메뉴 건너뛰기




Volumn 79, Issue , 2017, Pages 1099-1107

Big data issues in smart grid – A review

Author keywords

Big data; Big data analytical applications; Cloud platform; Data mining; Smart grid

Indexed keywords

DATA MINING; ELECTRIC POWER TRANSMISSION NETWORKS; ENERGY UTILIZATION; SMART POWER GRIDS; SYSTEM STABILITY;

EID: 85019770020     PISSN: 13640321     EISSN: 18790690     Source Type: Journal    
DOI: 10.1016/j.rser.2017.05.134     Document Type: Review
Times cited : (215)

References (131)
  • 1
    • 84969535056 scopus 로고    scopus 로고
    • Attaining a sustainable competitive advantage in the smart grid industry of China using suitable open innovation intermediaries
    • Chen HH, Chen S, Lan Y. Attaining a sustainable competitive advantage in the smart grid industry of China using suitable open innovation intermediaries. Renew Sustain Energy Rev 2016;62:1083–91.
    • (2016) Renew Sustain Energy Rev , vol.62 , pp. 1083-1091
    • Chen, H.H.1    Chen, S.2    Lan, Y.3
  • 4
    • 85177642279 scopus 로고    scopus 로고
    • Online; Available: 〈 〉
    • Inovgrid. [Online]; 2010. Available: 〈http://www.inovcity.pt/en/pages/inovgrid. aspx〉.
    • (2010)
  • 5
    • 85177666941 scopus 로고    scopus 로고
    • Online; Available: 〈
    • Moma. [Online]; 2012. Available: 〈http://www.modellstadt-mannheim.de〉.
    • (2012)
  • 6
    • 73649137161 scopus 로고    scopus 로고
    • The path of the smart grid
    • Farhangi H. The path of the smart grid. Power Energy Mag IEEE 2010;8(1):18–28.
    • (2010) Power Energy Mag IEEE , vol.8 , Issue.1 , pp. 18-28
    • Farhangi, H.1
  • 11
    • 84962589258 scopus 로고    scopus 로고
    • Smart electricity meter data intelligence for future energy systems: a survey
    • Alahakoon D, Yu X. Smart electricity meter data intelligence for future energy systems: a survey. IEEE Trans Ind Inf 2016;12(1):425–36.
    • (2016) IEEE Trans Ind Inf , vol.12 , Issue.1 , pp. 425-436
    • Alahakoon, D.1    Yu, X.2
  • 14
    • 84878333903 scopus 로고    scopus 로고
    • Advanced metering for phase identification, transformer identification, and secondary modeling
    • Short TA. Advanced metering for phase identification, transformer identification, and secondary modeling. IEEE Trans Smart Grid 2013;4(2):651–8.
    • (2013) IEEE Trans Smart Grid , vol.4 , Issue.2 , pp. 651-658
    • Short, T.A.1
  • 15
    • 84899672724 scopus 로고    scopus 로고
    • Improving reliability through better models: using synchrophasor data to validate power plant models
    • Overholt P, Kosterev D, Eto J, et al. Improving reliability through better models: using synchrophasor data to validate power plant models. IEEE Power Energy Mag 2014;12(3):44–51.
    • (2014) IEEE Power Energy Mag , vol.12 , Issue.3 , pp. 44-51
    • Overholt, P.1    Kosterev, D.2    Eto, J.3
  • 16
    • 84962823712 scopus 로고    scopus 로고
    • Smart meter data analytics for distribution network connectivity verification
    • Luan W, Peng J, Maras M, et al. Smart meter data analytics for distribution network connectivity verification. IEEE Trans Smart Grid 2015;6(4), [1–1].
    • (2015) IEEE Trans Smart Grid , vol.6 , Issue.4 , pp. 1
    • Luan, W.1    Peng, J.2    Maras, M.3
  • 17
    • 85177702434 scopus 로고    scopus 로고
    • A tale of two transformers: an algorithm for estimating distribution secondary electric parameters using smart meter data. Electrical and computer engineering (CCECE)
    • Berrisford AJ. A tale of two transformers: an algorithm for estimating distribution secondary electric parameters using smart meter data. Electrical and computer engineering (CCECE). In: Proceedings of the 2013 26th annual IEEE Canadian conference. IEEE; 2013. p. 1–6.
    • (2013) Proceedings of the 2013 26th annual IEEE Canadian conference , pp. 1-6
    • Berrisford, A.J.1
  • 18
    • 84919881257 scopus 로고    scopus 로고
    • Generating unit model validation and calibration through synchrophasor measurements
    • Hajnoroozi AA, Aminifar F, Ayoubzadeh H. Generating unit model validation and calibration through synchrophasor measurements. IEEE Trans Smart Grid 2015;6(1):441–9.
    • (2015) IEEE Trans Smart Grid , vol.6 , Issue.1 , pp. 441-449
    • Hajnoroozi, A.A.1    Aminifar, F.2    Ayoubzadeh, H.3
  • 21
    • 84951111633 scopus 로고    scopus 로고
    • Understanding household energy consumption behavior: the contribution of energy big data analytics
    • Zhou K, Yang S. Understanding household energy consumption behavior: the contribution of energy big data analytics. Renew Sustain Energy Rev 2016;56:810–9.
    • (2016) Renew Sustain Energy Rev , vol.56 , pp. 810-819
    • Zhou, K.1    Yang, S.2
  • 22
    • 84959312803 scopus 로고    scopus 로고
    • A review of the development of Smart Grid technologies
    • Tuballa ML, Abundo ML. A review of the development of Smart Grid technologies. Renew Sustain Energy Rev 2016;59:710–25.
    • (2016) Renew Sustain Energy Rev , vol.59 , pp. 710-725
    • Tuballa, M.L.1    Abundo, M.L.2
  • 24
    • 84977117724 scopus 로고    scopus 로고
    • A systematic review of environmental and economic impacts of smart grids
    • Moretti M, Djomo SN, Azadi H, et al. A systematic review of environmental and economic impacts of smart grids. Renew Sustain Energy Rev 2017:68.
    • (2017) Renew Sustain Energy Rev , pp. 68
    • Moretti, M.1    Djomo, S.N.2    Azadi, H.3
  • 25
    • 84976407040 scopus 로고    scopus 로고
    • Wide area smart grid architectural model and control: a survey
    • Ali SM, Jawad M, Khan B, et al. Wide area smart grid architectural model and control: a survey. Renew Sustain Energy Rev 2016;64:311–28.
    • (2016) Renew Sustain Energy Rev , vol.64 , pp. 311-328
    • Ali, S.M.1    Jawad, M.2    Khan, B.3
  • 26
    • 84864030546 scopus 로고    scopus 로고
    • Big data: the next frontier for innovation, competition, and productivity
    • Manyika J, Chui M, Brown B, et al. Big data: the next frontier for innovation, competition, and productivity. Analytics 2011.
    • (2011) Analytics
    • Manyika, J.1    Chui, M.2    Brown, B.3
  • 27
    • 85006308713 scopus 로고    scopus 로고
    • Big data: a revolution that will transform how we live, work, and think
    • Naimi AI, Westreich DJ. Big data: a revolution that will transform how we live, work, and think. Am J Epidemiol 2014;17(9):181–3.
    • (2014) Am J Epidemiol , vol.17 , Issue.9 , pp. 181-183
    • Naimi, A.I.1    Westreich, D.J.2
  • 28
    • 84949494790 scopus 로고    scopus 로고
    • Big data driven smart energy management: from big data to big insights
    • Zhou K, Fu C, Yang S. Big data driven smart energy management: from big data to big insights. Renew Sustain Energy Rev 2016;56:215–25.
    • (2016) Renew Sustain Energy Rev , vol.56 , pp. 215-225
    • Zhou, K.1    Fu, C.2    Yang, S.3
  • 29
  • 30
    • 84984631748 scopus 로고    scopus 로고
    • Energy big data analytics and security: challenges and opportunities
    • 2016, 7(5):1-1
    • Hu J, Vasilakos A. Energy big data analytics and security: challenges and opportunities. IEEE Trans Smart Grid 2016;7(5):2423–36, [2016, 7(5):1-1].
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2423-2436
    • Hu, J.1    Vasilakos, A.2
  • 31
    • 84945894624 scopus 로고    scopus 로고
    • A combined wavelet and data-mining based intelligent protection scheme for microgrid
    • Mishra DP, Samantaray SR, Joos G. A combined wavelet and data-mining based intelligent protection scheme for microgrid. IEEE Trans Smart Grid 2016;7(5):2295–304.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2295-2304
    • Mishra, D.P.1    Samantaray, S.R.2    Joos, G.3
  • 32
    • 84984783403 scopus 로고    scopus 로고
    • Measurement-based estimation of the power flow Jacobian matrix
    • Chen YC, Wang J, Dominguez-Garcia AD, et al. Measurement-based estimation of the power flow Jacobian matrix. IEEE Trans Smart Grid 2016;7(5):2507–15.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2507-2515
    • Chen, Y.C.1    Wang, J.2    Dominguez-Garcia, A.D.3
  • 34
    • 79953165314 scopus 로고    scopus 로고
    • A probabilistic multistage PMU placement in electric power systems
    • Aminifar F, Fotuhi-Firuzabad M, Shahidehpour, et al. A probabilistic multistage PMU placement in electric power systems. IEEE Trans Power Deliv 2011;26(2):841–9.
    • (2011) IEEE Trans Power Deliv , vol.26 , Issue.2 , pp. 841-849
    • Aminifar, F.1    Fotuhi-Firuzabad, M.2    Shahidehpour3
  • 35
    • 84883756452 scopus 로고    scopus 로고
    • Optimal placement of PMUs for the smart grid implementation in Indian power grid – a case study
    • Gopakumar P, Chandra G, Reddy M, et al. Optimal placement of PMUs for the smart grid implementation in Indian power grid – a case study. Front Energy 2013;7(3):358–72.
    • (2013) Front Energy , vol.7 , Issue.3 , pp. 358-372
    • Gopakumar, P.1    Chandra, G.2    Reddy, M.3
  • 37
    • 0037292302 scopus 로고    scopus 로고
    • Nondominated sorting genetic algorithm for optimal phasor measurement placement
    • Milosevic B, Begovic M. Nondominated sorting genetic algorithm for optimal phasor measurement placement. IEEE Trans Power Syst 2003;18(1):69–75.
    • (2003) IEEE Trans Power Syst , vol.18 , Issue.1 , pp. 69-75
    • Milosevic, B.1    Begovic, M.2
  • 39
    • 84902293948 scopus 로고    scopus 로고
    • Data-availability-constrained placement of PMUs and communication links in a power system
    • Huang J, Wu N, Ruschmann M. Data-availability-constrained placement of PMUs and communication links in a power system. IEEE Syst J 2014;8(2):483–92.
    • (2014) IEEE Syst J , vol.8 , Issue.2 , pp. 483-492
    • Huang, J.1    Wu, N.2    Ruschmann, M.3
  • 40
    • 84875051614 scopus 로고    scopus 로고
    • An information-theoretic approach to PMU placement in electric power systems
    • Li Q, Cui T, Weng Y, Negi R, et al. An information-theoretic approach to PMU placement in electric power systems. IEEE Trans Smart Grid 2013;4(1):446–56.
    • (2013) IEEE Trans Smart Grid , vol.4 , Issue.1 , pp. 446-456
    • Li, Q.1    Cui, T.2    Weng, Y.3    Negi, R.4
  • 41
    • 79251502663 scopus 로고    scopus 로고
    • Multi-criteria decision-making approach for multistage optimal placement of phasor measurement units
    • Sodhi R, Srivastava SC, Singh SN. Multi-criteria decision-making approach for multistage optimal placement of phasor measurement units. IET Gener Transm Distrib 2011;5(2):181–90.
    • (2011) IET Gener Transm Distrib , vol.5 , Issue.2 , pp. 181-190
    • Sodhi, R.1    Srivastava, S.C.2    Singh, S.N.3
  • 43
    • 84930635655 scopus 로고    scopus 로고
    • Event stream processing for improved situational awareness in the smart grid
    • Dahal N, Abuomar O, King R, et al. Event stream processing for improved situational awareness in the smart grid. Expert Syst Appl 2015;42(20):6853–63.
    • (2015) Expert Syst Appl , vol.42 , Issue.20 , pp. 6853-6863
    • Dahal, N.1    Abuomar, O.2    King, R.3
  • 44
    • 84918827991 scopus 로고    scopus 로고
    • The design of power security system in smart home based on the stream data mining
    • Ma S, Fang S, Yuan D, et al. The design of power security system in smart home based on the stream data mining. Adv Data Min Appl 2014:716–24.
    • (2014) Adv Data Min Appl , pp. 716-724
    • Ma, S.1    Fang, S.2    Yuan, D.3
  • 47
    • 85027926150 scopus 로고    scopus 로고
    • Leveraging AMI data for distribution system model calibration and situational awareness
    • Peppanen J, Reno MJ, Thakkar M, et al. Leveraging AMI data for distribution system model calibration and situational awareness. IEEE Trans Smart Grid 2015;6(4):2050–9.
    • (2015) IEEE Trans Smart Grid , vol.6 , Issue.4 , pp. 2050-2059
    • Peppanen, J.1    Reno, M.J.2    Thakkar, M.3
  • 48
    • 0014700838 scopus 로고
    • Power system static-state estimation,part I: exact model
    • Schweppe FC, Wildes J. Power system static-state estimation,part I: exact model. IEEE Trans Power Appl Syst . 1970;PAS-89(1):120–5.
    • (1970) IEEE Trans Power Appl Syst , vol.PAS-89 , Issue.1 , pp. 120-125
    • Schweppe, F.C.1    Wildes, J.2
  • 49
    • 84960405066 scopus 로고    scopus 로고
    • Power system real-time monitoring by using PMU-based robust state estimation method
    • Zhao J, Zhang G, Das K, et al. Power system real-time monitoring by using PMU-based robust state estimation method. IEEE Trans Smart Grid 2015;7(1):1.
    • (2015) IEEE Trans Smart Grid , vol.7 , Issue.1 , pp. 1
    • Zhao, J.1    Zhang, G.2    Das, K.3
  • 50
    • 84933038346 scopus 로고    scopus 로고
    • A pre-estimation filtering process of bad data for linear power systems state estimators using PMUs
    • Pignati M, Zanni L, Sarri S. et al. A pre-estimation filtering process of bad data for linear power systems state estimators using PMUs. In: Proceedings of the power systems computation conference; 2014. p. 1–8.
    • (2014) Proceedings of the power systems computation conference , pp. 1-8
    • Pignati, M.1    Zanni, L.2    Sarri, S.3
  • 51
    • 84908320025 scopus 로고    scopus 로고
    • Dimensionality reduction of synchrophasor data for early event detection: linearized analysis
    • Xie L, Chen Y, Kumar PR. Dimensionality reduction of synchrophasor data for early event detection: linearized analysis. IEEE Trans Power Syst 2014;29(6):2784–94.
    • (2014) IEEE Trans Power Syst , vol.29 , Issue.6 , pp. 2784-2794
    • Xie, L.1    Chen, Y.2    Kumar, P.R.3
  • 52
    • 85033432950 scopus 로고    scopus 로고
    • DOE. Project information; 2016. 〈https://www.smartgrid.gov/recovery_act/ project_information.html〉.
    • (2016) Project information
  • 53
    • 84901623392 scopus 로고    scopus 로고
    • Comprehensive clustering of disturbance events recorded by phasor measurement units
    • Dahal OP, Brahma SM, Cao H. Comprehensive clustering of disturbance events recorded by phasor measurement units. IEEE Trans Power Deliv 2014;29(3):1390–7.
    • (2014) IEEE Trans Power Deliv , vol.29 , Issue.3 , pp. 1390-1397
    • Dahal, O.P.1    Brahma, S.M.2    Cao, H.3
  • 59
    • 84946692821 scopus 로고    scopus 로고
    • Power system data management and analysis using synchrophasor data
    • Meier R, Cotilla-Sanchez E, Mccamish B, et al. Power system data management and analysis using synchrophasor data. Technol Sustain IEEE 2014:225–31.
    • (2014) Technol Sustain IEEE , pp. 225-231
    • Meier, R.1    Cotilla-Sanchez, E.2    McCamish, B.3
  • 60
    • 84946600347 scopus 로고    scopus 로고
    • Load forecasting, dynamic pricing and DSM in smart grid: a review
    • Khan AR, Mahmood A, Safdar A, et al. Load forecasting, dynamic pricing and DSM in smart grid: a review. Renew Sustain Energy Rev 2016;54:1311–22.
    • (2016) Renew Sustain Energy Rev , vol.54 , pp. 1311-1322
    • Khan, A.R.1    Mahmood, A.2    Safdar, A.3
  • 61
    • 84891616845 scopus 로고    scopus 로고
    • Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank
    • Selakov A, Cvijetinović D, Milović L, et al. Hybrid PSO–SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank. Appl Soft Comput 2014;16(3):80–8.
    • (2014) Appl Soft Comput , vol.16 , Issue.3 , pp. 80-88
    • Selakov, A.1    Cvijetinović, D.2    Milović, L.3
  • 62
    • 84880698919 scopus 로고    scopus 로고
    • Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction
    • Deihimi A, Orang O, Showkati H. Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction. Energy 2013;57(3):382–401.
    • (2013) Energy , vol.57 , Issue.3 , pp. 382-401
    • Deihimi, A.1    Orang, O.2    Showkati, H.3
  • 64
    • 84905750098 scopus 로고    scopus 로고
    • Methodological advances in artificial neural networks for time series forecasting
    • Rocio Cogollo M, Velasquez JD. Methodological advances in artificial neural networks for time series forecasting. IEEE Lat Am Trans 2014;12(4):764–71.
    • (2014) IEEE Lat Am Trans , vol.12 , Issue.4 , pp. 764-771
    • Rocio Cogollo, M.1    Velasquez, J.D.2
  • 65
    • 85027924649 scopus 로고    scopus 로고
    • Evaluation of AMI and SCADA data synergy for distribution feeder modeling
    • Huang SC, Lu CN, Lo YL. Evaluation of AMI and SCADA data synergy for distribution feeder modeling. IEEE Trans Smart Grid 2015;6(4), [1–1].
    • (2015) IEEE Trans Smart Grid , vol.6 , Issue.4 , pp. 1
    • Huang, S.C.1    Lu, C.N.2    Lo, Y.L.3
  • 68
    • 84959928749 scopus 로고    scopus 로고
    • Distribution system model calibration with big data from AMI and PV inverters
    • Peppanen J, Reno MJ, Broderick RJ, et al. Distribution system model calibration with big data from AMI and PV inverters. IEEE Trans Smart Grid 2016;7(5):2497–506.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2497-2506
    • Peppanen, J.1    Reno, M.J.2    Broderick, R.J.3
  • 69
    • 84959498649 scopus 로고    scopus 로고
    • Developing a hybrid intrusion detection system using data mining for power systems
    • Pan S, Morris T, Adhikari U. Developing a hybrid intrusion detection system using data mining for power systems. IEEE Trans Smart Grid 2015;6(6):134–43.
    • (2015) IEEE Trans Smart Grid , vol.6 , Issue.6 , pp. 134-143
    • Pan, S.1    Morris, T.2    Adhikari, U.3
  • 70
    • 84953860225 scopus 로고    scopus 로고
    • Implementation of a new remote islanding detection method for wind–solar hybrid power plants
    • Bayrak G, Kabalci E. Implementation of a new remote islanding detection method for wind–solar hybrid power plants. Renew Sustain Energy Rev 2016;58:1–15.
    • (2016) Renew Sustain Energy Rev , vol.58 , pp. 1-15
    • Bayrak, G.1    Kabalci, E.2
  • 71
    • 85177687952 scopus 로고    scopus 로고
    • Monitoring and estimation of interarea power oscillation mode Based on application of CampusWAMS
    • Li C, Higuma K, Watanabe M, et al. Monitoring and estimation of interarea power oscillation mode Based on application of CampusWAMS. Turk J Agric - Food Sci Technol 2008;3(1).
    • (2008) Turk J Agric - Food Sci Technol , vol.3 , Issue.1
    • Li, C.1    Higuma, K.2    Watanabe, M.3
  • 72
    • 84937871079 scopus 로고    scopus 로고
    • PMU-based model-free approach for real-time rotor angle monitoring
    • Dasgupta S, Paramasivam M, Vaidya U, et al. PMU-based model-free approach for real-time rotor angle monitoring. IEEE Trans Power Syst 2015;30(5):2818–9.
    • (2015) IEEE Trans Power Syst , vol.30 , Issue.5 , pp. 2818-2819
    • Dasgupta, S.1    Paramasivam, M.2    Vaidya, U.3
  • 73
    • 84963786128 scopus 로고    scopus 로고
    • Wide-area measurement system development at the distribution level: an FNET/GridEye example
    • Liu Y, Zhan L, Zhang Y, et al. Wide-area measurement system development at the distribution level: an FNET/GridEye example. IEEE Trans Power Deliv 2015;31(2), [1–1].
    • (2015) IEEE Trans Power Deliv , vol.31 , Issue.2 , pp. 1
    • Liu, Y.1    Zhan, L.2    Zhang, Y.3
  • 76
    • 85177652263 scopus 로고    scopus 로고
    • 0. 〈 〉
    • e-terraphasorpoint 3.0. 〈http://www.alstom.com/Global/Grid/Resources/ Documents/Automation/NMS/e-terraphasorpoint%203.0.pdf〉.
    • e-terraphasorpoint 3
  • 77
    • 85177648322 scopus 로고    scopus 로고
    • Siemens. 〈http://www.engerati.com/resources/efficient-network-integrationrenewable-energy-resources-distribution-level〉; 2015.
    • (2015)
  • 78
    • 85177641193 scopus 로고    scopus 로고
    • NARI. 〈http://www.naritech.cn/html/jie166.shtm〉; 2015.
    • (2015)
  • 79
    • 84952982475 scopus 로고    scopus 로고
    • A model to compare cloud and non-cloud storage of big data
    • Chang V, Wills G. A model to compare cloud and non-cloud storage of big data. Future Gener Comput Syst 2016;57:56–76.
    • (2016) Future Gener Comput Syst , vol.57 , pp. 56-76
    • Chang, V.1    Wills, G.2
  • 83
    • 84933043595 scopus 로고    scopus 로고
    • A secure cloud computing based framework for big data information management of smart grid
    • Baek J, Vu QH, Liu JK, et al. A secure cloud computing based framework for big data information management of smart grid. IEEE Trans Cloud Comput 2015;3(2):233–44.
    • (2015) IEEE Trans Cloud Comput , vol.3 , Issue.2 , pp. 233-244
    • Baek, J.1    Vu, Q.H.2    Liu, J.K.3
  • 84
    • 84888593478 scopus 로고    scopus 로고
    • Cloud-based software platform for big data analytics in smart grids
    • Simmhan Y, Prasanna V, Aman S, et al. Cloud-based software platform for big data analytics in smart grids. Comput Sci Eng 2013;15(4):38–47.
    • (2013) Comput Sci Eng , vol.15 , Issue.4 , pp. 38-47
    • Simmhan, Y.1    Prasanna, V.2    Aman, S.3
  • 87
    • 84956997283 scopus 로고    scopus 로고
    • The contributions of cloud technologies to smart grid
    • Fang B, Yin X, Tan Y, et al. The contributions of cloud technologies to smart grid. Renew Sustain Energy Rev 2016;59:1326–31.
    • (2016) Renew Sustain Energy Rev , vol.59 , pp. 1326-1331
    • Fang, B.1    Yin, X.2    Tan, Y.3
  • 88
    • 77749299167 scopus 로고    scopus 로고
    • Apache Hadoop. 〈http://hadoop.apache.org/〉; 2016.
    • (2016) Apache Hadoop
  • 89
    • 84959541038 scopus 로고    scopus 로고
    • 2MapReduce: incremental MapReduce for mining evolving big data
    • 2MapReduce: incremental MapReduce for mining evolving big data. IEEE Trans Knowl Data Eng 2015;27(7):1.
    • (2015) IEEE Trans Knowl Data Eng , vol.27 , Issue.7 , pp. 1
    • Zhang, Y.1    Chen, S.2    Wang, Q.3
  • 92
    • 84978143537 scopus 로고    scopus 로고
    • Apache Spark. 〈http://spark.apache.org/〉; 2016.
    • (2016) Apache Spark
  • 93
    • 84959308595 scopus 로고    scopus 로고
    • Distributed data analytics platform for wide-area synchrophasor measurement systems
    • Zhou D, Guo J, Zhang Y, et al. Distributed data analytics platform for wide-area synchrophasor measurement systems. IEEE Trans Smart Grid 2016;7(5):2397–405.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2397-2405
    • Zhou, D.1    Guo, J.2    Zhang, Y.3
  • 96
    • 84955413763 scopus 로고    scopus 로고
    • Efficient machine learning for big data: a review
    • Al-Jarrah OY, Yoo PD, Muhaidat S, et al. Efficient machine learning for big data: a review. Big Data Res 2015;2(3):87–93.
    • (2015) Big Data Res , vol.2 , Issue.3 , pp. 87-93
    • Al-Jarrah, O.Y.1    Yoo, P.D.2    Muhaidat, S.3
  • 97
    • 84952938175 scopus 로고    scopus 로고
    • Distributed prony analysis for real-world PMU data
    • Khazaei J, Fan L, Jiang W, et al. Distributed prony analysis for real-world PMU data. Electr Power Syst Res 2016;133:113–20.
    • (2016) Electr Power Syst Res , vol.133 , pp. 113-120
    • Khazaei, J.1    Fan, L.2    Jiang, W.3
  • 98
    • 84949883007 scopus 로고    scopus 로고
    • A data-driven approach for estimating the power generation of invisible solar sites
    • Shaker H, Zareipour H, Wood D. A data-driven approach for estimating the power generation of invisible solar sites. IEEE Trans Smart Grid 2016;7(5):2466–76.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2466-2476
    • Shaker, H.1    Zareipour, H.2    Wood, D.3
  • 99
    • 84959922864 scopus 로고    scopus 로고
    • Estimating power generation of invisible solar sites using publicly available data
    • Shaker H, Zareipour H, Wood D. Estimating power generation of invisible solar sites using publicly available data. IEEE Trans Smart Grid 2016;7(5):2456–65.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2456-2465
    • Shaker, H.1    Zareipour, H.2    Wood, D.3
  • 100
    • 84960193121 scopus 로고    scopus 로고
    • Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression
    • Taieb SB, Huser R, Hyndman RJ, et al. Forecasting uncertainty in electricity smart meter data by boosting additive quantile regression. IEEE Trans Smart Grid 2016;7(5):2448–55.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.5 , pp. 2448-2455
    • Taieb, S.B.1    Huser, R.2    Hyndman, R.J.3
  • 101
    • 84878304940 scopus 로고    scopus 로고
    • Applications and trends of high performance computing for electric power systems: focusing on smart grid
    • Green RC, Wang L, Alam M. Applications and trends of high performance computing for electric power systems: focusing on smart grid. IEEE Trans Smart Grid 2013;4(2):922–3.
    • (2013) IEEE Trans Smart Grid , vol.4 , Issue.2 , pp. 922-923
    • Green, R.C.1    Wang, L.2    Alam, M.3
  • 102
    • 0038738455 scopus 로고    scopus 로고
    • Fast dimensionality reduction and simple PCA
    • Partridge M, Calvo RA. Fast dimensionality reduction and simple PCA. Intell Data Anal 1998;2(1–4):203–14.
    • (1998) Intell Data Anal , vol.2 , Issue.1-4 , pp. 203-214
    • Partridge, M.1    Calvo, R.A.2
  • 105
    • 84987893518 scopus 로고    scopus 로고
    • A practical pricing approach to smart grid demand response based on load classification
    • Yang H, Zhang J, Qiu J, et al. A practical pricing approach to smart grid demand response based on load classification. IEEE Trans Smart Grid 2016, [1–1].
    • (2016) IEEE Trans Smart Grid , pp. 1
    • Yang, H.1    Zhang, J.2    Qiu, J.3
  • 108
    • 84920195266 scopus 로고    scopus 로고
    • Short-term load forecasting using a kernel-based support vector regression combination model
    • Che JX, Wang JZ. Short-term load forecasting using a kernel-based support vector regression combination model. Appl Energy 2014;132(11):602–9.
    • (2014) Appl Energy , vol.132 , Issue.11 , pp. 602-609
    • Che, J.X.1    Wang, J.Z.2
  • 109
    • 84901800377 scopus 로고    scopus 로고
    • A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids
    • Liu N, Tang Q, Zhang J, et al. A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids. Appl Energy 2014;129:336–45.
    • (2014) Appl Energy , vol.129 , pp. 336-345
    • Liu, N.1    Tang, Q.2    Zhang, J.3
  • 111
    • 84908060024 scopus 로고    scopus 로고
    • Artificial neural networks for short-term load forecasting in microgrids environment
    • Hernández L, Baladrón C, Aguiar JM, et al. Artificial neural networks for short-term load forecasting in microgrids environment. Energy 2014;75(C):252–64.
    • (2014) Energy , vol.75 , Issue.100 , pp. 252-264
    • Hernández, L.1    Baladrón, C.2    Aguiar, J.M.3
  • 112
    • 84943791201 scopus 로고    scopus 로고
    • A review of relational machine learning for knowledge graphs
    • Nickel M, Murphy K, Tresp V, et al. A review of relational machine learning for knowledge graphs. Proc IEEE 2015;104(1):11–33.
    • (2015) Proc IEEE , vol.104 , Issue.1 , pp. 11-33
    • Nickel, M.1    Murphy, K.2    Tresp, V.3
  • 114
    • 0014700838 scopus 로고
    • Power system static-state estimation, part I, II, III
    • Schweppe F, Wildes J. Power system static-state estimation, part I, II, III. IEEE Trans Power Appl Syst . 1970;PAS-89(1):120–35.
    • (1970) IEEE Trans Power Appl Syst , vol.PAS-89 , Issue.1 , pp. 120-135
    • Schweppe, F.1    Wildes, J.2
  • 115
    • 85027078920 scopus 로고    scopus 로고
    • A correlation analysis method for power systems based on random matrix theory
    • Xu X, He X, Ai Q, et al. A correlation analysis method for power systems based on random matrix theory. IEEE Trans Smart Grid 2015.
    • (2015) IEEE Trans Smart Grid
    • Xu, X.1    He, X.2    Ai, Q.3
  • 116
    • 84964237880 scopus 로고    scopus 로고
    • Cross-domain data fusion
    • Yang Q. Cross-domain data fusion. Computer 2016;49(4), [18–18].
    • (2016) Computer , vol.49 , Issue.4 , pp. 18
    • Yang, Q.1
  • 117
    • 79551614768 scopus 로고    scopus 로고
    • Large-scale concept detection in multimedia data using small training sets and cross-domain concept fusion
    • Diou C, Stephanopoulos G, Panagiotopoulos P, et al. Large-scale concept detection in multimedia data using small training sets and cross-domain concept fusion. IEEE Trans Circuits Syst Video Technol 2011;20(12):1808–21.
    • (2011) IEEE Trans Circuits Syst Video Technol , vol.20 , Issue.12 , pp. 1808-1821
    • Diou, C.1    Stephanopoulos, G.2    Panagiotopoulos, P.3
  • 118
    • 85030552228 scopus 로고    scopus 로고
    • Practical considerations to calibrate generator model parameters using phasor measurements
    • Tsai CC, Chang-Chien LR, Chen IJ, et al. Practical considerations to calibrate generator model parameters using phasor measurements. IEEE Trans Smart Grid 2016:1–11.
    • (2016) IEEE Trans Smart Grid , pp. 1-11
    • Tsai, C.C.1    Chang-Chien, L.R.2    Chen, I.J.3
  • 123
    • 79955513672 scopus 로고    scopus 로고
    • Smart meters for power grid: challenges, issues, advantages and status
    • Depuru SSSR, Wang L, Devabhaktuni V. Smart meters for power grid: challenges, issues, advantages and status. Renew Sustain Energy Rev 2011;15(6):2736–42.
    • (2011) Renew Sustain Energy Rev , vol.15 , Issue.6 , pp. 2736-2742
    • Depuru, S.S.S.R.1    Wang, L.2    Devabhaktuni, V.3
  • 124
    • 84953294821 scopus 로고    scopus 로고
    • A survey on smart metering and smart grid communication
    • Kabalci Y. A survey on smart metering and smart grid communication. Renew Sustain Energy Rev 2016;57:302–18.
    • (2016) Renew Sustain Energy Rev , vol.57 , pp. 302-318
    • Kabalci, Y.1
  • 125
    • 84907325157 scopus 로고    scopus 로고
    • The rise of “big data” on cloud computing: review and open research issues
    • Hashem IAT, Yaqoob I, Anuar NB, et al. The rise of “big data” on cloud computing: review and open research issues. Inf Syst 2015;47(47):98–115.
    • (2015) Inf Syst , vol.47 , Issue.47 , pp. 98-115
    • Hashem, I.A.T.1    Yaqoob, I.2    Anuar, N.B.3
  • 126
    • 84901792094 scopus 로고    scopus 로고
    • Big data and its technical challenges
    • Jagadish HV, Gehrke J, Labrinidis A, et al. Big data and its technical challenges. Commun Acm 2014;57(7):86–94.
    • (2014) Commun Acm , vol.57 , Issue.7 , pp. 86-94
    • Jagadish, H.V.1    Gehrke, J.2    Labrinidis, A.3
  • 127
    • 0014707299 scopus 로고
    • Power system static-state estimation, part II: approximate model
    • Schweppe FC, Rom DB. Power system static-state estimation, part II: approximate model. IEEE Trans Power Appl Syst 1970;PAS-89(1):125–30.
    • (1970) IEEE Trans Power Appl Syst , vol.PAS-89 , Issue.1 , pp. 125-130
    • Schweppe, F.C.1    Rom, D.B.2
  • 128
    • 0014705186 scopus 로고
    • Power system static-state estimation, part III: implementation
    • Schweppe FC. Power system static-state estimation, part III: implementation. IEEE Trans Power Appl Syst 1970;PAS-89(1):130–5.
    • (1970) IEEE Trans Power Appl Syst , vol.PAS-89 , Issue.1 , pp. 130-135
    • Schweppe, F.C.1
  • 129
    • 85027954101 scopus 로고    scopus 로고
    • A fast decoupled state estimator for systems measured by PMUs
    • Gol M, Abur A. A fast decoupled state estimator for systems measured by PMUs. IEEE Trans Power Syst 2015;30(5):2766–71.
    • (2015) IEEE Trans Power Syst , vol.30 , Issue.5 , pp. 2766-2771
    • Gol, M.1    Abur, A.2
  • 130
    • 84960349614 scopus 로고    scopus 로고
    • Electricity theft detection in AMI using customers' consumption patterns
    • Jokar P, Arianpoo N, Leung VCM. Electricity theft detection in AMI using customers' consumption patterns. IEEE Trans Smart Grid 2016;7(1):216–26.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.1 , pp. 216-226
    • Jokar, P.1    Arianpoo, N.2    Leung, V.C.M.3
  • 131
    • 84954185717 scopus 로고    scopus 로고
    • Microgrid stability: classification and a review
    • Shuai Z, Sun Y, Shen Z, et al. Microgrid stability: classification and a review. Renew Sustain Energy Rev 2016;58:167–79.
    • (2016) Renew Sustain Energy Rev , vol.58 , pp. 167-179
    • Shuai, Z.1    Sun, Y.2    Shen, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.