-
1
-
-
84907580576
-
Editorial—Big data, data science, and analytics: The opportunity and challenge for is research
-
R.Agarwal, & V.Dhar, (2014). Editorial—Big data, data science, and analytics: The opportunity and challenge for is research. Information Systems Research, 25(3), 443–448. doi:10.1287/isre.2014.0546
-
(2014)
Information Systems Research
, vol.25
, Issue.3
, pp. 443-448
-
-
Agarwal, R.1
Dhar, V.2
-
2
-
-
84933541704
-
-
The missing V’s in big data: Viability and value. Wired. Retrieved January 10, 2015, from
-
N.Biehn, (2013). The missing V’s in big data: Viability and value. Wired. Retrieved January 10, 2015, from http://www.wired.com
-
(2013)
-
-
Biehn, N.1
-
4
-
-
84869199180
-
How big data is different
-
T.H.Davenport,, P.Barth,, & R.Bean, (2012). How big data is different. MIT Sloan Management Review, 54(1), 43–46.
-
(2012)
MIT Sloan Management Review
, vol.54
, Issue.1
, pp. 43-46
-
-
Davenport, T.H.1
Barth, P.2
Bean, R.3
-
5
-
-
84933541705
-
-
Will data warehousing survive the advent of big data? O’Reilly Radar. Retrieved January 10, 2015, from
-
B.Devlin, (2012). Will data warehousing survive the advent of big data? O’Reilly Radar. Retrieved January 10, 2015, from http://radar.oreilly.com
-
(2012)
-
-
Devlin, B.1
-
8
-
-
84933541707
-
Big data and is research
-
P.B.Goes, (2014). Big data and is research. MIS Quarterly, 38(3), iii–viii.
-
(2014)
MIS Quarterly
, vol.38
, Issue.3
-
-
Goes, P.B.1
-
9
-
-
84933541708
-
-
Big data: Avoid ‘Wanna V’ confusion. Information Week. Retrieved January 10, 2015
-
S.Grimes, (2013). Big data: Avoid ‘Wanna V’ confusion. Information Week. Retrieved January 10, 2015, http://www.informationweek.com
-
(2013)
-
-
Grimes, S.1
-
10
-
-
84889594536
-
Linked data, big data, and the 4th paradigm
-
P.Hitzler, & K.Janowicz, (2013). Linked data, big data, and the 4th paradigm. Semantic Web, 4, 233–235.
-
(2013)
Semantic Web
, vol.4
, pp. 233-235
-
-
Hitzler, P.1
Janowicz, K.2
-
11
-
-
84903651620
-
-
Amsterdam, The Netherlands: Elsevier
-
J.Höller,, V.Tsiatsis,, C.Mulligan,, S.Karnouskos,, S.Avesand,, & D.Boyle, (2014). From machine-to-machine to the internet of things: Introduction to a new age of intelligence. Amsterdam, The Netherlands: Elsevier.
-
(2014)
From machine-to-machine to the internet of things: Introduction to a new age of intelligence
-
-
Höller, J.1
Tsiatsis, V.2
Mulligan, C.3
Karnouskos, S.4
Avesand, S.5
Boyle, D.6
-
12
-
-
84893232977
-
-
Upper Saddle River, NJ: Pearson/Prentice Hall
-
N.Jukic,, S.Vrbsky,, & S.Nestorov, (2013). Database systems—Introduction to databases and data warehouses. Upper Saddle River, NJ: Pearson/Prentice Hall.
-
(2013)
Database systems—Introduction to databases and data warehouses
-
-
Jukic, N.1
Vrbsky, S.2
Nestorov, S.3
-
13
-
-
84933541709
-
-
New emerging best practices for big data—A Kimball group white paper. Kimball Group. Retrieved January 10, 2015, from
-
R.Kimball, (2012). New emerging best practices for big data—A Kimball group white paper. Kimball Group. Retrieved January 10, 2015, from http://www.kimballgroup.com
-
(2012)
-
-
Kimball, R.1
-
14
-
-
84933541710
-
-
The 5 V’s of big data. Avnet Technology Solutions. Retrieved January 10, 2015, from
-
E.Knilans, (2014). The 5 V’s of big data. Avnet Technology Solutions. Retrieved January 10, 2015, from http://www.ats.avnet.com
-
(2014)
-
-
Knilans, E.1
-
15
-
-
84861113715
-
3-D data management: Controlling data volume, velocity, and variety
-
Stamford, CT: META Group Inc
-
D.Laney, (2001). 3-D data management: Controlling data volume, velocity, and variety. META Group Report, File 949, February 2001. Stamford, CT: META Group Inc.
-
(2001)
META Group Report, File 949, February 2001
-
-
Laney, D.1
-
16
-
-
85006605524
-
The modern data warehouse—How big data impacts analytics architecture
-
K.Lopez, & J.D’Antoni, (2014). The modern data warehouse—How big data impacts analytics architecture. BI Journal, 19(3), 8–15.
-
(2014)
BI Journal
, vol.19
, Issue.3
, pp. 8-15
-
-
Lopez, K.1
D’Antoni, J.2
-
18
-
-
84933541712
-
-
Beyond volume, variety, and velocity is the issue of big data veracity. Inside Big Data. Retrieved January 10, 2015, from
-
K.Normandeau, (2013). Beyond volume, variety, and velocity is the issue of big data veracity. Inside Big Data. Retrieved January 10, 2015, from http://insidebigdata.com
-
(2013)
-
-
Normandeau, K.1
-
19
-
-
84933541713
-
-
Gartner’s big data definition consists of three parts, not to be confused with three “V”s. Forbes. Retrieved January 10, 2015, from
-
S.Sicular, (2013). Gartner’s big data definition consists of three parts, not to be confused with three “V”s. Forbes. Retrieved January 10, 2015, from http://www.forbes.com
-
(2013)
-
-
Sicular, S.1
|