메뉴 건너뛰기




Volumn 44, Issue 1, 2015, Pages 103-115

Extreme learning machine: algorithm, theory and applications

Author keywords

Extreme learning machine (ELM); Least squares; Local minimum; Over fitting; Single hidden layer feedforward neural networks (SLFNs)

Indexed keywords

ALGORITHMS; FEEDFORWARD NEURAL NETWORKS; ITERATIVE METHODS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; NETWORK LAYERS; RADIAL BASIS FUNCTION NETWORKS;

EID: 84929522825     PISSN: 02692821     EISSN: 15737462     Source Type: Journal    
DOI: 10.1007/s10462-013-9405-z     Document Type: Article
Times cited : (482)

References (52)
  • 1
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Benqio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127
    • (2009) Found Trends Mach Learn , vol.2 , Issue.1 , pp. 1-127
    • Benqio, Y.1
  • 2
    • 84872547030 scopus 로고    scopus 로고
    • Lithologic identification based on ELM
    • Cai L, Cheng G, Pan H (2010) Lithologic identification based on ELM. Comput Engi Des 31(9):210–2012
    • (2010) Comput Engi Des , vol.31 , Issue.9 , pp. 210-2012
    • Cai, L.1    Cheng, G.2    Pan, H.3
  • 4
    • 37449031112 scopus 로고    scopus 로고
    • Soft sensing modeling based on extreme learning machine for biochemical processes
    • Chang Y, Li Y, Wang F (2007) Soft sensing modeling based on extreme learning machine for biochemical processes. J Syst Simul 19(23):5587–5590
    • (2007) J Syst Simul , vol.19 , Issue.23 , pp. 5587-5590
    • Chang, Y.1    Li, Y.2    Wang, F.3
  • 5
    • 77950553517 scopus 로고    scopus 로고
    • Research on extreme learning of neural networks
    • Deng W, Zheng Q, Chen L et al (2010a) Research on extreme learning of neural networks. Chin J Comput 33(2):279–287
    • (2010) Chin J Comput , vol.33 , Issue.2 , pp. 279-287
    • Deng, W.1    Zheng, Q.2    Chen, L.3
  • 6
    • 78649492071 scopus 로고    scopus 로고
    • Ordinal extreme learning machine
    • Deng W, Zheng Q, Lian S et al (2010b) Ordinal extreme learning machine. Neurocomputing 74(1–3):447–456
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 447-456
    • Deng, W.1    Zheng, Q.2    Lian, S.3
  • 7
    • 79951758300 scopus 로고    scopus 로고
    • Research of neural network algorithm based on factor analysis and cluster analysis
    • Ding S, Jia W, Su C et al (2011a) Research of neural network algorithm based on factor analysis and cluster analysis. Neural Comput Appl 20(2):297–302
    • (2011) Neural Comput Appl , vol.20 , Issue.2 , pp. 297-302
    • Ding, S.1    Jia, W.2    Su, C.3
  • 8
    • 80051551703 scopus 로고    scopus 로고
    • An optimizing BP neural network algorithm based on genetic algorithm
    • Ding S, Su C, Yu J et al (2011b) An optimizing BP neural network algorithm based on genetic algorithm. Artif Intell Rev 36(2):153–162
    • (2011) Artif Intell Rev , vol.36 , Issue.2 , pp. 153-162
    • Ding, S.1    Su, C.2    Yu, J.3
  • 9
    • 84857644975 scopus 로고    scopus 로고
    • An optimizing method of RBF neural network based on genetic algorithm
    • Ding S, Xu L, Chunyang SuC et al (2012) An optimizing method of RBF neural network based on genetic algorithm. Neural Comput Appl 21(2):333–336
    • (2012) Neural Comput Appl , vol.21 , Issue.2 , pp. 333-336
    • Ding, S.1    Xu, L.2    Chunyang, S.C.3
  • 11
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G, Huang G, Lin Q et al (2009) Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans Neural Netw 20(8):1352–1357
    • (2009) IEEE Trans Neural Netw , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.1    Huang, G.2    Lin, Q.3
  • 12
    • 80955178270 scopus 로고    scopus 로고
    • MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks
    • Fernandez-Navarro F, Hervas-Martinez C, Sanchez-Monedero J et al (2011) MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks. Neurocomputing 74(16):2502–2510
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2502-2510
    • Fernandez-Navarro, F.1    Hervas-Martinez, C.2    Sanchez-Monedero, J.3
  • 14
    • 33748432957 scopus 로고    scopus 로고
    • Improved extreme learning machine for function approximation by encoding apriori information
    • Han F, Huang D (2006) Improved extreme learning machine for function approximation by encoding apriori information. Neurocomputing 69(16–18):2369–2373
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2369-2373
    • Han, F.1    Huang, D.2
  • 15
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257
    • (1991) Neural Netw , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 16
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two hidden-layer feedforward networks
    • Huang G (2003) Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Trans Neural Netw 14(2):274–281
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.1
  • 17
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward network
    • Huang G (2003) Learning capability and storage capacity of two-hidden-layer feedforward network. IEEE Trans Neural Netw 14(2):274–281
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.2 , pp. 274-281
    • Huang, G.1
  • 18
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang G, Babri HA (1998) Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 9(1):224–229
    • (1998) IEEE Trans Neural Netw , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.1    Babri, H.A.2
  • 19
    • 33751281398 scopus 로고    scopus 로고
    • On-line sequential extreme learning machine. In: The IASTED international conference on, computational intelligence, pp
    • Huang G, Liang N, Rong HJ et al. (2005) On-line sequential extreme learning machine. In: The IASTED international conference on, computational intelligence, pp. 232–237
    • (2005) 232–237
    • Huang, G.1    Liang, N.2    Rong, H.J.3
  • 20
    • 79958178274 scopus 로고    scopus 로고
    • Extreme learning machines: a survey
    • Huang G, Wang D, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122
    • (2011) Int J Mach Learn Cybern , vol.2 , Issue.2 , pp. 107-122
    • Huang, G.1    Wang, D.2    Lan, Y.3
  • 21
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • Huang G, Zhu Q, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. IEEE Int Jt Conf Neural Netw 1–4:985–990
    • (2004) IEEE Int Jt Conf Neural Netw , vol.1-4 , pp. 985-990
    • Huang, G.1    Zhu, Q.2    Siew, C.K.3
  • 22
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G, Zhu Q, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Siew, C.K.3
  • 23
    • 56349096960 scopus 로고    scopus 로고
    • Rule extraction from trained adaptive neural networks using artificial immune systems
    • Kahramanli H, Allahverdi N (2009) Rule extraction from trained adaptive neural networks using artificial immune systems. Expert Syst Appl 36(2):1513–1522
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 1513-1522
    • Kahramanli, H.1    Allahverdi, N.2
  • 24
    • 78650010629 scopus 로고    scopus 로고
    • Two-stage extreme learning machine for regression
    • Lan Y, Soh YC, Huang G (2010) Two-stage extreme learning machine for regression. Neurocomputing 73(2010):3028–3038
    • (2010) Neurocomputing , vol.73 , Issue.2010 , pp. 3028-3038
    • Lan, Y.1    Soh, Y.C.2    Huang, G.3
  • 26
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a non-polynomial activation function can approximate any function
    • Leshno M, Lin V, Pinkus A et al (1991) Multilayer feedforward networks with a non-polynomial activation function can approximate any function. Neural Netw 6(6):861–867
    • (1991) Neural Netw , vol.6 , Issue.6 , pp. 861-867
    • Leshno, M.1    Lin, V.2    Pinkus, A.3
  • 27
    • 84879688364 scopus 로고    scopus 로고
    • Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function
    • Li S, Chen SF, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process Lett 37:189–205
    • (2013) Neural Process Lett , vol.37 , pp. 189-205
    • Li, S.1    Chen, S.F.2    Liu, B.3
  • 28
    • 84861184379 scopus 로고    scopus 로고
    • Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks
    • Li S, Chen SF, Liu B et al (2012) Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing 91:1–10
    • (2012) Neurocomputing , vol.91 , pp. 1-10
    • Li, S.1    Chen, S.F.2    Liu, B.3
  • 29
    • 84886865748 scopus 로고    scopus 로고
    • Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks
    • Li S, Liu B, Li YM (2013) Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans Neural Netw Learn Syst 24(2):301–309
    • (2013) IEEE Trans Neural Netw Learn Syst , vol.24 , Issue.2 , pp. 301-309
    • Li, S.1    Liu, B.2    Li, Y.M.3
  • 30
    • 84867462356 scopus 로고    scopus 로고
    • A nonlinear model to generate the winner-take-all competition
    • Li S, Wang Y, Yu J et al (2013) A nonlinear model to generate the winner-take-all competition. Commun Nonlinear Sci Numer Simul 18(3):435–442
    • (2013) Commun Nonlinear Sci Numer Simul , vol.18 , Issue.3 , pp. 435-442
    • Li, S.1    Wang, Y.2    Yu, J.3
  • 31
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feed forward networks
    • Liang N, Huang G (2006) A fast and accurate online sequential learning algorithm for feed forward networks. IEEE Trans Neural Netw 17(6):1411–1423
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.1    Huang, G.2
  • 32
    • 0036740269 scopus 로고    scopus 로고
    • RBF neural network center selection based on Fisher ratio class separability measure
    • Mao K (2002) RBF neural network center selection based on Fisher ratio class separability measure. IEEE Trans Neural Netw 13(5):1211–1217
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.5 , pp. 1211-1217
    • Mao, K.1
  • 33
    • 28244449236 scopus 로고    scopus 로고
    • Neuron selection for RBF neural network classifier based on data structure preserving criterion
    • Mao K, Huang G (2005) Neuron selection for RBF neural network classifier based on data structure preserving criterion. IEEE Trans Neural Netw 16(6):1531–1540
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.6 , pp. 1531-1540
    • Mao, K.1    Huang, G.2
  • 34
    • 12144269984 scopus 로고    scopus 로고
    • Fuzzy logic and evolutionary algorithm-two techniques in rule extraction from neural networks
    • Markowska-Kaczmar U, Trelak W (2005) Fuzzy logic and evolutionary algorithm-two techniques in rule extraction from neural networks. Neurocomputing 63:359–379
    • (2005) Neurocomputing , vol.63 , pp. 359-379
    • Markowska-Kaczmar, U.1    Trelak, W.2
  • 36
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133
    • (1943) Bull Math Biophys , vol.5 , Issue.4 , pp. 115-133
    • McCulloch, W.1    Pitts, W.2
  • 37
    • 80052945108 scopus 로고    scopus 로고
    • Genetic algorithms
    • Mohamed MH (2011) Genetic algorithms. Neurocomputing 74(17):3180–3192
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3180-3192
    • Mohamed, M.H.1
  • 38
    • 79958778333 scopus 로고    scopus 로고
    • Human face recognition based on multidimensional PCA and extreme learning machine
    • Mohammed AA, Minhas R, Wu Q et al (2011) Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit 44(10–11):2588–2597
    • (2011) Pattern Recognit , vol.44 , Issue.10-11 , pp. 2588-2597
    • Mohammed, A.A.1    Minhas, R.2    Wu, Q.3
  • 39
    • 84910074229 scopus 로고    scopus 로고
    • Comparison of the extreme learning machine with the support vector machine for reservoir permeability prediction
    • Pan H, Cheng G, Cai L (2010) Comparison of the extreme learning machine with the support vector machine for reservoir permeability prediction. Comput Engi Sci 32(2):131–134
    • (2010) Comput Engi Sci , vol.32 , Issue.2 , pp. 131-134
    • Pan, H.1    Cheng, G.2    Cai, L.3
  • 40
    • 37249026797 scopus 로고    scopus 로고
    • A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification
    • Quteishat A, Lim CP (2008) A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Appl Soft Comput 8(2):985–995
    • (2008) Appl Soft Comput , vol.8 , Issue.2 , pp. 985-995
    • Quteishat, A.1    Lim, C.P.2
  • 41
    • 82355175771 scopus 로고    scopus 로고
    • Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks
    • Romero E, Alquezar R (2012) Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks. Neural Netw 25:122–129
    • (2012) Neural Netw , vol.25 , pp. 122-129
    • Romero, E.1    Alquezar, R.2
  • 42
    • 85008039450 scopus 로고    scopus 로고
    • Online sequential fuzzy extreme learning machine for function approximation and classification problems
    • Rong HJ, Huang G, Sundararajan N et al (2009) Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern Part B Cybern 39(4):1067–1072
    • (2009) IEEE Trans Syst Man Cybern Part B Cybern , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.J.1    Huang, G.2    Sundararajan, N.3
  • 43
    • 55949132682 scopus 로고    scopus 로고
    • A fast pruned-extreme learning machine for classification problem
    • Rong HJ, Ong YS, Tan AH et al (2008) A fast pruned-extreme learning machine for classification problem. Neurocomputing 72(1–3):359–366
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 359-366
    • Rong, H.J.1    Ong, Y.S.2    Tan, A.H.3
  • 44
    • 27244443212 scopus 로고    scopus 로고
    • A classification approach based on evolutionary neural networks
    • Shang L, Wang J, Yao W (2005) A classification approach based on evolutionary neural networks. J Softw 16(9):1577–1583
    • (2005) J Softw , vol.16 , Issue.9 , pp. 1577-1583
    • Shang, L.1    Wang, J.2    Yao, W.3
  • 46
    • 80051669013 scopus 로고    scopus 로고
    • A study on effectiveness of extreme learning machine
    • Wang Y, Cao F, Yuan Y (2011) A study on effectiveness of extreme learning machine. Neurocomputing 74(16):2483–2490
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2483-2490
    • Wang, Y.1    Cao, F.2    Yuan, Y.3
  • 47
    • 84860763426 scopus 로고    scopus 로고
    • A novel optimizing method for RBF neural network based on rough set and AP clustering algorithm
    • Xu X, Ding S, Shi Z et al (2012) A novel optimizing method for RBF neural network based on rough set and AP clustering algorithm. J Zhejiang University-SCIENCE C 13(2):131–138
    • (2012) J Zhejiang University-SCIENCE C , vol.13 , Issue.2 , pp. 131-138
    • Xu, X.1    Ding, S.2    Shi, Z.3
  • 48
    • 85016690630 scopus 로고    scopus 로고
    • Fusion of thermal infrared and multispectral remote sensing images via neural network regression
    • Yao W, Han M (2010) Fusion of thermal infrared and multispectral remote sensing images via neural network regression. J Image Graphics 15(8):1278–1284
    • (2010) J Image Graphics , vol.15 , Issue.8 , pp. 1278-1284
    • Yao, W.1    Han, M.2
  • 49
    • 70450237006 scopus 로고    scopus 로고
    • Rough neural network based on bottom-up fuzzy rough data analysis
    • Zhang D, Wang Y (2009) Rough neural network based on bottom-up fuzzy rough data analysis. Neural Process Lett 30(3):187–211
    • (2009) Neural Process Lett , vol.30 , Issue.3 , pp. 187-211
    • Zhang, D.1    Wang, Y.2
  • 50
    • 82755195066 scopus 로고    scopus 로고
    • Zhang X, Wang H (2011) Incremental regularized extreme learning machine based on Cholesky factorization and its application to time series prediction. Acta Physica Sinica 60(11):110201-1–111201-6
    • Zhang X, Wang H (2011) Incremental regularized extreme learning machine based on Cholesky factorization and its application to time series prediction. Acta Physica Sinica 60(11):110201-1–111201-6
  • 51
    • 80052553756 scopus 로고    scopus 로고
    • Zhang X, Wang H (2011) Selective forgetting extreme learning machine and its application to time series prediction. Acta Physica Sinica, 60(8):080504-1–080504-6
    • Zhang X, Wang H (2011) Selective forgetting extreme learning machine and its application to time series prediction. Acta Physica Sinica, 60(8):080504-1–080504-6
  • 52
    • 22844440904 scopus 로고    scopus 로고
    • Evolutionary extreme learning machine
    • Zhu Q, Qin A, Suganthan PN et al (2005) Evolutionary extreme learning machine. Patt Recognit 38(10):1759–1763
    • (2005) Patt Recognit , vol.38 , Issue.10 , pp. 1759-1763
    • Zhu, Q.1    Qin, A.2    Suganthan, P.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.