메뉴 건너뛰기




Volumn 79-80, Issue , 2015, Pages 3-15

Big Data computing and clouds: Trends and future directions

Author keywords

Analytics; Big Data; Cloud computing; Data management

Indexed keywords

CLOUD COMPUTING; INFORMATION MANAGEMENT;

EID: 84930936490     PISSN: 07437315     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jpdc.2014.08.003     Document Type: Article
Times cited : (640)

References (140)
  • 1
    • 70350606938 scopus 로고    scopus 로고
    • Data management in the cloud: Limitations and opportunities
    • D.J. Abadi Data management in the cloud: Limitations and opportunities IEEE Data Engineering Bulletin 32 1 2009 3 12
    • (2009) IEEE Data Engineering Bulletin , vol.32 , Issue.1 , pp. 3-12
    • Abadi, D.J.1
  • 2
    • 84912138583 scopus 로고    scopus 로고
    • Amazon redshift, http://aws.amazon.com/redshift/.
    • Amazon Redshift
  • 5
    • 84930965205 scopus 로고    scopus 로고
    • Amazon Kinesis, http://aws.amazon.com/kinesis/developer-resources/.
    • Amazon Kinesis
  • 7
    • 49249100905 scopus 로고    scopus 로고
    • Visual analytics tools for analysis of movement data
    • G. Andrienko, N. Andrienko, and S. Wrobel Visual analytics tools for analysis of movement data SIGKDD Explor. Newsl. 9 2 2007 38 46
    • (2007) SIGKDD Explor. Newsl. , vol.9 , Issue.2 , pp. 38-46
    • Andrienko, G.1    Andrienko, N.2    Wrobel, S.3
  • 10
    • 84930965206 scopus 로고    scopus 로고
    • Apache Hadoop, http://hadoop.apache.org.
  • 11
    • 84930965207 scopus 로고    scopus 로고
    • Apache Mahout, http://mahout.apache.org.
  • 12
    • 84930965208 scopus 로고    scopus 로고
    • Apache Samza, http://samza.incubator.apache.org.
  • 14
    • 85050033243 scopus 로고    scopus 로고
    • Attention, shoppers: Store is tracking your cell
    • Attention, shoppers: Store is tracking your cell, New York Times. URL http://www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html.
    • New York Times
  • 17
    • 62149144693 scopus 로고    scopus 로고
    • Beyond the Data Deluge
    • G. Bell, T. Hey, and A. Szalay Beyond the Data Deluge Science 323 5919 2009 1297 1298
    • (2009) Science , vol.323 , Issue.5919 , pp. 1297-1298
    • Bell, G.1    Hey, T.2    Szalay, A.3
  • 19
    • 84930965210 scopus 로고    scopus 로고
    • bigdata@csail
    • bigdata@csail, http://bigdata.csail.mit.edu/.
  • 20
    • 84930965211 scopus 로고    scopus 로고
    • 'Big Data' has Big Potential to Improve Americans' Lives
    • April
    • 'Big Data' has Big Potential to Improve Americans' Lives, Increase Economic Opportunities, Committee on Science, Space and Technology (April 2013). URL http://science.house.gov/press-release.
    • (2013) Increase Economic Opportunities
  • 21
    • 84930965212 scopus 로고    scopus 로고
    • Birst Inc., http://www.birst.com.
  • 25
    • 63649117166 scopus 로고    scopus 로고
    • Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility
    • R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility Future Gener. Comput. Syst. 25 6 2009 599 616
    • (2009) Future Gener. Comput. Syst. , vol.25 , Issue.6 , pp. 599-616
    • Buyya, R.1    Yeo, C.S.2    Venugopal, S.3    Broberg, J.4    Brandic, I.5
  • 27
    • 84858158703 scopus 로고    scopus 로고
    • The Aneka platform and QoS-driven resource provisioning for elastic applications on hybrid Clouds
    • R.N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya The Aneka platform and QoS-driven resource provisioning for elastic applications on hybrid Clouds Future Gener. Comput. Syst. 28 6 2012 861 870
    • (2012) Future Gener. Comput. Syst. , vol.28 , Issue.6 , pp. 861-870
    • Calheiros, R.N.1    Vecchiola, C.2    Karunamoorthy, D.3    Buyya, R.4
  • 31
    • 84873134968 scopus 로고    scopus 로고
    • Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads
    • Y. Chen, S. Alspaugh, and R. Katz Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study of MapReduce Workloads Proceedings of the VLDB Endowment 5 12 2012 1802 1813
    • (2012) Proceedings of the VLDB Endowment , vol.5 , Issue.12 , pp. 1802-1813
    • Chen, Y.1    Alspaugh, S.2    Katz, R.3
  • 32
    • 84916597404 scopus 로고    scopus 로고
    • Business Intelligence and Analytics: From Big Data to Big Impact
    • H. Chen, R.H.L. Chiang, and V.C. Storey Business Intelligence and Analytics: From Big Data to Big Impact MIS Quarterly 36 4 2012 1165 1188
    • (2012) MIS Quarterly , vol.36 , Issue.4 , pp. 1165-1188
    • Chen, H.1    Chiang, R.H.L.2    Storey, V.C.3
  • 35
  • 37
    • 84880820335 scopus 로고    scopus 로고
    • Customizing Computational Methods for Visual Analytics with Big Data
    • J. Choo, and H. Park Customizing Computational Methods for Visual Analytics with Big Data IEEE Computer Graphics and Applications 33 4 2013 22 28
    • (2013) IEEE Computer Graphics and Applications , vol.33 , Issue.4 , pp. 22-28
    • Choo, J.1    Park, H.2
  • 41
    • 84930965215 scopus 로고    scopus 로고
    • DataDirect Cloud, http://cloud.datadirect.com/ (2013).
    • (2013) DataDirect Cloud
  • 44
    • 84861042328 scopus 로고    scopus 로고
    • Visual Analytics: Towards Intelligent Interactive Internet and Security Solutions
    • Springer-Verlag, Berlin, Heidelberg, Ch.
    • J. Davey, F. Mansmann, J. Kohlhammer, D. Keim, The future internet, Springer-Verlag, Berlin, Heidelberg, 2012, Ch. Visual Analytics: Towards Intelligent Interactive Internet and Security Solutions, pp. 93-104.
    • (2012) The Future Internet , pp. 93-104
    • Davey, J.1    Mansmann, F.2    Kohlhammer, J.3    Keim, D.4
  • 45
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: Simplified Data Processing on Large Clusters
    • J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, Communications of the ACM 51(1).
    • Communications of the ACM , vol.51 , Issue.1
    • Dean, J.1    Ghemawat, S.2
  • 49
    • 84930965216 scopus 로고    scopus 로고
    • White paper
    • P. Deyhim, Best practices for Amazon EMR, White paper, Amazon (2013). URL http://media.amazonwebservices.com/AWS-Amazon-EMR-Best-Practices.pdf.
    • (2013) Best Practices for Amazon EMR
    • Deyhim, P.1
  • 50
    • 0030285403 scopus 로고    scopus 로고
    • The KDD process for extracting useful knowledge from volumes of data
    • U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth The KDD process for extracting useful knowledge from volumes of data Commun. ACM 39 11 1996 27 34
    • (1996) Commun. ACM , vol.39 , Issue.11 , pp. 27-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 51
    • 84875706201 scopus 로고    scopus 로고
    • Techniques and applications for sentiment analysis
    • R. Feldman Techniques and applications for sentiment analysis Communications of the ACM 56 4 2013 82 89
    • (2013) Communications of the ACM , vol.56 , Issue.4 , pp. 82-89
    • Feldman, R.1
  • 55
    • 84869996137 scopus 로고    scopus 로고
    • Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced
    • first ed. Wiley
    • B. Franks Taming The Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics first ed. Wiley and SAS Business Series 2012 Wiley
    • (2012) Analytics Wiley and SAS Business Series
    • Franks, B.1
  • 56
    • 84930941690 scopus 로고    scopus 로고
    • FusionChars, http://www.fusioncharts.com/.
    • FusionChars
  • 58
    • 77957936026 scopus 로고    scopus 로고
    • Google App Engine, http://developers.google.com/appengine/.
    • Google App Engine
  • 60
  • 61
    • 84930965217 scopus 로고    scopus 로고
    • Gooddata, http://www.gooddata.com (2013).
    • (2013)
  • 63
    • 77956498227 scopus 로고    scopus 로고
    • What is analytic infrastructure and why should you care?
    • R.L. Grossman What is analytic infrastructure and why should you care? ACM SIGKDD Explorations Newsletter 11 1 2009 5 9
    • (2009) ACM SIGKDD Explorations Newsletter , vol.11 , Issue.1 , pp. 5-9
    • Grossman, R.L.1
  • 64
    • 79952958006 scopus 로고    scopus 로고
    • Efficient Deployment of Predictive Analytics Through Open Standards and Cloud Computing
    • A. Guazzelli, K. Stathatos, and M. Zeller Efficient Deployment of Predictive Analytics Through Open Standards and Cloud Computing ACM SIGKDD Explorations Newsletter 11 1 2009 32 38
    • (2009) ACM SIGKDD Explorations Newsletter , vol.11 , Issue.1 , pp. 32-38
    • Guazzelli, A.1    Stathatos, K.2    Zeller, M.3
  • 71
    • 82155174846 scopus 로고    scopus 로고
    • Profiling, What-if Analysis, and Cost-based Optimization of MapReduce Programs
    • H. Herodotou, and S. Babu Profiling, What-if Analysis, and Cost-based Optimization of MapReduce Programs Proceedings of the VLDB Endowment 4 11 2011 1111 1122
    • (2011) Proceedings of the VLDB Endowment , vol.4 , Issue.11 , pp. 1111-1122
    • Herodotou, H.1    Babu, S.2
  • 75
    • 84870706787 scopus 로고    scopus 로고
    • IBM InfoSphere Streams, http://www.ibm.com/software/products/en/infosphere-streams.
    • IBM InfoSphere Streams
  • 76
    • 84881126460 scopus 로고    scopus 로고
    • IBM SmartCloud Enterprise, http://www-935.ibm.com/services/us/en/cloud-enterprise/ (2012).
    • (2012) IBM SmartCloud Enterprise
  • 82
    • 84930965221 scopus 로고    scopus 로고
    • Survey and Analysis of Production Distributed Computing Infrastructures
    • abs/1208.2649
    • D.S. Katz, S. Jha, M. Parashar, O. Rana, J.B. Weissman, Survey and Analysis of Production Distributed Computing Infrastructures, CoRR abs/1208.2649.
    • CoRR
    • Katz, D.S.1    Jha, S.2    Parashar, M.3    Rana, O.4    Weissman, J.B.5
  • 84
    • 84930965222 scopus 로고    scopus 로고
    • How to buy data mining: A framework for avoiding costly project pitfalls in predictive analytics
    • E.A. King, How to buy data mining: A framework for avoiding costly project pitfalls in predictive analytics, DMReview 15(10).
    • DMReview , vol.15 , Issue.10
    • King, E.A.1
  • 86
    • 84877881936 scopus 로고    scopus 로고
    • Storytelling: The Next Step for Visualization
    • R. Kosara, and J. Mackinlay Storytelling: The Next Step for Visualization Computer 46 5 2013 44 50
    • (2013) Computer , vol.46 , Issue.5 , pp. 44-50
    • Kosara, R.1    Mackinlay, J.2
  • 88
    • 84875277978 scopus 로고    scopus 로고
    • Hazy: Making it Easier to Build and Maintain Big-Data Analytics
    • A. Kumar, F. Niu, and C. Ré Hazy: Making it Easier to Build and Maintain Big-Data Analytics Communications of the ACM 56 3 2013 40 49
    • (2013) Communications of the ACM , vol.56 , Issue.3 , pp. 40-49
    • Kumar, A.1    Niu, F.2    Ré, C.3
  • 89
    • 84930965223 scopus 로고    scopus 로고
    • KXEN, http://www.kxen.com.
  • 91
    • 84896056107 scopus 로고    scopus 로고
    • The Parable of google flu: Traps in big data analysis
    • D. Lazer, R. Kennedy, G. King, and A. Vespignani The Parable of google flu: Traps in big data analysis Science 343 2014 1203 1205
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 92
    • 77954364618 scopus 로고    scopus 로고
    • Will NoSQL Databases Live Up to Their Promise?
    • N. Leavitt Will NoSQL Databases Live Up to Their Promise? Computer 43 2 2010 12 14
    • (2010) Computer , vol.43 , Issue.2 , pp. 12-14
    • Leavitt, N.1
  • 94
  • 96
    • 84888857047 scopus 로고    scopus 로고
    • Visual analysis of large-scale network anomalies
    • Q. Liao, L. Shi, and C. Wang Visual analysis of large-scale network anomalies IBM J. Res. Dev. 57 3/4 2013 13:1 13:12
    • (2013) IBM J. Res. Dev. , vol.57 , Issue.3-4 , pp. 13:1-13:12
    • Liao, Q.1    Shi, L.2    Wang, C.3
  • 101
    • 84880047928 scopus 로고    scopus 로고
    • Software analytics: So what?
    • T. Menzies, and T. Zimmermann Software analytics: So what? IEEE Software 30 4 2013 31 37
    • (2013) IEEE Software , vol.30 , Issue.4 , pp. 31-37
    • Menzies, T.1    Zimmermann, T.2
  • 104
    • 84930965225 scopus 로고    scopus 로고
    • panXpan, https://www.panxpan.com.
  • 111
    • 84930965228 scopus 로고    scopus 로고
    • Right90, http://www.right90.com.
  • 112
    • 84902274177 scopus 로고    scopus 로고
    • Big Data Analytics
    • The Data Warehousing Institute (TDWI) Research
    • P. Russom, Big Data Analytics, TDWI best practices report, The Data Warehousing Institute (TDWI) Research (2011).
    • (2011) TDWI Best Practices Report
    • Russom, P.1
  • 113
    • 80053256327 scopus 로고    scopus 로고
    • A survey of large scale data management approaches in cloud environments
    • S. Sakr, A. Liu, D. Batista, and M. Alomari A survey of large scale data management approaches in cloud environments IEEE Communications Surveys Tutorials 13 3 2011 311 336
    • (2011) IEEE Communications Surveys Tutorials , vol.13 , Issue.3 , pp. 311-336
    • Sakr, S.1    Liu, A.2    Batista, D.3    Alomari, M.4
  • 114
    • 84930965229 scopus 로고    scopus 로고
    • SalesForce, http://www.salesforce.com.
  • 115
    • 84930933318 scopus 로고    scopus 로고
    • SAP HANA One, http://www.saphana.com/community/solutions/cloud-info (2013).
    • (2013) SAP HANA One
  • 118
    • 84880689596 scopus 로고    scopus 로고
    • Marketplaces for data: An initial survey
    • F. Schomm, F. Stahl, and G. Vossen Marketplaces for data: An initial survey SIGMOD Record 42 1 2013 15 26
    • (2013) SIGMOD Record , vol.42 , Issue.1 , pp. 15-26
    • Schomm, F.1    Stahl, F.2    Vossen, G.3
  • 126
    • 84880780351 scopus 로고    scopus 로고
    • Parallel Approaches to Machine Learning-A Comprehensive Survey
    • S.R. Upadhyaya Parallel Approaches to Machine Learning-A Comprehensive Survey Journal of Parallel Distributed Computing 73 3 2013 284 292
    • (2013) Journal of Parallel Distributed Computing , vol.73 , Issue.3 , pp. 284-292
    • Upadhyaya, S.R.1
  • 128
    • 33745767064 scopus 로고    scopus 로고
    • A taxonomy of data grids for distributed data sharing, management and processing
    • S. Venugopal, R. Buyya, and K. Ramamohanarao A taxonomy of data grids for distributed data sharing, management and processing ACM Comput. Surv. 38 1 2006 1 53
    • (2006) ACM Comput. Surv. , vol.38 , Issue.1 , pp. 1-53
    • Venugopal, S.1    Buyya, R.2    Ramamohanarao, K.3
  • 132
    • 84930965234 scopus 로고    scopus 로고
    • Windows Azure HDInsight, http://www.windowsazure.com/en-us/documentation/services/hdinsight/.
  • 134
    • 84930965235 scopus 로고    scopus 로고
    • XSEDE, http://www.xsede.org/.
  • 135
    • 84873151200 scopus 로고    scopus 로고
    • CloudVista: Interactive and Economical Visual Cluster Analysis for Big Data in the Cloud
    • H. Xu, Z. Li, S. Guo, and K. Chen CloudVista: Interactive and Economical Visual Cluster Analysis for Big Data in the Cloud Proceedings of the VLDB Endowment 5 12 2012 1886 1889
    • (2012) Proceedings of the VLDB Endowment , vol.5 , Issue.12 , pp. 1886-1889
    • Xu, H.1    Li, Z.2    Guo, S.3    Chen, K.4
  • 136
    • 84930965236 scopus 로고    scopus 로고
    • On mining big data
    • J. Wang, H. Xiong, Y. Ishikawa, J. Xu, J. Zhou (Eds.), Web-AgeInformation Management Springer-Verlag Berlin, Heidelberg
    • P.S. Yu On mining big data J. Wang, H. Xiong, Y. Ishikawa, J. Xu, J. Zhou (Eds.), Web-AgeInformation Management Lecture Notes in Computer Science vol. 7923 2013 Springer-Verlag Berlin, Heidelberg XIV
    • (2013) Lecture Notes in Computer Science , vol.7923 , pp. XIV
    • Yu, P.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.