메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 1976-1986

OPELM and OPKNN in long-term prediction of time series using projected input data

Author keywords

Delta test; Genetic algorithm; Hannan Quinn information criterion; Long term time series prediction; OPELM; OPKNN; Projection

Indexed keywords

ACCURATE PREDICTION; CURSE OF DIMENSIONALITY; DATA SETS; EXTREME LEARNING MACHINE; FAST MODEL; FINANCIAL DATA; HANNAN-QUINN INFORMATION CRITERION; INFORMATION CRITERION; INPUT DATAS; INPUT VARIABLES; K-NEAREST NEIGHBORS; LONG-TERM PREDICTION; TIME SERIES PREDICTION;

EID: 77952552963     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.11.033     Document Type: Article
Times cited : (16)

References (40)
  • 3
    • 0037354136 scopus 로고    scopus 로고
    • Forecasting and recombining time series components by using neural network
    • Hansen J., Nelson R. Forecasting and recombining time series components by using neural network. Computational Operational Research 2003, 50:307-317.
    • (2003) Computational Operational Research , vol.50 , pp. 307-317
    • Hansen, J.1    Nelson, R.2
  • 4
    • 0035314205 scopus 로고    scopus 로고
    • A simulation study of artificial neural network for nonlinear time-series forecasting
    • Zhang G., Patuwo E., Hu M. A simulation study of artificial neural network for nonlinear time-series forecasting. Computational Operational Research 2001, 28:381-396.
    • (2001) Computational Operational Research , vol.28 , pp. 381-396
    • Zhang, G.1    Patuwo, E.2    Hu, M.3
  • 6
    • 1842760558 scopus 로고    scopus 로고
    • Forecasting economic and financial time-series with non-linear models
    • Clements M., Franses P., Swanson N. Forecasting economic and financial time-series with non-linear models. International Journal of Forecasting 2004, 20(2):169-183.
    • (2004) International Journal of Forecasting , vol.20 , Issue.2 , pp. 169-183
    • Clements, M.1    Franses, P.2    Swanson, N.3
  • 7
    • 25144451767 scopus 로고    scopus 로고
    • The curse of dimensionality in data mining and time series prediction, in: Lecture Notes in Computer Science, vol. 3512, Springer, Heidelberg.
    • M. Verleysen, D. François, The curse of dimensionality in data mining and time series prediction, in: Lecture Notes in Computer Science, vol. 3512, Springer, Heidelberg, 2005, pp. 758-770.
    • (2005) , pp. 758-770
    • Verleysen, M.1    François, D.2
  • 10
    • 0036027191 scopus 로고    scopus 로고
    • Forecasting financial time series using neural network and fuzzy system-based techniques
    • Kodogiannis V., Lolis A. Forecasting financial time series using neural network and fuzzy system-based techniques. Neural Computing and Applications 2002, 11(2):90-102. URL: 〈http://dx.doi.org/10.1007/s005210200021〉. 10.1007/s005210200021.
    • (2002) Neural Computing and Applications , vol.11 , Issue.2 , pp. 90-102
    • Kodogiannis, V.1    Lolis, A.2
  • 15
    • 84908479974 scopus 로고    scopus 로고
    • Tabu search with delta test for time series prediction using OP-KNN, in: A. Lendasse (Ed.), ESTSP, European Symposium on Time Series Prediction.
    • D. Sovilj, A. Sorjamaa, Y. Miche, Tabu search with delta test for time series prediction using OP-KNN, in: A. Lendasse (Ed.), ESTSP, European Symposium on Time Series Prediction, 2008, pp. 187-196.
    • (2008) , pp. 187-196
    • Sovilj, D.1    Sorjamaa, A.2    Miche, Y.3
  • 16
    • 34548170754 scopus 로고    scopus 로고
    • Methodology for long-term prediction of time series
    • Sorjamaa A., Hao J., Reyhani N., Ji Y., Lendasse A. Methodology for long-term prediction of time series. Neurocomputing 2007, 70(16-18):2861-2869.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2861-2869
    • Sorjamaa, A.1    Hao, J.2    Reyhani, N.3    Ji, Y.4    Lendasse, A.5
  • 17
    • 85028212829 scopus 로고    scopus 로고
    • Time series prediction using dirrec strategy, in: M. Verleysen (Ed.), ESANN, European Symposium on Artificial Neural Networks, European Symposium on Artificial Neural Networks.
    • A. Sorjamaa, A. Lendasse, Time series prediction using dirrec strategy, in: M. Verleysen (Ed.), ESANN, European Symposium on Artificial Neural Networks, European Symposium on Artificial Neural Networks, 2006, pp. 143-148.
    • (2006) , pp. 143-148
    • Sorjamaa, A.1    Lendasse, A.2
  • 18
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 19
    • 12844250791 scopus 로고    scopus 로고
    • Local search-embedded genetic algorithm for feature selection, in: ICPR, 2002, URL.
    • I. Oh, J. Lee, B. Moon, Local search-embedded genetic algorithm for feature selection, in: ICPR, 2002, pp. II:148-151. URL. http://dx.doi.org/10.1109/ICPR.2002.1048259.
    • , vol.2 , pp. 148-151
    • Oh I.Lee, J.1    Moon, B.2
  • 22
    • 0034227313 scopus 로고    scopus 로고
    • Dimensionality reduction using genetic algorithms, IEEETEC: IEEE Transactions on Evolutionary Computation, A Publication of the IEEE Neural Networks Council 4.
    • M. Raymer, W. Punch, E. Goodman, L. Kuhn, A. Jain, Dimensionality reduction using genetic algorithms, IEEETEC: IEEE Transactions on Evolutionary Computation, A Publication of the IEEE Neural Networks Council 4, 2000.
    • (2000)
    • Raymer, M.1    Punch, W.2    Goodman, E.3    Kuhn, L.4    Jain, A.5
  • 23
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics, Bioinformatics 23 URL.
    • Y. Saeys, I. Inza, P. Larrañaga, A review of feature selection techniques in bioinformatics, Bioinformatics 23 (19) (2007) 2507-2517, URL. http://dx.doi.org/10.1093/bioinformatics/btm344.
    • (2007) , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 24
    • 68749115597 scopus 로고    scopus 로고
    • RCGA-S/RCGA-SP methods to minimize the delta test for regression tasks, in: J. Cabestany, et al. (Eds.), Bio-Inspired Systems: Computational and Ambient Intelligence, 10th International Work-Conference on Artificial Neural Networks, IWANN 2009, Salamanca, Spain, June 10-12. Proceedings, Lecture
    • F. Mateo, D. Sovilj, R.G. Gironés, A. Lendasse, RCGA-S/RCGA-SP methods to minimize the delta test for regression tasks, in: J. Cabestany, et al. (Eds.), Bio-Inspired Systems: Computational and Ambient Intelligence, 10th International Work-Conference on Artificial Neural Networks, IWANN 2009, Salamanca, Spain, June 10-12, 2009. Proceedings, Part I, Lecture Notes in Computer Science, vol. 5517, Springer, Berlin-Heidelberg, 2009, pp. 359-366. http://dx.doi.org/10.1007/978-3-642-02478-8.
    • (2009) , Issue.PART 1
    • Mateo, F.1    Sovilj, D.2    Gironés, R.G.3    Lendasse, A.4
  • 25
    • 79959351524 scopus 로고    scopus 로고
    • Nearest neighbor distributions and noise variance estimation, in: ESANN 2007, European Symposium on Artificial Neural Networks, Bruges, Belgium.
    • E. Liitiäinen, F. Corona, A. Lendasse, Nearest neighbor distributions and noise variance estimation, in: ESANN 2007, European Symposium on Artificial Neural Networks, Bruges, Belgium, 2007, pp. 67-72.
    • (2007) , pp. 67-72
    • Liitiäinen, E.1    Corona, F.2    Lendasse, A.3
  • 27
    • 84887010852 scopus 로고    scopus 로고
    • A methodology for building regression models using extreme learning machine: OP-ELM, in: ESANN 2008, European Symposium on Artificial Neural Networks, Bruges, Belgium.
    • Y. Miche, P. Bas, C. Jutten, O. Simula, A. Lendasse, A methodology for building regression models using extreme learning machine: OP-ELM, in: ESANN 2008, European Symposium on Artificial Neural Networks, Bruges, Belgium, 2008.
    • (2008)
    • Miche, Y.1    Bas, P.2    Jutten, C.3    Simula, O.4    Lendasse, A.5
  • 28
    • 77952545588 scopus 로고
    • A theory of networks for approximation and learning, Laboratory, Massachusetts Institute of Technology 1140.
    • T. Poggio, F. Girosi, A theory of networks for approximation and learning, Laboratory, Massachusetts Institute of Technology 1140, 1989.
    • (1989)
    • Poggio, T.1    Girosi, F.2
  • 29
    • 77952543235 scopus 로고    scopus 로고
    • Appearance-based object recognition using svms: Which kernel should i use?, in: Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision.
    • B. Caputo, K. Sim, F. Furesjo, A. Smola, Appearance-based object recognition using svms: Which kernel should i use?, in: Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, 2002.
    • (2002)
    • Caputo, B.1    Sim, K.2    Furesjo, F.3    Smola, A.4
  • 30
    • 33646231022 scopus 로고    scopus 로고
    • Multiresponse sparse regression with application to multidimensional scaling, in: Artificial Neural Networks: Formal Models and Their Applications-ICANN 2005, vol. 3697/2005.
    • T. Similä, J. Tikka, Multiresponse sparse regression with application to multidimensional scaling, in: Artificial Neural Networks: Formal Models and Their Applications-ICANN 2005, vol. 3697/2005, 2005, pp. 97-102.
    • (2005) , pp. 97-102
    • Similä, T.1    Tikka, J.2
  • 31
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression, in: Annals of Statistics
    • B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, in: Annals of Statistics, vol. 32, 2004, pp. 407-499.
    • (2004) , vol.32 , pp. 407-499
    • Efron, B.1    Hastie, T.2    Johnstone, I.3    Tibshirani, R.4
  • 32
    • 77952546082 scopus 로고
    • Classical and Modern Regression with Applications, second ed., Duxbury, Pacific Grove, CA, USA.
    • R. Myers, Classical and Modern Regression with Applications, second ed., Duxbury, Pacific Grove, CA, USA, 1990.
    • (1990)
    • Myers, R.1
  • 33
    • 84901251330 scopus 로고    scopus 로고
    • Recursive lazy learning for modeling and control, in: European Conference on Machine Learning.
    • G. Bontempi, M. Birattari, H. Bersini, Recursive lazy learning for modeling and control, in: European Conference on Machine Learning, 1998, pp. 292-303.
    • (1998) , pp. 292-303
    • Bontempi, G.1    Birattari, M.2    Bersini, H.3
  • 34
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, 19(6):716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 35
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 1978, 6:461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 36
    • 0017657558 scopus 로고
    • Some properties of the order of an autoregressive model selected by a generalization of Akaike's epf criterion
    • Bhansali R.J., Downham D.Y. Some properties of the order of an autoregressive model selected by a generalization of Akaike's epf criterion. Biometrika 1977, 64(3):547-551.
    • (1977) Biometrika , vol.64 , Issue.3 , pp. 547-551
    • Bhansali, R.J.1    Downham, D.Y.2
  • 38
    • 84887002475 scopus 로고    scopus 로고
    • A faster model selection criterion for op-elm and op-knn: Hannan-Quinn criterion, in: ESANN'09: European Symposium on Artificial Neural Networks, Bruges, Belgium.
    • Y. Miche, A. Lendasse, A faster model selection criterion for op-elm and op-knn: Hannan-Quinn criterion, in: ESANN'09: European Symposium on Artificial Neural Networks, Bruges, Belgium, 2009.
    • (2009)
    • Miche, Y.1    Lendasse, A.2
  • 39
    • 77952542345 scopus 로고    scopus 로고
    • Variable selection for financial modeling, in: CEF 2007, 13th International Conference on Computing in Economics and Finance, Montréal, Quebec, Canada.
    • Q. Yu, E. Séverin, A. Lendasse, Variable selection for financial modeling, in: CEF 2007, 13th International Conference on Computing in Economics and Finance, Montréal, Quebec, Canada, 2007, pp. 237-241.
    • (2007) , pp. 237-241
    • Yu, Q.1    Séverin, E.2    Lendasse, A.3
  • 40
    • 0033709499 scopus 로고    scopus 로고
    • Measuring the economic rate of return on assets
    • Kapler J.K. Measuring the economic rate of return on assets. Review of Industrial Organization 2000, 17(4):457-463.
    • (2000) Review of Industrial Organization , vol.17 , Issue.4 , pp. 457-463
    • Kapler, J.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.