011). Apache hadoop. http://omeroztat.com/docs/Hadoop.pdf/ Accessed 12 Nov 2017.
    • (2011)
    • Hadoop, A.1
  • 81
    • 84994684186 scopus 로고    scopus 로고
    • Bringing analytics to life
    • Hagel, J., Bringing analytics to life. Journal of Accountancy 219 (2015), 24–25.
    • (2015) Journal of Accountancy , vol.219 , pp. 24-25
    • Hagel, J.1
  • 82
    • 84951274661 scopus 로고    scopus 로고
    • High-performance analytics fuels innovation and inclusive growth: Use big data, hyper connectivity and speed to intelligence to get true value in the digital economy
    • Hagstrom, M., High-performance analytics fuels innovation and inclusive growth: Use big data, hyper connectivity and speed to intelligence to get true value in the digital economy. Journal of Advanced Analytics 2 (2012), 3–4.
    • (2012) Journal of Advanced Analytics , vol.2 , pp. 3-4
    • Hagstrom, M.1
  • 83
  • 84
  • 85
    • 85048643689 scopus 로고    scopus 로고
    • G. (1983). A tutorial on techniques and applications for natural language processing, 1–14. Accessed 12 Nov 2017.
    • Hayes, P. J., & Carbonell, J. G. (1983). A tutorial on techniques and applications for natural language processing, 1–14. http://repository.cmu.edu/cgi/viewcontent.cgi?article=2483&context=compsci/ Accessed 12 Nov 2017.
    • Hayes, P.J.1    Carbonell, J.2
  • 86
    • 85000714737 scopus 로고    scopus 로고
    • Big Data and predictive analytics for supply chain sustainability y: A theory-driven research agenda
    • Hazen, B.T., Skipper, J.B., Ezell, J.D., Boone, C.A., Big Data and predictive analytics for supply chain sustainability y: A theory-driven research agenda. Computers & Industrial Engineering 101 (2016), 592–598.
    • (2016) Computers & Industrial Engineering , vol.101 , pp. 592-598
    • Hazen, B.T.1    Skipper, J.B.2    Ezell, J.D.3    Boone, C.A.4
  • 87
    • 84901191688 scopus 로고    scopus 로고
    • Fast face recognition via sparse coding and extreme learning machine
    • He, B., Xu, D., Nian, R., van Heeswijk, M., Yu, Q., Miche, Y., et al. Fast face recognition via sparse coding and extreme learning machine. Cognitive Computation 6:2 (2014), 264–277.
    • (2014) Cognitive Computation , vol.6 , Issue.2 , pp. 264-277
    • He, B.1    Xu, D.2    Nian, R.3    van Heeswijk, M.4    Yu, Q.5    Miche, Y.6
  • 88
    • 0034372481 scopus 로고    scopus 로고
    • Applications of artificial neural networks in chemical engineering
    • Himmelblau, D.M., Applications of artificial neural networks in chemical engineering. Korean journal of chemical engineering 17:4 (2000), 373–392.
    • (2000) Korean journal of chemical engineering , vol.17 , Issue.4 , pp. 373-392
    • Himmelblau, D.M.1
  • 89
    • 84885737911 scopus 로고    scopus 로고
    • You're as Sick as You Sound”: Using computational approaches for modeling speaker state to gauge illness and recovery
    • Hirschberg, J., Hjalmarsson, A., Elhadad, N., You're as Sick as You Sound”: Using computational approaches for modeling speaker state to gauge illness and recovery. Proceedings of advances in speech recognition, 2010, 305–322.
    • (2010) Proceedings of advances in speech recognition , pp. 305-322
    • Hirschberg, J.1    Hjalmarsson, A.2    Elhadad, N.3
  • 91
    • 85048600981 scopus 로고    scopus 로고
    • Hortonworks, (2011). Accessed 12 Nov 2017.
    • Hortonworks, (2011). http://hortonworks.com/products/hortonworks-sandbox/ Accessed 12 Nov 2017.
  • 92
    • 85048624936 scopus 로고    scopus 로고
    • HP-HAVEn, (2013). Accessed 12 Nov 2017.
    • HP-HAVEn, (2013). https://en.wikipedia.org/wiki/HP_Autonomy/ Accessed 12 Nov 2017.
  • 93
    • 84923224316 scopus 로고    scopus 로고
    • Toward scalable systems for big data analytics: A technology tutorial
    • Hu, H., Wen, Y., Chua, T.S., Li, X., Toward scalable systems for big data analytics: A technology tutorial. IEEE access 2 (2014), 652–687.
    • (2014) IEEE access , vol.2 , pp. 652-687
    • Hu, H.1    Wen, Y.2    Chua, T.S.3    Li, X.4
  • 94
    • 84929336516 scopus 로고    scopus 로고
    • Design of a web-based application of the coupled multi-agent system model and environmental model for watershed management analysis using Hadoop
    • Hu, Y., Cai, X., DuPont, B., Design of a web-based application of the coupled multi-agent system model and environmental model for watershed management analysis using Hadoop. Environmental Modeling & Software 70 (2015), 149–162.
    • (2015) Environmental Modeling & Software , vol.70 , pp. 149-162
    • Hu, Y.1    Cai, X.2    DuPont, B.3
  • 96
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: A review
    • Huang, G., Huang, G.B., Song, S., You, K., Trends in extreme learning machines: A review. Neural Networks 61 (2015), 32–48.
    • (2015) Neural Networks , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.B.2    Song, S.3    You, K.4
  • 97
    • 85048636543 scopus 로고    scopus 로고
    • H2O. Big Data. Accessed 12 Dec 2017.
    • H2O. Big Data, 2011. https://www.h2o.ai/ Accessed 12 Dec 2017.
    • (2011)
  • 98
    • 85048640935 scopus 로고    scopus 로고
    • IEEE Xplore. Digital Library. Accessed 30 Dec 2017.
    • IEEE Xplore. Digital Library. http://www.ieeexplore.ieee.org/ Accessed 30 Dec 2017.
  • 99
    • 85048610175 scopus 로고    scopus 로고
    • Infobright, (2005). Accessed 20 Dec 2017.
    • Infobright, (2005). http://www.infobright.com/ Accessed 20 Dec 2017.
  • 100
    • 84992490341 scopus 로고    scopus 로고
    • Data mining techniques in social media: A survey
    • Injadat, M., Salo, F., Nassif, A.B., Data mining techniques in social media: A survey. Neurocomputing 214 (2016), 654–670.
    • (2016) Neurocomputing , vol.214 , pp. 654-670
    • Injadat, M.1    Salo, F.2    Nassif, A.B.3
  • 101
    • 85078814844 scopus 로고    scopus 로고
    • Big data analytics and computational intelligence for cyber–physical systems: Recent trends and state of the art applications
    • Iqbal, R., Doctor, F., More, B., Mahmud, S., Yousuf, U., Big data analytics and computational intelligence for cyber–physical systems: Recent trends and state of the art applications. Future Generation Computer Systems, 2017, 1–13.
    • (2017) Future Generation Computer Systems , pp. 1-13
    • Iqbal, R.1    Doctor, F.2    More, B.3    Mahmud, S.4    Yousuf, U.5
  • 102
    • 84872682391 scopus 로고    scopus 로고
    • Environmental training in organisations: From a literature review to a framework for future research
    • Jabbour, C.J.C., Environmental training in organisations: From a literature review to a framework for future research. Resources, Conservation and Recycling 74 (2013), 144–155.
    • (2013) Resources, Conservation and Recycling , vol.74 , pp. 144-155
    • Jabbour, C.J.C.1
  • 103
    • 85048626467 scopus 로고    scopus 로고
    • Artificial neural networks and its applications
    • Accessed 12 March 2016
    • Jha, G.K., Artificial neural networks and its applications. IARI, New Delhi, 2007, 1–9 http://bioinformatics.iasri.res.in/BAMAST/Book.html/EbookNew/web/book/module3/ANNanditsApplications.pdf. Accessed 12 March 2016.
    • (2007) IARI, New Delhi , pp. 1-9
    • Jha, G.K.1
  • 105
    • 84929170243 scopus 로고    scopus 로고
    • Significance and challenges of big data research
    • Jin, X., Wah, B.W., Cheng, X., Wang, Y., Significance and challenges of big data research. Big Data Research 2:2 (2015), 59–64.
    • (2015) Big Data Research , vol.2 , Issue.2 , pp. 59-64
    • Jin, X.1    Wah, B.W.2    Cheng, X.3    Wang, Y.4
  • 109
    • 84926427942 scopus 로고    scopus 로고
    • Towards cloud based big data analytics for smart future cities
    • Khan, Z., Anjum, A., Soomro, K., Tahir, M.A., Towards cloud based big data analytics for smart future cities. Journal of Cloud Computing, 4(1), 2015, 2.
    • (2015) Journal of Cloud Computing , vol.4 , Issue.1 , pp. 2
    • Khan, Z.1    Anjum, A.2    Soomro, K.3    Tahir, M.A.4
  • 111
    • 84983746515 scopus 로고    scopus 로고
    • The emerging role of Big Data in key development issues: Opportunities, challenges, and concerns
    • Kshetri, N., The emerging role of Big Data in key development issues: Opportunities, challenges, and concerns. Big Data & Society 1:2 (2014), 1–20.
    • (2014) Big Data & Society , vol.1 , Issue.2 , pp. 1-20
    • Kshetri, N.1
  • 112
    • 84953857304 scopus 로고    scopus 로고
    • Big data's role in expanding access to financial services in China
    • Kshetri, N., Big data's role in expanding access to financial services in China. International Journal of Information Management 36:3 (2016), 297–308.
    • (2016) International Journal of Information Management , vol.36 , Issue.3 , pp. 297-308
    • Kshetri, N.1
  • 114
    • 84903144218 scopus 로고    scopus 로고
    • Focusing accounting curricula on students' long-run careers: Recommendations for an integrated competency-based framework for accounting education
    • Lawson, R.A., Blocher, E.J., Brewer, P.C., Cokins, G., Sorensen, J.E., Stout, D.E., et al. Focusing accounting curricula on students' long-run careers: Recommendations for an integrated competency-based framework for accounting education. Issues in Accounting Education 29:2 (2013), 295–317.
    • (2013) Issues in Accounting Education , vol.29 , Issue.2 , pp. 295-317
    • Lawson, R.A.1    Blocher, E.J.2    Brewer, P.C.3    Cokins, G.4    Sorensen, J.E.5    Stout, D.E.6
  • 116
    • 84881429415 scopus 로고    scopus 로고
    • Bringing big analytics to the masses
    • Leavitt, N., Bringing big analytics to the masses. Computer 46:1 (2013), 20–23.
    • (2013) Computer , vol.46 , Issue.1 , pp. 20-23
    • Leavitt, N.1
  • 118
    • 85048640662 scopus 로고    scopus 로고
    • Predictive big data analytics and cyber physical systems for TES systems
    • Springer Cham (Chapter 7)
    • Lee, J., Jin, C., Liu, Z., Predictive big data analytics and cyber physical systems for TES systems. Advances in Through-life Engineering Services, 2017, Springer, Cham, 97–112 (Chapter 7).
    • (2017) Advances in Through-life Engineering Services , pp. 97-112
    • Lee, J.1    Jin, C.2    Liu, Z.3
  • 120
    • 84863505275 scopus 로고    scopus 로고
    • Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs
    • Lee, S., Xing, E.P., Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs. Bioinformatics 28:12 (2012), i137–i146.
    • (2012) Bioinformatics , vol.28 , Issue.12 , pp. i137-i146
    • Lee, S.1    Xing, E.P.2
  • 121
    • 84985902818 scopus 로고    scopus 로고
    • Survey of recent research progress and issues in big data
    • Washington University in St. Louis USA
    • Li, B., Jain, R., Survey of recent research progress and issues in big data. 2013, Washington University in St. Louis, USA, 1–13.
    • (2013) , pp. 1-13
    • Li, B.1    Jain, R.2
  • 123
    • 84861200365 scopus 로고    scopus 로고
    • Data mining techniques and applications–A decade review from 2000 to 2011
    • Liao, S.H., Chu, P.H., Hsiao, P.Y., Data mining techniques and applications–A decade review from 2000 to 2011. Expert systems with applications 39:12 (2012), 11303–11311.
    • (2012) Expert systems with applications , vol.39 , Issue.12 , pp. 11303-11311
    • Liao, S.H.1    Chu, P.H.2    Hsiao, P.Y.3
  • 125
    • 85010651075 scopus 로고    scopus 로고
    • A survey of deep neural network architectures and their applications
    • Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E., A survey of deep neural network architectures and their applications. Neurocomputing 234 (2017), 11–26.
    • (2017) Neurocomputing , vol.234 , pp. 11-26
    • Liu, W.1    Wang, Z.2    Liu, X.3    Zeng, N.4    Liu, Y.5    Alsaadi, F.E.6
  • 127
    • 85021713833 scopus 로고    scopus 로고
    • Analysis of agriculture data using data mining techniques: Application of big data
    • Majumdar, J., Naraseeyappa, S., Ankalaki, S., Analysis of agriculture data using data mining techniques: Application of big data. Journal of Big Data, 4(1), 2017, 20.
    • (2017) Journal of Big Data , vol.4 , Issue.1 , pp. 20
    • Majumdar, J.1    Naraseeyappa, S.2    Ankalaki, S.3
  • 129
    • 85028044013 scopus 로고    scopus 로고
    • Big IoT data analytics: Architecture, opportunities, and open research challenges
    • Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I.A.T., Siddiqa, A., et al. Big IoT data analytics: Architecture, opportunities, and open research challenges. IEEE Access 5 (2017), 5247–5261.
    • (2017) IEEE Access , vol.5 , pp. 5247-5261
    • Marjani, M.1    Nasaruddin, F.2    Gani, A.3    Karim, A.4    Hashem, I.A.T.5    Siddiqa, A.6
  • 133
    • 78650259840 scopus 로고    scopus 로고
    • What is your digital business strategy?
    • Mithas, S., Lucas, H.C., What is your digital business strategy?. IT professional 12:6 (2010), 4–6.
    • (2010) IT professional , vol.12 , Issue.6 , pp. 4-6
    • Mithas, S.1    Lucas, H.C.2
  • 136
    • 84943160066 scopus 로고    scopus 로고
    • Artificial neural network learning: A comparative review, Methods and Applications of Artificial Intelligence
    • Springer Berlin, Heidelberg
    • Neocleous, C., Schizas, C., Artificial neural network learning: A comparative review, Methods and Applications of Artificial Intelligence. Hellenic Conference on Artificial Intelligence 2308, 2002, Springer, Berlin, Heidelberg, 300–313.
    • (2002) Hellenic Conference on Artificial Intelligence 2308 , pp. 300-313
    • Neocleous, C.1    Schizas, C.2
  • 137
    • 56349094668 scopus 로고    scopus 로고
    • Application of data mining techniques in customer relationship management: A literature review and classification
    • Ngai, E.W., Xiu, L., Chau, D.C., Application of data mining techniques in customer relationship management: A literature review and classification. Expert systems with applications 36:2 (2009), 2592–2602.
    • (2009) Expert systems with applications , vol.36 , Issue.2 , pp. 2592-2602
    • Ngai, E.W.1    Xiu, L.2    Chau, D.C.3
  • 138
    • 85041709496 scopus 로고    scopus 로고
    • Entendiendo el big data: Antecedentes, Origen Y Desarrollo Posterior
    • Nino, M., Illarramendi, A., Entendiendo el big data: Antecedentes, Origen Y Desarrollo Posterior. DYNA New Technologies 2:1 (2015), 1–8.
    • (2015) DYNA New Technologies , vol.2 , Issue.1 , pp. 1-8
    • Nino, M.1    Illarramendi, A.2
  • 139
    • 84929505229 scopus 로고    scopus 로고
    • Big data for the enterprise
    • Oracle Redwood Shores Accessed 30 Dec 2017
    • Oracle. Big data for the enterprise. 2012, Oracle, Redwood Shores http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf/ Accessed 30 Dec 2017.
    • (2012)
  • 143
    • 84946822182 scopus 로고    scopus 로고
    • Reference architecture and classification of technologies, products and services for big data systems
    • Pääkkönen, P., Pakkala, D., Reference architecture and classification of technologies, products and services for big data systems. Big Data Research 2:4 (2015), 166–186.
    • (2015) Big Data Research , vol.2 , Issue.4 , pp. 166-186
    • Pääkkönen, P.1    Pakkala, D.2
  • 144
    • 84888290950 scopus 로고    scopus 로고
    • Educational data mining: A survey and a data mining-based analysis of recent works
    • Peña-Ayala, A., Educational data mining: A survey and a data mining-based analysis of recent works. Expert systems with applications 41:4 (2014), 1432–1462.
    • (2014) Expert systems with applications , vol.41 , Issue.4 , pp. 1432-1462
    • Peña-Ayala, A.1
  • 146
    • 85048604787 scopus 로고    scopus 로고
    • Pivotal big data suite, (2016). Accessed 30 Dec 2017.
    • Pivotal big data suite, (2016). http://pivotal.io/big-data/pivotal-big-data-suite/ Accessed 30 Dec 2017.
  • 148
    • 85048602688 scopus 로고    scopus 로고
    • PricewaterhouseCoopers, (2015). Data driven: What students need to succeed in a rapidly changing business world. White Paper. Accessed 23 May 2016.
    • PricewaterhouseCoopers, (2015). Data driven: What students need to succeed in a rapidly changing business world. White Paper. https://www.pwc.com/us/en/faculty-resource/assets/PwC-Data-driven-paper-Feb2015.pdf/ Accessed 23 May 2016.
  • 154
    • 84977873916 scopus 로고    scopus 로고
    • The graph story of the SAP HANA database
    • Rudolf, M., Paradies, M., Bornhövd, C., Lehner, W., The graph story of the SAP HANA database. In BTW 13 (2013), 403–420.
    • (2013) In BTW , vol.13 , pp. 403-420
    • Rudolf, M.1    Paradies, M.2    Bornhövd, C.3    Lehner, W.4
  • 155
    • 85048640879 scopus 로고    scopus 로고
    • Rhipe. Accessed 30 Dec 2017.
    • Rhipe, 2003. https://www.rhipe.com/ Accessed 30 Dec 2017.
    • (2003)
  • 156
    • 77950680873 scopus 로고    scopus 로고
    • Protein sequences classification by means of feature extraction with substitution matrices
    • Saidi, R., Maddouri, M., Nguifo, E.M., Protein sequences classification by means of feature extraction with substitution matrices. BMC bioinformatics, 11(1), 2010, 175.
    • (2010) BMC bioinformatics , vol.11 , Issue.1 , pp. 175
    • Saidi, R.1    Maddouri, M.2    Nguifo, E.M.3
  • 157
    • 84884206210 scopus 로고    scopus 로고
    • Enhancing financial performance with social media: An impression management perspective
    • Schniederjans, D., Cao, E., Schniederjans, M., Enhancing financial performance with social media: An impression management perspective. Decision Support Systems 55:4 (2013), 911–918.
    • (2013) Decision Support Systems , vol.55 , Issue.4 , pp. 911-918
    • Schniederjans, D.1    Cao, E.2    Schniederjans, M.3
  • 158
    • 85048614430 scopus 로고    scopus 로고
    • Science Direct, Digital library. Accessed 30 Dec 2017.
    • Science Direct, Digital library. www.sciencedirect.com/ Accessed 30 Dec 2017.
  • 159
    • 84994574715 scopus 로고    scopus 로고
    • A model for unpacking big data analytics in high-frequency trading
    • Seddon, J.J., Currie, W.L., A model for unpacking big data analytics in high-frequency trading. Journal of Business Research 70 (2017), 300–307.
    • (2017) Journal of Business Research , vol.70 , pp. 300-307
    • Seddon, J.J.1    Currie, W.L.2
  • 160
    • 85009654757 scopus 로고    scopus 로고
    • The strategic business value of big data
    • Springer Cham (Chapter 3)
    • Serrato, M., Ramirez, J., The strategic business value of big data. Big Data Management, 2017, Springer, Cham, 47–70 (Chapter 3).
    • (2017) Big Data Management , pp. 47-70
    • Serrato, M.1    Ramirez, J.2
  • 163
    • 84929645945 scopus 로고    scopus 로고
    • Demystifying big data: Anatomy of big data developmental process
    • Shin, D.H., Demystifying big data: Anatomy of big data developmental process. Telecommunications Policy 40:9 (2016), 837–854.
    • (2016) Telecommunications Policy , vol.40 , Issue.9 , pp. 837-854
    • Shin, D.H.1
  • 165
    • 84870303679 scopus 로고    scopus 로고
    • Seven reasons you need predictive analytics today
    • Prediction Impact Inc San Francisco, CA (415)
    • Siegal, E., Seven reasons you need predictive analytics today. 2010, Prediction Impact Inc, San Francisco, CA, 683–1146 (415).
    • (2010) , pp. 683-1146
    • Siegal, E.1
  • 166
    • 84904152254 scopus 로고    scopus 로고
    • The visual organization: data visualization, big Data, and the quest for better decisions
    • Wiley Hoboken
    • Simon, P., The visual organization: data visualization, big Data, and the quest for better decisions. 2014, Wiley, Hoboken.
    • (2014)
    • Simon, P.1
  • 168
    • 85009227848 scopus 로고    scopus 로고
    • Toward integration of Big Data, technology and information systems competencies into the accounting curriculum
    • Sledgianowski, D., Gomaa, M., Tan, C., Toward integration of Big Data, technology and information systems competencies into the accounting curriculum. Journal of Accounting Education 38 (2017), 81–93.
    • (2017) Journal of Accounting Education , vol.38 , pp. 81-93
    • Sledgianowski, D.1    Gomaa, M.2    Tan, C.3
  • 170
    • 85048629078 scopus 로고    scopus 로고
    • Introduction to data visualization: history, concept, methods. Accessed 24 June 2017.
    • Song, H. (2014). Introduction to data visualization: history, concept, methods. https://www.slideshare.net/SookyoungSong/hci-tutorial0212?qid=d736cd0f-b704-4b4f-82ea-7dead9b04e9bandv=andb=andfrom_search=9/ Accessed 24 June 2017.
    • (2014)
    • Song, H.1
  • 171
    • 77952552963 scopus 로고    scopus 로고
    • OPELM and OPKNN in long-term prediction of time series using projected input data
    • Sovilj, D., Sorjamaa, A., Yu, Q., Miche, Y., Severin, E., OPELM and OPKNN in long-term prediction of time series using projected input data. Neurocomputing 73:10–12 (2010), 1976–1986.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1976-1986
    • Sovilj, D.1    Sorjamaa, A.2    Yu, Q.3    Miche, Y.4    Severin, E.5
  • 172
    • 85048605506 scopus 로고    scopus 로고
    • Springer, Digital library. Accessed 30 Dec 2017.
    • Springer, Digital library. http://www.springerlink.com/ Accessed 30 Dec 2017.
  • 173
    • 84890018844 scopus 로고    scopus 로고
    • Leveraging big data analytics to reduce healthcare costs
    • Srinivasan, U., Arunasalam, B., Leveraging big data analytics to reduce healthcare costs. IT Professional 15:6 (2013), 21–28.
    • (2013) IT Professional , vol.15 , Issue.6 , pp. 21-28
    • Srinivasan, U.1    Arunasalam, B.2
  • 174
    • 0032373171 scopus 로고    scopus 로고
    • Market-based assets and shareholder value: A framework for analysis
    • Srivastava, R.K., Shervani, T.A., Fahey, L., Market-based assets and shareholder value: A framework for analysis. The Journal of Marketing 62:1 (1998), 2–18.
    • (1998) The Journal of Marketing , vol.62 , Issue.1 , pp. 2-18
    • Srivastava, R.K.1    Shervani, T.A.2    Fahey, L.3
  • 175
    • 84929506822 scopus 로고    scopus 로고
    • Scientific research: How many paradigms
    • Strawn, G.O., Scientific research: How many paradigms. Educause Review 47:3 (2012), 1–26.
    • (2012) Educause Review , vol.47 , Issue.3 , pp. 1-26
    • Strawn, G.O.1
  • 177
    • 84929515623 scopus 로고    scopus 로고
    • Generalized optimal wavelet decomposing algorithm for big financial data
    • Sun, E.W., Chen, Y.T., Yu, M.T., Generalized optimal wavelet decomposing algorithm for big financial data. International Journal of Production Economics 165 (2015), 194–214.
    • (2015) International Journal of Production Economics , vol.165 , pp. 194-214
    • Sun, E.W.1    Chen, Y.T.2    Yu, M.T.3
  • 178
    • 84902529213 scopus 로고    scopus 로고
    • Big data classification: Problems and challenges in network intrusion prediction with machine learning
    • Suthaharan, S., Big data classification: Problems and challenges in network intrusion prediction with machine learning. ACM SIGMETRICS Performance Evaluation Review 41:4 (2014), 70–73.
    • (2014) ACM SIGMETRICS Performance Evaluation Review , vol.41 , Issue.4 , pp. 70-73
    • Suthaharan, S.1
  • 179
    • 84875723860 scopus 로고    scopus 로고
    • A Bee Colony based optimization approach for simultaneous job scheduling and data replication in grid environments
    • Taheri, J., Lee, Y.C., Zomaya, A.Y., Siegel, H.J., A Bee Colony based optimization approach for simultaneous job scheduling and data replication in grid environments. Computers & Operations Research 40:6 (2013), 1564–1578.
    • (2013) Computers & Operations Research , vol.40 , Issue.6 , pp. 1564-1578
    • Taheri, J.1    Lee, Y.C.2    Zomaya, A.Y.3    Siegel, H.J.4
  • 180
    • 85048611192 scopus 로고    scopus 로고
    • Tata Consultancy Services, (2013). The emerging big returns on big data: A TCS 2013 Global Trend Study. Accessed 03 April 2017.
    • Tata Consultancy Services, (2013). The emerging big returns on big data: A TCS 2013 Global Trend Study. http://www.tcs.com/SiteCollectionDocuments/Trends_Study/TCS-Big-Data-Global-Trend-Study-2013.pdf/ Accessed 03 April 2017.
  • 181
    • 85048631714 scopus 로고    scopus 로고
    • Tavana: Editorial decision analytics, 1:1. Accessed 20 Sep 2016.
    • Tavana: Editorial decision analytics, 2014, 1:1. http://www.decisionanalyticsjournal.com/1/1/1/ Accessed 20 Sep 2016.
    • (2014)
  • 182
    • 73849104985 scopus 로고    scopus 로고
    • An ensemble ELM based on modified AdaBoost. RT algorithm for predicting the temperature of molten steel in ladle furnace
    • Tian, H.X., Mao, Z.Z., An ensemble ELM based on modified AdaBoost. RT algorithm for predicting the temperature of molten steel in ladle furnace. IEEE Transactions on Automation Science and Engineering 7:1 (2010), 73–80.
    • (2010) IEEE Transactions on Automation Science and Engineering , vol.7 , Issue.1 , pp. 73-80
    • Tian, H.X.1    Mao, Z.Z.2
  • 184
    • 84946920504 scopus 로고    scopus 로고
    • Artificial neural networks in business: Two decades of research
    • Tkáč, M., Verner, R., Artificial neural networks in business: Two decades of research. Applied Soft Computing 38 (2016), 788–804.
    • (2016) Applied Soft Computing , vol.38 , pp. 788-804
    • Tkáč, M.1    Verner, R.2
  • 190
    • 84979802684 scopus 로고    scopus 로고
    • Social set analysis: A set theoretical approach to big data analytics
    • Vatrapu, R., Mukkamala, R.R., Hussain, A., Flesch, B., Social set analysis: A set theoretical approach to big data analytics. IEEE Access 4 (2016), 2542–2571.
    • (2016) IEEE Access , vol.4 , pp. 2542-2571
    • Vatrapu, R.1    Mukkamala, R.R.2    Hussain, A.3    Flesch, B.4
  • 192
    • 84966874267 scopus 로고    scopus 로고
    • Creating value with big data analytics: making smarter marketing decisions
    • Routledge Accessed 12 March 2017.
    • Verhoef, P.C., Kooge, E., Walk, N., Creating value with big data analytics: making smarter marketing decisions. 2016, Routledge http://aksitha.com/Big%20Data%20Technologies/Big%20Data/Creating%20Value%20with%20Big%20Data%20Analytics%20Making%20Smarter%20Marketing%20Decisions.pdf. Accessed 12 March 2017.
    • (2016)
    • Verhoef, P.C.1    Kooge, E.2    Walk, N.3
  • 193
    • 84869740480 scopus 로고    scopus 로고
    • Big data: What it is and why you should care
    • Accessed 12 March 2016
    • Villars, R.L., Olofson, C.W., Eastwood, M., Big data: What it is and why you should care. White Paper, IDC 14 (2011), 1–14 http://www.tracemyflows.com/uploads/big_data/idc_amd_big_data_whitepaper.pdf/ Accessed 12 March 2016.
    • (2011) White Paper, IDC , vol.14 , pp. 1-14
    • Villars, R.L.1    Olofson, C.W.2    Eastwood, M.3
  • 194
    • 85048636572 scopus 로고    scopus 로고
    • Vowal Wabbit, Big Data Software. Accessed 20 Nov 2017.
    • Vowal Wabbit, Big Data Software. https://en.wikipedia.org/wiki/Vowpal_Wabbit/ Accessed 20 Nov 2017.
  • 195
    • 84900796645 scopus 로고    scopus 로고
    • Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management
    • Waller, M.A., Fawcett, S.E., Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics 34:2 (2013), 77–84.
    • (2013) Journal of Business Logistics , vol.34 , Issue.2 , pp. 77-84
    • Waller, M.A.1    Fawcett, S.E.2
  • 197
    • 84975781055 scopus 로고    scopus 로고
    • Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations
    • Wang, Y., Kung, L., Byrd, T.A., Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change 126 (2016), 3–13.
    • (2016) Technological Forecasting and Social Change , vol.126 , pp. 3-13
    • Wang, Y.1    Kung, L.2    Byrd, T.A.3
  • 198
    • 84906043454 scopus 로고    scopus 로고
    • Applications of business analytics in healthcare
    • Ward, M.J., Marsolo, K.A., Froehle, C.M., Applications of business analytics in healthcare. Business horizons 57:5 (2014), 571–582.
    • (2014) Business horizons , vol.57 , Issue.5 , pp. 571-582
    • Ward, M.J.1    Marsolo, K.A.2    Froehle, C.M.3
  • 199
    • 84940426349 scopus 로고    scopus 로고
    • Disease prediction with different types of neural network classifiers
    • Weng, C.H., Huang, T.C.K., Han, R.P., Disease prediction with different types of neural network classifiers. Telematics and Informatics 33:2 (2016), 277–292.
    • (2016) Telematics and Informatics , vol.33 , Issue.2 , pp. 277-292
    • Weng, C.H.1    Huang, T.C.K.2    Han, R.P.3
  • 201
    • 85048631063 scopus 로고    scopus 로고
    • Central America: big data in action for development
    • World Bank Washington, DC Accessed 04 March 2017
    • World Bank. Central America: big data in action for development. 2014, World Bank, Washington, DC https://openknowledge.worldbank.org/handle/10986/21325/ Accessed 04 March 2017.
    • (2014)
  • 203
    • 84996802213 scopus 로고    scopus 로고
    • The promising future of healthcare services: When big data analytics meets wearable technology
    • Wu, J., Li, H., Cheng, S., Lin, Z., The promising future of healthcare services: When big data analytics meets wearable technology. Information & Management 53:8 (2016), 1020–1033.
    • (2016) Information & Management , vol.53 , Issue.8 , pp. 1020-1033
    • Wu, J.1    Li, H.2    Cheng, S.3    Lin, Z.4
  • 205
    • 85010458423 scopus 로고    scopus 로고
    • Strategies and principles of distributed machine learning on big data
    • Xing, E.P., Ho, Q., Xie, P., Wei, D., Strategies and principles of distributed machine learning on big data. Engineering 2:2 (2016), 179–195.
    • (2016) Engineering , vol.2 , Issue.2 , pp. 179-195
    • Xing, E.P.1    Ho, Q.2    Xie, P.3    Wei, D.4
  • 206
    • 84976647715 scopus 로고    scopus 로고
    • The big data analytics and applications of the surveillance system using video structured description technology
    • Xu, Z., Mei, L., Hu, C., Liu, Y., The big data analytics and applications of the surveillance system using video structured description technology. Cluster Computing 19:3 (2016), 1283–1292.
    • (2016) Cluster Computing , vol.19 , Issue.3 , pp. 1283-1292
    • Xu, Z.1    Mei, L.2    Hu, C.3    Liu, Y.4
  • 207
    • 84902486966 scopus 로고    scopus 로고
    • Framework formation of financial data classification standard in the era of the big data
    • Yang, S., Zhong, Y., Liu, R., Feng, Z., Framework formation of financial data classification standard in the era of the big data. Procedia Computer Science 30 (2014), 88–96.
    • (2014) Procedia Computer Science , vol.30 , pp. 88-96
    • Yang, S.1    Zhong, Y.2    Liu, R.3    Feng, Z.4
  • 210
    • 84883162967 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis
    • You, Z.H., Lei, Y.K., Zhu, L., Xia, J.F., Wang, B., Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinformatics 14 (2013), 1–11.
    • (2013) BMC Bioinformatics , vol.14 , pp. 1-11
    • You, Z.H.1    Lei, Y.K.2    Zhu, L.3    Xia, J.F.4    Wang, B.5
  • 211
    • 0034313673 scopus 로고    scopus 로고
    • Neural networks for classification: A survey
    • Part C (Applications and Reviews)
    • Zhang, G.P., Neural networks for classification: A survey. IEEE Transactions on Systems, Man, and Cybernetics 30:4 (2000), 451–462 Part C (Applications and Reviews).
    • (2000) IEEE Transactions on Systems, Man, and Cybernetics , vol.30 , Issue.4 , pp. 451-462
    • Zhang, G.P.1
  • 212
    • 85048619849 scopus 로고    scopus 로고
    • Data quality, analytics, and privacy in big data
    • Springer Cham
    • Zhang, X., Xiang, S., Data quality, analytics, and privacy in big data. Big data in complex systems, 2015, Springer, Cham, 393–418.
    • (2015) Big data in complex systems , pp. 393-418
    • Zhang, X.1    Xiang, S.2
  • 217
    • 84949494790 scopus 로고    scopus 로고
    • Big data driven smart energy management: From big data to big insights
    • Zhou, K., Fu, C., Yang, S., Big data driven smart energy management: From big data to big insights. Renewable and Sustainable Energy Reviews 56 (2016), 215–225.
    • (2016) Renewable and Sustainable Energy Reviews , vol.56 , pp. 215-225
    • Zhou, K.1    Fu, C.2    Yang, S.3
  • 218
    • 85011371254 scopus 로고    scopus 로고
    • Machine learning on Big Data: Opportunities and challenges
    • Zhou, L., Pan, S., Wang, J., Vasilakos, A.V., Machine learning on Big Data: Opportunities and challenges. Neurocomputing 237 (2017), 350–361.
    • (2017) Neurocomputing , vol.237 , pp. 350-361
    • Zhou, L.1    Pan, S.2    Wang, J.3    Vasilakos, A.V.4
  • 219
    • 84866896733 scopus 로고    scopus 로고
    • Understanding big data: analytics for enterprise class hadoop and streaming data
    • McGraw-Hill Osborne Media
    • Zikopoulos, P., Eaton, C., Understanding big data: analytics for enterprise class hadoop and streaming data. 2011, McGraw-Hill Osborne Media.
    • (2011)
    • Zikopoulos, P.1    Eaton, C.2
  • 220
    • 0000616205 scopus 로고
    • RNA secondary structures and their prediction
    • Zuker, M., Sankoff, D., RNA secondary structures and their prediction. Bulletin of mathematical biology 46:4 (1984), 591–621.
    • (1984) Bulletin of mathematical biology , vol.46 , Issue.4 , pp. 591-621
    • Zuker, M.1    Sankoff, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.