메뉴 건너뛰기




Volumn 70, Issue , 2017, Pages 263-286

Critical analysis of Big Data challenges and analytical methods

Author keywords

Big Data; Big Data Analytics; Challenges; Methods; Systematic literature review

Indexed keywords


EID: 85027936282     PISSN: 01482963     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbusres.2016.08.001     Document Type: Article
Times cited : (1403)

References (111)
  • 4
    • 84907580576 scopus 로고    scopus 로고
    • Editorial – big data, data science, and analytics: the opportunity and challenge for is research
    • Agarwal, R., Dhar, V., Editorial – big data, data science, and analytics: the opportunity and challenge for is research. Information Systems Research 25:3 (2014), 443–448.
    • (2014) Information Systems Research , vol.25 , Issue.3 , pp. 443-448
    • Agarwal, R.1    Dhar, V.2
  • 5
    • 84891660801 scopus 로고    scopus 로고
    • Big data computing
    • CRC Press, Taylor & Francis Group Florida, USA
    • Akerkar, R., Big data computing. 2014, CRC Press, Taylor & Francis Group, Florida, USA.
    • (2014)
    • Akerkar, R.1
  • 9
    • 84901392714 scopus 로고    scopus 로고
    • Performance evaluation of NoSQL big-data applications using multi-formalism models
    • Barbierato, E., Gribaudo, M., Iacono, M., Performance evaluation of NoSQL big-data applications using multi-formalism models. Future Generation Computer Systems 37 (2014), 345–353.
    • (2014) Future Generation Computer Systems , vol.37 , pp. 345-353
    • Barbierato, E.1    Gribaudo, M.2    Iacono, M.3
  • 10
    • 84894546324 scopus 로고    scopus 로고
    • From data to actionable knowledge: big data challenges in the web of things
    • Barnaghi, P., Sheth, A., Henson, C., From data to actionable knowledge: big data challenges in the web of things. IEEE Intelligent Systems 28:6 (2013), 6–11.
    • (2013) IEEE Intelligent Systems , vol.28 , Issue.6 , pp. 6-11
    • Barnaghi, P.1    Sheth, A.2    Henson, C.3
  • 11
    • 85028269122 scopus 로고    scopus 로고
    • There's gold to be mined from all our data. The Times, London 1:1–2. Online Available at: [Accessed on 21st April 2016]
    • Berners-Lee, T., & Shadbolt, N. (2011). There's gold to be mined from all our data. The Times, London 1:1–2. Online Available at: http://www.thetimes.co.uk/tto/opinion/columnists/article3272618.ece [Accessed on 21st April 2016].
    • (2011)
    • Berners-Lee, T.1    Shadbolt, N.2
  • 12
    • 84902522002 scopus 로고    scopus 로고
    • Big Data, open government and e-government: issues, policies and recommendations
    • Bertot, J.C., Gorham, U., Jaeger, P.T., Sarin, L.C., Choi, H., Big Data, open government and e-government: issues, policies and recommendations. Information Polity 19:1, 2 (2014), 5–16.
    • (2014) Information Polity , vol.19 , Issue.1-2 , pp. 5-16
    • Bertot, J.C.1    Gorham, U.2    Jaeger, P.T.3    Sarin, L.C.4    Choi, H.5
  • 13
    • 84901294435 scopus 로고    scopus 로고
    • Digitisation, Big Data and the transformation of accounting information
    • Bhimani, A., Willcocks, L., Digitisation, Big Data and the transformation of accounting information. Accounting and Business Research 44:4 (2014), 469–490.
    • (2014) Accounting and Business Research , vol.44 , Issue.4 , pp. 469-490
    • Bhimani, A.1    Willcocks, L.2
  • 15
    • 84861974217 scopus 로고    scopus 로고
    • Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon
    • Boyd, D., Crawford, K., Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society 15:5 (2012), 662–679.
    • (2012) Information, communication & society , vol.15 , Issue.5 , pp. 662-679
    • Boyd, D.1    Crawford, K.2
  • 19
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: a survey on big data
    • Chen, C.L.P., Zhang, C.Y., Data-intensive applications, challenges, techniques and technologies: a survey on big data. Information Sciences 275 (2014), 314–347.
    • (2014) Information Sciences , vol.275 , pp. 314-347
    • Chen, C.L.P.1    Zhang, C.Y.2
  • 21
    • 84916597404 scopus 로고    scopus 로고
    • Business intelligence and analytics: From Big Data to big impact
    • Chen, H., Chiang, R.H., Storey, V.C., Business intelligence and analytics: From Big Data to big impact. MIS Quarterly 36:4 (2012), 1165–1188.
    • (2012) MIS Quarterly , vol.36 , Issue.4 , pp. 1165-1188
    • Chen, H.1    Chiang, R.H.2    Storey, V.C.3
  • 24
    • 84894139406 scopus 로고    scopus 로고
    • The hidden biases of big data. Harvard Business Review Blog.
    • Available at: (accessed 5 January 2016)
    • Crawford, K., The hidden biases of big data. Harvard Business Review Blog. Available at: http://blogs.hbr.org/2013/04/the-hidden-biases-in-big-data/, 1 April, 2013 (accessed 5 January 2016).
    • (2013)
    • Crawford, K.1
  • 25
    • 78751497089 scopus 로고    scopus 로고
    • The economist, data, data everywhere: A special report on managing information
    • Online Available at (Accessed on 20th April 2016).
    • Cukier, K., The economist, data, data everywhere: A special report on managing information., 2010 Online Available at http://www.economist.com/node/15557443 (Accessed on 20th April 2016).
    • (2010)
    • Cukier, K.1
  • 26
    • 84902291282 scopus 로고    scopus 로고
    • Big data in big companies. International Institute for Analytics
    • Available Online at (Accessed 5th January 2016).
    • Davenport, T.H., Dyché, J., Big data in big companies. International Institute for Analytics., 2013 Available Online at http://www.demonish.com/cracker/1431316877_1217a9641e/bigdata-bigcompanies-106461.pdf (Accessed 5th January 2016).
    • (2013)
    • Davenport, T.H.1    Dyché, J.2
  • 27
    • 34347263658 scopus 로고    scopus 로고
    • Competing on analytics: The new science of winning
    • Harvard Business Press
    • Davenport, T.H., Harris, J.G., Competing on analytics: The new science of winning. 2007, Harvard Business Press.
    • (2007)
    • Davenport, T.H.1    Harris, J.G.2
  • 28
    • 0347528591 scopus 로고    scopus 로고
    • A systematic assessment of the empirical support for transaction cost economics
    • David, R.J., Han, S.K., A systematic assessment of the empirical support for transaction cost economics. Strategic Management Journal 25:1 (2004), 39–58.
    • (2004) Strategic Management Journal , vol.25 , Issue.1 , pp. 39-58
    • David, R.J.1    Han, S.K.2
  • 29
    • 84863450488 scopus 로고    scopus 로고
    • Outcomes of inter-organizational trust in supply chain relationships: a systematic literature review and a meta-analysis of the empirical evidence
    • Delbufalo, E., Outcomes of inter-organizational trust in supply chain relationships: a systematic literature review and a meta-analysis of the empirical evidence. Supply Chain Management: An International Journal 17:4 (2012), 377–402.
    • (2012) Supply Chain Management: An International Journal , vol.17 , Issue.4 , pp. 377-402
    • Delbufalo, E.1
  • 32
    • 72149119729 scopus 로고    scopus 로고
    • Profiling research published in the Journal of Enterprise Information Management
    • Dwivedi, Y.K., Mustafee, N., Profiling research published in the Journal of Enterprise Information Management. Journal of Enterprise Information Management 23:1 (2010), 8–26.
    • (2010) Journal of Enterprise Information Management , vol.23 , Issue.1 , pp. 8-26
    • Dwivedi, Y.K.1    Mustafee, N.2
  • 35
    • 84964000606 scopus 로고    scopus 로고
    • A systematic review on the profiling of digital news portal for Big Data veracity
    • Eembi, N.B.C., Ishak, I.B., Sidi, F., Affendey, L.S., Mamat, A., A systematic review on the profiling of digital news portal for Big Data veracity. Procedia Computer Science 72 (2015), 390–397.
    • (2015) Procedia Computer Science , vol.72 , pp. 390-397
    • Eembi, N.B.C.1    Ishak, I.B.2    Sidi, F.3    Affendey, L.S.4    Mamat, A.5
  • 36
    • 84922563632 scopus 로고    scopus 로고
    • Big data in logistics-identifying potentials through literature, case study and expert interview analyzes
    • Frehe, V., Kleinschmidt, T., Teuteberg, F., Big data in logistics-identifying potentials through literature, case study and expert interview analyzes. In GI-Jahrestagung, 2014, 173–186.
    • (2014) In GI-Jahrestagung , pp. 173-186
    • Frehe, V.1    Kleinschmidt, T.2    Teuteberg, F.3
  • 38
    • 84878195422 scopus 로고    scopus 로고
    • The Digital Universe in 2020: Big data, bigger digital shadows, and biggest growth in the Far East. IDC – EMC Corporation
    • Online Available at (Accessed 16th January 2016).
    • Gantz, J., Reinsel, D., The Digital Universe in 2020: Big data, bigger digital shadows, and biggest growth in the Far East. IDC – EMC Corporation., 2012 Online Available at http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf (Accessed 16th January 2016).
    • (2012)
    • Gantz, J.1    Reinsel, D.2
  • 40
    • 85107041351 scopus 로고    scopus 로고
    • Cost minimization for big data processing in geo-distributed data centers
    • Springer International Publishing
    • Gu, L., Zeng, D., Li, P., Guo, S., Cost minimization for big data processing in geo-distributed data centers. In Cloud Networking for Big Data, 2015, Springer International Publishing, 59–78.
    • (2015) In Cloud Networking for Big Data , pp. 59-78
    • Gu, L.1    Zeng, D.2    Li, P.3    Guo, S.4
  • 45
    • 84961633323 scopus 로고    scopus 로고
    • Big Data Analytics: Intel's IT Manager Survey on How Organizations Are Using Big Data.
    • Available at: [Accessed 5 Jan. 2016]
    • Intel IT Center, Big Data Analytics: Intel's IT Manager Survey on How Organizations Are Using Big Data. Available at: http://www.intel.co.za/content/www/za/en/big-data/data-insights-peer-research-report.html, 2012 [Accessed 5 Jan. 2016].
    • (2012)
    • Intel IT Center1
  • 46
    • 77951967571 scopus 로고    scopus 로고
    • Investment evaluation within project management: an information systems perspective
    • Irani, Z., Investment evaluation within project management: an information systems perspective. Journal of the Operational Research Society 61:6 (2010), 917–928.
    • (2010) Journal of the Operational Research Society , vol.61 , Issue.6 , pp. 917-928
    • Irani, Z.1
  • 47
    • 33744978757 scopus 로고    scopus 로고
    • Evaluating cost taxonomies for information systems management
    • Irani, Z., Ghoneim, A., Love, P.E., Evaluating cost taxonomies for information systems management. European Journal of Operational Research 173:3 (2006), 1103–1122.
    • (2006) European Journal of Operational Research , vol.173 , Issue.3 , pp. 1103-1122
    • Irani, Z.1    Ghoneim, A.2    Love, P.E.3
  • 48
    • 84885185063 scopus 로고    scopus 로고
    • Visualising a knowledge mapping of information systems investment evaluation
    • Irani, Z., Sharif, A., Kamal, M.M., Love, P.E., Visualising a knowledge mapping of information systems investment evaluation. Expert Systems with Applications 41:1 (2014), 105–125.
    • (2014) Expert Systems with Applications , vol.41 , Issue.1 , pp. 105-125
    • Irani, Z.1    Sharif, A.2    Kamal, M.M.3    Love, P.E.4
  • 49
    • 85027932153 scopus 로고    scopus 로고
    • Scaling up MapReduce-based big data processing on multi-GPU systems
    • Jiang, H., Chen, Y., Qiao, Z., Weng, T.H., Li, K.C., Scaling up MapReduce-based big data processing on multi-GPU systems. Cluster Computing 18:1 (2015), 369–383.
    • (2015) Cluster Computing , vol.18 , Issue.1 , pp. 369-383
    • Jiang, H.1    Chen, Y.2    Qiao, Z.3    Weng, T.H.4    Li, K.C.5
  • 50
    • 84929170243 scopus 로고    scopus 로고
    • Significance and challenges of big data research
    • Jin, X., Wah, B.W., Cheng, X., Wang, Y., Significance and challenges of big data research. Big Data Research 2:2 (2015), 59–64.
    • (2015) Big Data Research , vol.2 , Issue.2 , pp. 59-64
    • Jin, X.1    Wah, B.W.2    Cheng, X.3    Wang, Y.4
  • 51
    • 84890087985 scopus 로고    scopus 로고
    • Big data and transformational government
    • Joseph, R.C., Johnson, N.A., Big data and transformational government. IT Professional 15:6 (2013), 43–48.
    • (2013) IT Professional , vol.15 , Issue.6 , pp. 43-48
    • Joseph, R.C.1    Johnson, N.A.2
  • 54
    • 84915767815 scopus 로고    scopus 로고
    • Analysing supply chain integration through systematic literature review: a normative perspective
    • Kamal, M.M., Irani, Z., Analysing supply chain integration through systematic literature review: a normative perspective. Supply Chain Management: An International Journal 19:5/6 (2014), 523–557.
    • (2014) Supply Chain Management: An International Journal , vol.19 , Issue.5-6 , pp. 523-557
    • Kamal, M.M.1    Irani, Z.2
  • 55
    • 84880220685 scopus 로고    scopus 로고
    • On a meaningful exploitation of machine and human reasoning to tackle data-intensive decision making
    • Karacapilidis, N., Tzagarakis, M., Christodoulou, S., On a meaningful exploitation of machine and human reasoning to tackle data-intensive decision making. Intelligent Decision Technologies 7:3 (2013), 225–236.
    • (2013) Intelligent Decision Technologies , vol.7 , Issue.3 , pp. 225-236
    • Karacapilidis, N.1    Tzagarakis, M.2    Christodoulou, S.3
  • 57
    • 84897562213 scopus 로고    scopus 로고
    • Big-data applications in the government sector
    • Kim, G.H., Trimi, S., Chung, J.H., Big-data applications in the government sector. Communications of the ACM 57:3 (2014), 78–85.
    • (2014) Communications of the ACM , vol.57 , Issue.3 , pp. 78-85
    • Kim, G.H.1    Trimi, S.2    Chung, J.H.3
  • 58
    • 44649122227 scopus 로고    scopus 로고
    • Guidelines for performing systematic review process research in software engineering
    • Online Available at (Accessed on 19th December 2015).
    • Kitchenham, B., Charters, S., Guidelines for performing systematic review process research in software engineering., 2007 Online Available at http://www.citeulike.org/group/14013/article/7874938 (Accessed on 19th December 2015).
    • (2007)
    • Kitchenham, B.1    Charters, S.2
  • 59
    • 84919448428 scopus 로고    scopus 로고
    • Big data analytics: the case of the social security administration
    • Krishnamurthy, R., Desouza, K.C., Big data analytics: the case of the social security administration. Information Polity 19:3/4 (2014), 165–178.
    • (2014) Information Polity , vol.19 , Issue.3-4 , pp. 165-178
    • Krishnamurthy, R.1    Desouza, K.C.2
  • 60
    • 84875277978 scopus 로고    scopus 로고
    • Hazy: making it easier to build and maintain big-data analytics
    • Kumar, A., Niu, F., Ré, C., Hazy: making it easier to build and maintain big-data analytics. Communications of the ACM 56:3 (2013), 40–49.
    • (2013) Communications of the ACM , vol.56 , Issue.3 , pp. 40-49
    • Kumar, A.1    Niu, F.2    Ré, C.3
  • 67
    • 84905024335 scopus 로고    scopus 로고
    • Toward efficient and privacy-preserving computing in big data era
    • Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J., Toward efficient and privacy-preserving computing in big data era. IEEE Network 28:4 (2014), 46–50.
    • (2014) IEEE Network , vol.28 , Issue.4 , pp. 46-50
    • Lu, R.1    Zhu, H.2    Liu, X.3    Liu, J.K.4    Shao, J.5
  • 68
    • 84887186291 scopus 로고    scopus 로고
    • Big privacy: protecting confidentiality in big data. XRDS: Crossroads
    • Machanavajjhala, A., Reiter, J.P., Big privacy: protecting confidentiality in big data. XRDS: Crossroads. The ACM Magazine for Students 19:1 (2012), 20–23.
    • (2012) The ACM Magazine for Students , vol.19 , Issue.1 , pp. 20-23
    • Machanavajjhala, A.1    Reiter, J.P.2
  • 69
    • 85028279801 scopus 로고    scopus 로고
    • Mission impossible? Data governance process takes on big data
    • Online Available at (Accessed on 9th January 2016).
    • du Mars, R., Mission impossible? Data governance process takes on big data., 2012 Online Available at http://searchdatamanagement.techtarget.com/feature/Mission-impossible-Data-governance-process-takes-on-big-data (Accessed on 9th January 2016).
    • (2012)
    • du Mars, R.1
  • 70
    • 84876494973 scopus 로고    scopus 로고
    • Big data: A revolution that will transform how we live, work, and think
    • Eamon Dolan/Houghton Mifflin Harcourt Boston, MA
    • Mayer-Schönberger, V., Cukier, K., Big data: A revolution that will transform how we live, work, and think. 2013, Eamon Dolan/Houghton Mifflin Harcourt, Boston, MA.
    • (2013)
    • Mayer-Schönberger, V.1    Cukier, K.2
  • 72
    • 84970953777 scopus 로고    scopus 로고
    • The Big Data Conundrum: How to define it?
    • Available Online at (Accessed 19th May 2016).
    • MIT Technology Review, The Big Data Conundrum: How to define it?., 2013 Available Online at https://www.technologyreview.com/s/519851/the-big-data-conundrum-how-to-define-it/ (Accessed 19th May 2016).
    • (2013)
    • MIT Technology Review1
  • 73
    • 85028277270 scopus 로고    scopus 로고
    • Big data press release final 2
    • Available (Accessed on 7th October 2015).
    • Office of Science and Technology Policy (OSTP), Executive Office of the President, Big data press release final 2., 2012 Available http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf (Accessed on 7th October 2015).
    • (2012)
    • Office of Science and Technology Policy (OSTP), Executive Office of the President,1
  • 74
    • 81055143771 scopus 로고    scopus 로고
    • Organizing data governance: findings from the telecommunications industry and consequences for large service providers
    • Otto, B., Organizing data governance: findings from the telecommunications industry and consequences for large service providers. Communications of the Association for Information Systems 29:1 (2011), 45–66.
    • (2011) Communications of the Association for Information Systems , vol.29 , Issue.1 , pp. 45-66
    • Otto, B.1
  • 81
    • 84937439575 scopus 로고    scopus 로고
    • Managing Big Data.
    • Available Online at: [Accessed 5th January 2016]
    • Russom, P., Managing Big Data. Available Online at: The Data Warehousing Institute., 2013 [Accessed 5th January 2016] https://tdwi.org/articles/2013/10/01/executive-summary-managing-big-data.aspx.
    • (2013) The Data Warehousing Institute.
    • Russom, P.1
  • 82
    • 84939980804 scopus 로고    scopus 로고
    • Scheduling of big data applications on distributed cloud based on QoS parameters
    • Sandhu, R., Sood, S.K., Scheduling of big data applications on distributed cloud based on QoS parameters. Cluster Computing 18 (2014), 1–12.
    • (2014) Cluster Computing , vol.18 , pp. 1-12
    • Sandhu, R.1    Sood, S.K.2
  • 83
    • 84900811285 scopus 로고    scopus 로고
    • Gartner: Top 10 strategic technology trends for 2013
    • Online Available at (Accessed on 3rd March 2016).
    • Savitz, E., Gartner: Top 10 strategic technology trends for 2013., 2012 Online Available at http://www.forbes.com/sites/ericsavitz/2012/10/23/gartner-top-10-strategic-technology-rends-for-2013/ (Accessed on 3rd March 2016).
    • (2012)
    • Savitz, E.1
  • 84
    • 84900835291 scopus 로고    scopus 로고
    • Gartner: 10 critical tech trends for the next five years
    • Online Available at (Accessed on 3rd March 2016)
    • Savitz, E., Gartner: 10 critical tech trends for the next five years., 2012 Online Available at http://www.forbes.com/sites/ericsavitz/2012/10/22/gartner-10-critical-tech-trends-for-the-next-five-years/ (Accessed on 3rd March 2016).
    • (2012)
    • Savitz, E.1
  • 85
    • 84925514273 scopus 로고    scopus 로고
    • Investigating an ontology-based approach for Big Data analysis of inter-dependent medical and oral health conditions
    • Shah, T., Rabhi, F., Ray, P., Investigating an ontology-based approach for Big Data analysis of inter-dependent medical and oral health conditions. Cluster Computing 18:1 (2015), 351–367.
    • (2015) Cluster Computing , vol.18 , Issue.1 , pp. 351-367
    • Shah, T.1    Rabhi, F.2    Ray, P.3
  • 86
    • 84936759406 scopus 로고    scopus 로고
    • Active Data: A programming model to manage data life cycle across heterogeneous systems and infrastructures
    • Simonet, A., Fedak, G., Ripeanu, M., Active Data: A programming model to manage data life cycle across heterogeneous systems and infrastructures. Future Generation Computer Systems 53 (2015), 25–42.
    • (2015) Future Generation Computer Systems , vol.53 , pp. 25-42
    • Simonet, A.1    Fedak, G.2    Ripeanu, M.3
  • 88
    • 84937485540 scopus 로고    scopus 로고
    • Evaluating the use and impact of Web 2.0 technologies in local government
    • Sivarajah, U., Irani, Z., Weerakkody, V., Evaluating the use and impact of Web 2.0 technologies in local government. Government Information Quarterly 32:4 (2015), 473–487.
    • (2015) Government Information Quarterly , vol.32 , Issue.4 , pp. 473-487
    • Sivarajah, U.1    Irani, Z.2    Weerakkody, V.3
  • 95
    • 84946105090 scopus 로고    scopus 로고
    • Big data challenges
    • Tole, A.A., Big data challenges. Database Systems Journal 4:3 (2013), 31–40.
    • (2013) Database Systems Journal , vol.4 , Issue.3 , pp. 31-40
    • Tole, A.A.1
  • 96
    • 0141888108 scopus 로고    scopus 로고
    • Towards a methodology for developing evidence-informed management knowledge by means of systematic review
    • Tranfield, D., Denyer, D., Smart, P., Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management 14:3 (2003), 207–222.
    • (2003) British Journal of Management , vol.14 , Issue.3 , pp. 207-222
    • Tranfield, D.1    Denyer, D.2    Smart, P.3
  • 97
    • 84901007475 scopus 로고    scopus 로고
    • Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology
    • Van Dijck, J., Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society 12:2 (2014), 197–208.
    • (2014) Surveillance & Society , vol.12 , Issue.2 , pp. 197-208
    • Van Dijck, J.1
  • 99
    • 84900796645 scopus 로고    scopus 로고
    • Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management
    • Waller, M.A., Fawcett, S.E., Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. Journal of Business Logistics 34:2 (2013), 77–84.
    • (2013) Journal of Business Logistics , vol.34 , Issue.2 , pp. 77-84
    • Waller, M.A.1    Fawcett, S.E.2
  • 100
    • 84962360985 scopus 로고    scopus 로고
    • Big data analytics in logistics and supply chain management: certain investigations for research and applications
    • Wang, G., Gunasekaran, A., Ngai, E.W., Papadopoulos, T., Big data analytics in logistics and supply chain management: certain investigations for research and applications. International Journal of Production Economics 176 (2016), 98–110.
    • (2016) International Journal of Production Economics , vol.176 , pp. 98-110
    • Wang, G.1    Gunasekaran, A.2    Ngai, E.W.3    Papadopoulos, T.4
  • 102
    • 84899814530 scopus 로고    scopus 로고
    • Tutorial: big data analytics: Concepts, technologies, and applications
    • Watson, H.J., Tutorial: big data analytics: Concepts, technologies, and applications. Communications of the Association for Information Systems 34:1 (2014), 1247–1268.
    • (2014) Communications of the Association for Information Systems , vol.34 , Issue.1 , pp. 1247-1268
    • Watson, H.J.1
  • 103
    • 85028249085 scopus 로고    scopus 로고
    • SensorMap for wide-area sensor webs. Embedded computing
    • Online Available at (Accessed on 13th March 2016)
    • Web, G., SensorMap for wide-area sensor webs. Embedded computing., 2007 Online Available at http://www.fengzhao.com/pubs/embcomp.pdf (Accessed on 13th March 2016).
    • (2007)
    • Web, G.1
  • 104
    • 77956539268 scopus 로고    scopus 로고
    • IT savvy: What top executives must know to go from pain to gain
    • Harvard Business Press
    • Weill, P., Ross, J.W., IT savvy: What top executives must know to go from pain to gain. 2009, Harvard Business Press.
    • (2009)
    • Weill, P.1    Ross, J.W.2
  • 106
    • 84905002769 scopus 로고    scopus 로고
    • Building a network highway for big data: architecture and challenges
    • Yi, X., Liu, F., Liu, J., Jin, H., Building a network highway for big data: architecture and challenges. IEEE Network 28:4 (2014), 5–13.
    • (2014) IEEE Network , vol.28 , Issue.4 , pp. 5-13
    • Yi, X.1    Liu, F.2    Liu, J.3    Jin, H.4
  • 108
    • 84983445344 scopus 로고    scopus 로고
    • A distributed frequent itemset mining algorithm using Spark for Big Data analytics
    • Zhang, F., Liu, M., Gui, F., Shen, W., Shami, A., Ma, Y., A distributed frequent itemset mining algorithm using Spark for Big Data analytics. Cluster Computing 18:4 (2015), 1493–1501.
    • (2015) Cluster Computing , vol.18 , Issue.4 , pp. 1493-1501
    • Zhang, F.1    Liu, M.2    Gui, F.3    Shen, W.4    Shami, A.5    Ma, Y.6
  • 109
    • 85027923099 scopus 로고    scopus 로고
    • An evolutionary trend reversion model for stock trading rule discovery
    • Zhang, X., Hu, Y., Xie, K., Zhang, W., Su, L., Liu, M., An evolutionary trend reversion model for stock trading rule discovery. Knowledge-Based Systems 79 (2015), 27–35.
    • (2015) Knowledge-Based Systems , vol.79 , pp. 27-35
    • Zhang, X.1    Hu, Y.2    Xie, K.3    Zhang, W.4    Su, L.5    Liu, M.6
  • 110
    • 84879298285 scopus 로고    scopus 로고
    • Massively parallel feature selection: an approach based on variance preservation
    • Zhao, Z., Zhang, R., Cox, J., Duling, D., Sarle, W., Massively parallel feature selection: an approach based on variance preservation. Machine Learning 92:1 (2013), 195–220.
    • (2013) Machine Learning , vol.92 , Issue.1 , pp. 195-220
    • Zhao, Z.1    Zhang, R.2    Cox, J.3    Duling, D.4    Sarle, W.5
  • 111
    • 85056398345 scopus 로고    scopus 로고
    • Big Data: Challenges and Opportunities
    • (2014) Akerkar R. CRC Press, Taylor & Francis Group Florida, USA
    • Zicari, R.V., Big Data: Challenges and Opportunities. (2014) Akerkar, R., (eds.) Big data computing, 2014, CRC Press, Taylor & Francis Group, Florida, USA, 103–128.
    • (2014) Big data computing , pp. 103-128
    • Zicari, R.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.