-
1
-
-
84937801713
-
Machine learning: trends, perspectives, and prospects
-
[1] Jordan, M.I., Mitchell, T.M., Machine learning: trends, perspectives, and prospects. Science 349 (2015), 255–260.
-
(2015)
Science
, vol.349
, pp. 255-260
-
-
Jordan, M.I.1
Mitchell, T.M.2
-
2
-
-
85013880602
-
Big data analytics: a survey
-
[2] Tsai, C.-W., Lai, C.-F., Chao, H.-C., Vasilakos, A.V., Big data analytics: a survey. J. Big Data 2 (2015), 1–32.
-
(2015)
J. Big Data
, vol.2
, pp. 1-32
-
-
Tsai, C.-W.1
Lai, C.-F.2
Chao, H.-C.3
Vasilakos, A.V.4
-
3
-
-
85013977220
-
Deep learning applications and challenges in big data analytics
-
[3] Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E., Deep learning applications and challenges in big data analytics. J. Big Data 2 (2015), 1–21.
-
(2015)
J. Big Data
, vol.2
, pp. 1-21
-
-
Najafabadi, M.M.1
Villanustre, F.2
Khoshgoftaar, T.M.3
Seliya, N.4
Wald, R.5
Muharemagic, E.6
-
4
-
-
84924514239
-
Evaluating Learning Algorithms: a Classification Perspective
-
Cambridge University Press New York, NY, USA
-
[4] Japkowicz, N., Shah, M., Evaluating Learning Algorithms: a Classification Perspective. 2011, Cambridge University Press, New York, NY, USA.
-
(2011)
-
-
Japkowicz, N.1
Shah, M.2
-
5
-
-
0003584577
-
-
3rd ed. Prentice Hall Upper Saddle River, New Jersey, USA
-
[5] Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach, 3rd ed., 2010, Prentice Hall, Upper Saddle River, New Jersey, USA.
-
(2010)
Artificial Intelligence: A Modern Approach
-
-
Russell, S.1
Norvig, P.2
-
6
-
-
84879854889
-
Representation learning: a review and new perspectives
-
[6] Bengio, Y., Courville, A., Vincent, P., Representation learning: a review and new perspectives. IEEE Trans. on Pattern Anal. Mach. Intell., Trans. 35 (2013), 1798–1828.
-
(2013)
IEEE Trans. on Pattern Anal. Mach. Intell., Trans.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
7
-
-
84858766305
-
From Online to Batch Learning with Cutoff-Averaging
-
[7] Dekel, O., From Online to Batch Learning with Cutoff-Averaging. NIPS, 2008, 377–384.
-
(2008)
NIPS
, pp. 377-384
-
-
Dekel, O.1
-
8
-
-
84920541067
-
Power to the people: the role of humans in Interactive machine learning
-
[8] Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T., Power to the people: the role of humans in Interactive machine learning. AI Mag. 35 (2014), 105–120.
-
(2014)
AI Mag.
, vol.35
, pp. 105-120
-
-
Amershi, S.1
Cakmak, M.2
Knox, W.B.3
Kulesza, T.4
-
9
-
-
84900465835
-
Combining domain knowledge and machine learning for robust fall detection
-
[9] Mirchevska, V., Luštrek, M., Gams, M., Combining domain knowledge and machine learning for robust fall detection. Expert Syst. 31 (2014), 163–175.
-
(2014)
Expert Syst.
, vol.31
, pp. 163-175
-
-
Mirchevska, V.1
Luštrek, M.2
Gams, M.3
-
10
-
-
67349165372
-
Incorporating Prior Domain Knowledge into Inductive Machine Learning
-
University of Technology Sydney Sydney, Augtralia
-
[10] Yu, T., Incorporating Prior Domain Knowledge into Inductive Machine Learning. Computing Sciences, 2007, University of Technology Sydney, Sydney, Augtralia.
-
(2007)
Computing Sciences
-
-
Yu, T.1
-
11
-
-
84960860880
-
Evaluation of a machine learning duplicate detection method for bioinformatics Databases
-
[11] Chen, Q., Zobel, J., Verspoor, K., Evaluation of a machine learning duplicate detection method for bioinformatics Databases. Proc. ACM Ninth Int. Workshop Data Text. Min. Biomed. Inform., 2015, 4–12.
-
(2015)
Proc. ACM Ninth Int. Workshop Data Text. Min. Biomed. Inform.
, pp. 4-12
-
-
Chen, Q.1
Zobel, J.2
Verspoor, K.3
-
12
-
-
84884994717
-
Addressing Big data time series: mining Trillions of time series subsequences Under dynamic time Warping
-
[12] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., et al. Addressing Big data time series: mining Trillions of time series subsequences Under dynamic time Warping. ACM Trans. Knowl. Discov. Data, 7, 2013, 10.
-
(2013)
ACM Trans. Knowl. Discov. Data
, vol.7
, pp. 10
-
-
Rakthanmanon, T.1
Campana, B.2
Mueen, A.3
Batista, G.4
Westover, B.5
Zhu, Q.6
-
13
-
-
84962814964
-
Overcoming relational learning biases to accurately predict preferences in large scale networks
-
in: Proceedings of the 24th International Conference on World Wide Web,, pp.
-
[13] J.J.Pfeiffer, III, J.Neville, P.N.Bennett, Overcoming relational learning biases to accurately predict preferences in large scale networks, in: Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 853–863.
-
(2015)
, pp. 853-863
-
-
Pfeiffer, J.J.1
Neville, J.2
Bennett, P.N.3
-
14
-
-
84954091352
-
Online outlier exploration over large datasets
-
in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,, pp.
-
[14] L.Cao, M.Wei, D.Yang, E.A.Rundensteiner, Online outlier exploration over large datasets, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 89–98.
-
(2015)
, pp. 89-98
-
-
Cao, L.1
Wei, M.2
Yang, D.3
Rundensteiner, E.A.4
-
15
-
-
84919389514
-
Beyond the hype: Big data concepts, methods, and analytics
-
[15] Gandomi, A., Haider, M., Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 35 (2015), 137–144.
-
(2015)
Int. J. Inf. Manag.
, vol.35
, pp. 137-144
-
-
Gandomi, A.1
Haider, M.2
-
16
-
-
84896062416
-
Multi-view K-means clustering on big data
-
in: Proceedings of the Twenty-Third international joint conference on Artificial Intelligence,, pp.
-
[16] X.Cai, F.Nie, H.Huang, Multi-view K-means clustering on big data, in: Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 2013, pp. 2598–2604.
-
(2013)
, pp. 2598-2604
-
-
Cai, X.1
Nie, F.2
Huang, H.3
-
17
-
-
84955198976
-
“Data discretization: taxonomy and big data challenge,” Wiley Interdisciplinary Reviews
-
Data Mining and Knowledge Discovery, vol. 6, pp.
-
[17] S. Ramírez-Gallego, S. García, H. Mouriño-Talín, D. Martínez-Rego, V. Bolón-Canedo, A. Alonso-Betanzos, et al., “Data discretization: taxonomy and big data challenge,” Wiley Interdisciplinary Reviews, Data Mining and Knowledge Discovery, vol. 6, pp. 5-21, 2016.
-
(2016)
, pp. 5-21
-
-
Ramírez-Gallego, S.1
García, S.2
Mouriño-Talín, H.3
Martínez-Rego, D.4
Bolón-Canedo, V.5
Alonso-Betanzos, A.6
-
18
-
-
85014401604
-
Discretizing Numerical Attributes in Decision Tree for Big Data Analysis
-
in: Proceedings of the 2014 IEEE International Conference on Data Mining Workshop (ICDMW),.
-
[18] Y.Z.Y.-M.Cheung, Discretizing Numerical Attributes in Decision Tree for Big Data Analysis, in: Proceedings of the 2014 IEEE International Conference on Data Mining Workshop (ICDMW), 2014.
-
(2014)
-
-
Cheung, Y.Z.Y.-M.1
-
19
-
-
84887166232
-
Combining crowd-generated media and personal data: semi-supervised learning for context recognition
-
[19] Nguyen-Dinh, L.-V., Rossi, M., Blanke, U., Tröster, G., Combining crowd-generated media and personal data: semi-supervised learning for context recognition. Proc. 1st ACM Int. Workshop Pers. data meets Distrib. Multimed., 2013, 35–38.
-
(2013)
Proc. 1st ACM Int. Workshop Pers. data meets Distrib. Multimed.
, pp. 35-38
-
-
Nguyen-Dinh, L.-V.1
Rossi, M.2
Blanke, U.3
Tröster, G.4
-
20
-
-
84949683101
-
Human-level concept learning through probabilistic program induction
-
[20] Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B., Human-level concept learning through probabilistic program induction. Science 350 (2015), 1332–1338.
-
(2015)
Science
, vol.350
, pp. 1332-1338
-
-
Lake, B.M.1
Salakhutdinov, R.2
Tenenbaum, J.B.3
-
21
-
-
85014313261
-
Semi-supervised learning methods for large scale healthcare data analysis
-
[21] Zhang, G., Ou, S.-X., Huang, Y.-H., Wang, C.-R., Semi-supervised learning methods for large scale healthcare data analysis. Int. J. Comput. Healthc. 2 (2015), 98–110.
-
(2015)
Int. J. Comput. Healthc.
, vol.2
, pp. 98-110
-
-
Zhang, G.1
Ou, S.-X.2
Huang, Y.-H.3
Wang, C.-R.4
-
22
-
-
84859029141
-
Learning condensed feature representations from large unsupervised data sets for supervised learning
-
[22] J. Suzuki, H. Isozaki, and M. Nagata, Learning condensed feature representations from large unsupervised data sets for supervised learning, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Human Language Technologies, short papers, 2, 2011, pp. 636–641.
-
(2011)
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Human Language Technologies, short papers
, vol.2
, pp. 636-641
-
-
Suzuki, J.1
Isozaki, H.2
Nagata, M.3
-
23
-
-
84938053293
-
Scaling up crowd-sourcing to very large datasets: a case for active learning
-
[23] Mozafari, B., Sarkar, P., Franklin, M., Jordan, M., Madden, S., Scaling up crowd-sourcing to very large datasets: a case for active learning. Proc. VLDB Endow. 8 (2014), 125–136.
-
(2014)
Proc. VLDB Endow.
, vol.8
, pp. 125-136
-
-
Mozafari, B.1
Sarkar, P.2
Franklin, M.3
Jordan, M.4
Madden, S.5
-
24
-
-
84911807213
-
Effective and efficient data sampling using bitmap indices
-
[24] Su, Y., Agrawal, G., Woodring, J., Myers, K., Wendelberger, J., Ahrens, J., Effective and efficient data sampling using bitmap indices. Clust. Comput. 17 (2014), 1081–1100.
-
(2014)
Clust. Comput.
, vol.17
, pp. 1081-1100
-
-
Su, Y.1
Agrawal, G.2
Woodring, J.3
Myers, K.4
Wendelberger, J.5
Ahrens, J.6
-
25
-
-
84922728660
-
Distributed feature selection
-
[25] Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Distributed feature selection. Appl. Soft Comput. 30 (2015), 136–150.
-
(2015)
Appl. Soft Comput.
, vol.30
, pp. 136-150
-
-
Bolón-Canedo, V.1
Sánchez-Maroño, N.2
Alonso-Betanzos, A.3
-
26
-
-
84939997221
-
A review of Nyström methods for large-scale machine learning
-
[26] Sun, S., Zhao, Jing, Zhu, J., A review of Nyström methods for large-scale machine learning. Inf. Fusion 26 (2015), 36–48.
-
(2015)
Inf. Fusion
, vol.26
, pp. 36-48
-
-
Sun, S.1
Zhao, J.2
Zhu, J.3
-
27
-
-
84901642365
-
Towards ultrahigh dimensional feature selection for big data
-
[27] Tan, M., Tsang, I.W., Wang, L., Towards ultrahigh dimensional feature selection for big data. J. Mach. Learn. Res. 15 (2014), 1371–1429.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1371-1429
-
-
Tan, M.1
Tsang, I.W.2
Wang, L.3
-
28
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
in: Proceedings of the 24th international conference on Machine learning,, pp.
-
[28] Z.Zhao, H.Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th international conference on Machine learning, 2007, pp. 1151–1157.
-
(2007)
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
29
-
-
85014348211
-
Support vector machine classification based on fuzzy clustering for large data sets
-
[29] J. Cervantes, X. Li, W. Yu, Support vector machine classification based on fuzzy clustering for large data sets, in: Proceedings of the 5th MICAI, 2015, pp. 572–582.
-
(2015)
Proceedings of the 5th MICAI
, pp. 572-582
-
-
Cervantes, J.1
Li, X.2
Yu, W.3
-
30
-
-
84988385241
-
Machine-Learning-Based Feature Selection Techniques for Large-Scale Network Intrusion Detection
-
in: Proceedings of the IEEE 34th International Conference on in Distributed Computing Systems Workshops (ICDCSW).
-
[30] O. Y. S. Al-Jarrah, A., M. Elsalamouny, P. D. Yoo, S. Muhaidat, and K. Kim, Machine-Learning-Based Feature Selection Techniques for Large-Scale Network Intrusion Detection, in: Proceedings of the 2014 IEEE 34th International Conference on in Distributed Computing Systems Workshops (ICDCSW).
-
(2014)
-
-
Al-Jarrah, O.Y.S.1
Elsalamouny, A.M.2
Yoo, P.D.3
Muhaidat, S.4
Kim, K.5
-
31
-
-
84925289085
-
Dimensionality reduction of medical big data using neural-fuzzy classifier
-
(04/01/2015)
-
[31] Azar, A.T., Hassanien, A.E., Dimensionality reduction of medical big data using neural-fuzzy classifier. (04/01/2015) Soft Comput. - A Fusion Found., Methodol. Appl. 19 (2015), 1115–1127.
-
(2015)
Soft Comput. - A Fusion Found., Methodol. Appl.
, vol.19
, pp. 1115-1127
-
-
Azar, A.T.1
Hassanien, A.E.2
-
32
-
-
79551480483
-
Stacked denoising Autoencoders: learning useful representations in a deep network with a local denoising criterion
-
[32] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Stacked denoising Autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
33
-
-
84901003583
-
Autoencoder for words
-
[33] Liou, C.-Y., Cheng, W.-C., Liou, J.-W., Liou, D.-R., Autoencoder for words. Neurocomputing 139 (2014), 84–96.
-
(2014)
Neurocomputing
, vol.139
, pp. 84-96
-
-
Liou, C.-Y.1
Cheng, W.-C.2
Liou, J.-W.3
Liou, D.-R.4
-
34
-
-
34250704272
-
Trading convexity for scalability
-
[34] Collobert, R., Sinz, F., Weston, J., Bottou, L., Trading convexity for scalability. Proc. 23rd Int. Conf. Mach. Learn., 2006, 201–208.
-
(2006)
Proc. 23rd Int. Conf. Mach. Learn.
, pp. 201-208
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
35
-
-
34547975052
-
Scaling learning algorithms towards, AI
-
(ed) L. Bottou O. Chapelle D. DeCoste J. Weston MIT Press Cambridge, MA
-
[35] Bengio, Y., LeCun, Y., Scaling learning algorithms towards, AI. (ed) Bottou, L., Chapelle, O., DeCoste, D., Weston, J., (eds.) Large Scale Kernel Machines, 2007, MIT Press, Cambridge, MA.
-
(2007)
Large Scale Kernel Machines
-
-
Bengio, Y.1
LeCun, Y.2
-
36
-
-
84971577321
-
“TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,”
-
CoRR
-
[36] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,” CoRR, 2016.
-
(2016)
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
-
37
-
-
85027956569
-
Scaling support vector machines on modern HPC platforms
-
[37] You, Y., Fu, H., Song, S.L., Randles, A., Kerbyson, D., Marquez, A., et al. Scaling support vector machines on modern HPC platforms. J. Parallel Distrib. Comput. 76 (2015), 16–31.
-
(2015)
J. Parallel Distrib. Comput.
, vol.76
, pp. 16-31
-
-
You, Y.1
Fu, H.2
Song, S.L.3
Randles, A.4
Kerbyson, D.5
Marquez, A.6
-
38
-
-
77955032649
-
PLANET: massively parallel learning of tree ensembles with MapReduce
-
[38] Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J., PLANET: massively parallel learning of tree ensembles with MapReduce. Proc. VLDB Endow. 2 (2009), 1426–1437.
-
(2009)
Proc. VLDB Endow.
, vol.2
, pp. 1426-1437
-
-
Panda, B.1
Herbach, J.S.2
Basu, S.3
Bayardo, R.J.4
-
39
-
-
85018903177
-
Petuum: a new platform for distributed machine learning on Big data
-
[39] Xing, E., Ho, Q., Dai, W., Kim, J.-K., Wei, J., Lee, S., et al. Petuum: a new platform for distributed machine learning on Big data. IEEE Trans. Big Data, 2015, 49–67.
-
(2015)
IEEE Trans. Big Data
, pp. 49-67
-
-
Xing, E.1
Ho, Q.2
Dai, W.3
Kim, J.-K.4
Wei, J.5
Lee, S.6
-
41
-
-
85014416170
-
Big data analytics: Optimization and randomization
-
in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,, pp.
-
[41] T.Yang, Q.Lin, R.Jin, Big data analytics: Optimization and randomization, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 2327–2327.
-
(2015)
, pp. 2327-2327
-
-
Yang, T.1
Lin, Q.2
Jin, R.3
-
42
-
-
84867119104
-
Towards Optimal one pass large scale learning with averaged stochastic gradient descent
-
Available at: arXiv:1107.2490.
-
[42] W. Xu, Towards Optimal one pass large scale learning with averaged stochastic gradient descent, 2011. Available at: arXiv:1107.2490.
-
(2011)
-
-
Xu, W.1
-
43
-
-
84904136037
-
Large-Scale Machine Learning with Stochastic Gradient Descent
-
[43] L. Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent, in: Proceedings of COMPSTAT, 2010, pp. 177–186.
-
(2010)
Proceedings of COMPSTAT
, pp. 177-186
-
-
Bottou, L.1
-
44
-
-
84962852768
-
A Scalable data Science workflow approach for Big data Bayesian network learning
-
[44] Wang, J., Tang, Y., Nguyen, M., Altintas, I., A Scalable data Science workflow approach for Big data Bayesian network learning. Proc. 2014 IEEE/ACM Int. Symp. Big Data Comput., 2014, 16–25.
-
(2014)
Proc. 2014 IEEE/ACM Int. Symp. Big Data Comput.
, pp. 16-25
-
-
Wang, J.1
Tang, Y.2
Nguyen, M.3
Altintas, I.4
-
45
-
-
84998679620
-
A data-intensive approach for discovering user similarities in social behavioral interactions based on the bayesian network
-
[45] Yue, K., Wu, H., Fu, X., Xu, J., Yin, Z., Liu, W., A data-intensive approach for discovering user similarities in social behavioral interactions based on the bayesian network. Neurocomputing 219 (2017), 364–375.
-
(2017)
Neurocomputing
, vol.219
, pp. 364-375
-
-
Yue, K.1
Wu, H.2
Fu, X.3
Xu, J.4
Yin, Z.5
Liu, W.6
-
46
-
-
84955497549
-
Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models on Big Data
-
[46] A. Kumar, A. Beutel, Q. Ho, E.P. Xing, Fugue: Slow-Worker-Agnostic Distributed Learning for Big Models on Big Data, in: Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), Reykjavik, Iceland, 2014, pp. 531–539.
-
(2014)
Proceedings of the 17th International Conference on Artificial Intelligence and Statistics (AISTATS), Reykjavik, Iceland
, pp. 531-539
-
-
Kumar, A.1
Beutel, A.2
Ho, Q.3
Xing, E.P.4
-
48
-
-
79960530372
-
Mahout in Action
-
Manning Publications Co.
-
[48] Owen, S., Anil, R., Dunning, T., Friedman, E., Mahout in Action. 2011, Manning Publications Co.
-
(2011)
-
-
Owen, S.1
Anil, R.2
Dunning, T.3
Friedman, E.4
-
49
-
-
56049109090
-
Map-reduce for machine learning on multicore
-
[49] Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G.R., Ng, A.Y., et al. Map-reduce for machine learning on multicore. NIPS, 2006, 281–288.
-
(2006)
NIPS
, pp. 281-288
-
-
Chu, C.T.1
Kim, S.K.2
Lin, Y.A.3
Yu, Y.4
Bradski, G.R.5
Ng, A.Y.6
-
50
-
-
79957859069
-
SystemML: Declarative machine learning on MapReduce
-
in: Proceedings of the 27th International Conference on Data Engineering (ICDE),.
-
[50] A.K.Ghoting, R.E.Pednault, B.Reinwald, V.Sindhwani, S.Tatikonda, Y.Tian, et al., SystemML: Declarative machine learning on MapReduce, in: Proceedings of the 27th International Conference on Data Engineering (ICDE), 2011.
-
(2011)
-
-
Ghoting, A.K.1
Pednault, R.E.2
Reinwald, B.3
Sindhwani, V.4
Tatikonda, S.5
Tian, Y.6
-
51
-
-
84880352642
-
Declarative systems for large-scale machine learning
-
[51] Borkar, V.R., Bu, Y., Carey, M.J., Rosen, J., Polyzotis, N., Condie, T., et al. Declarative systems for large-scale machine learning. IEEE Data Eng. Bull. 35 (2012), 24–32.
-
(2012)
IEEE Data Eng. Bull.
, vol.35
, pp. 24-32
-
-
Borkar, V.R.1
Bu, Y.2
Carey, M.J.3
Rosen, J.4
Polyzotis, N.5
Condie, T.6
-
52
-
-
84863735533
-
Distributed GraphLab: a framework for machine learning and data mining in the cloud
-
[52] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M., Distributed GraphLab: a framework for machine learning and data mining in the cloud. Proc. VLDB Endow. 5 (2012), 716–727.
-
(2012)
Proc. VLDB Endow.
, vol.5
, pp. 716-727
-
-
Low, Y.1
Bickson, D.2
Gonzalez, J.3
Guestrin, C.4
Kyrola, A.5
Hellerstein, J.M.6
-
53
-
-
85014362958
-
Theano: A Python framework for fast computation of mathematical expression
-
Available: arXiv:1605.02688.
-
[53] Theano Development Team, Theano: A Python framework for fast computation of mathematical expression. Available: arXiv:1605.02688.
-
(1999)
-
-
-
54
-
-
84913580146
-
Caffe: Convolutional Architecture for Fast Feature Embedding
-
in: Proceedings of the 22nd ACM international conference on Multimedia, Orlando, Florida, USA,.
-
[54] Y.Jia, E.Shelhamer, J.Donahue, S.Karayev, J.Long, R.Girshick, et al., Caffe: Convolutional Architecture for Fast Feature Embedding, in: Proceedings of the 22nd ACM international conference on Multimedia, Orlando, Florida, USA, 2014.
-
(2014)
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
-
55
-
-
17144374074
-
Fast SVM training algorithm with decomposition on very large data sets
-
[55] Dong, J.-x., Krzyzak, A., Suen, C.Y., Fast SVM training algorithm with decomposition on very large data sets. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005), 603–618.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 603-618
-
-
Dong, J.-X.1
Krzyzak, A.2
Suen, C.Y.3
-
56
-
-
84877760312
-
Large scale distributed deep networks
-
in: Proceedings of the Neural Information Processing Systems, Lake Tahoe, Nevada, United States,, pp.
-
[56] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, et al., Large scale distributed deep networks, in: Proceedings of the Neural Information Processing Systems, Lake Tahoe, Nevada, United States, 2012, pp. 1232–1240.
-
(2012)
, pp. 1232-1240
-
-
Dean, J.1
Corrado, G.S.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.V.6
-
57
-
-
85016727244
-
Machine Learning Techniques for Gait Biometric Recognition: Using the Ground Reaction Force
-
Springer Switzerland
-
[57] Mason, J.E., Traoré, I., Woungang, I., Machine Learning Techniques for Gait Biometric Recognition: Using the Ground Reaction Force. 2016, Springer, Switzerland.
-
(2016)
-
-
Mason, J.E.1
Traoré, I.2
Woungang, I.3
-
58
-
-
80053437034
-
On optimization methods for deep learning
-
in: Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA,.
-
[58] Q.V.Le, J.Ngiam, A.Coates, A.Lahiri, B.Prochnow, A.Y.Ng, On optimization methods for deep learning, in: Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, 2011.
-
(2011)
-
-
Le, Q.V.1
Ngiam, J.2
Coates, A.3
Lahiri, A.4
Prochnow, B.5
Ng, A.Y.6
-
59
-
-
80052331622
-
Distributed tuning of machine learning algorithms using MapReduce Clusters
-
[59] Ganjisaffar, Y., Debeauvais, T., Javanmardi, S., Caruana, R., Lopes, C.V., Distributed tuning of machine learning algorithms using MapReduce Clusters. Proc. Third Workshop Large Scale Data Min.: Theory Appl., 2011, 2.
-
(2011)
Proc. Third Workshop Large Scale Data Min.: Theory Appl.
, pp. 2
-
-
Ganjisaffar, Y.1
Debeauvais, T.2
Javanmardi, S.3
Caruana, R.4
Lopes, C.V.5
-
60
-
-
84874086853
-
Parallelization with ultiplicative algorithms for big data mining
-
in: Proceedings of the 12th International Conference on Data Mining (ICDM),, pp.
-
[60] C.Dijun Luo, Ding, H.Huang, Parallelization with ultiplicative algorithms for big data mining, in: Proceedings of the 12th International Conference on Data Mining (ICDM), 2012, pp. 489–498.
-
(2012)
, pp. 489-498
-
-
Dijun Luo, C.1
Huang, D.H.2
-
61
-
-
84923858295
-
A Parallel Spatial Co-location Mining Algorithm Based on MapReduce
-
in: proceedings of the IEEE International Congress on Big Data, 3rd, pp.
-
[61] J.S.Yoo, D.Boulware, D.Kimmey, A Parallel Spatial Co-location Mining Algorithm Based on MapReduce, in: proceedings of the 2014 IEEE International Congress on Big Data, 3rd, pp. 25–31.
-
(2014)
, pp. 25-31
-
-
Yoo, J.S.1
Boulware, D.2
Kimmey, D.3
-
62
-
-
84912100031
-
MRPR: A MapReduce solution for prototype reduction in big data classification
-
Part A
-
[62] Triguero, I., Peralta, D., Bacardit, J., García, S., Herrera, F., MRPR: A MapReduce solution for prototype reduction in big data classification. Neurocomputing 150 (2015), 331–345 Part A.
-
(2015)
Neurocomputing
, vol.150
, pp. 331-345
-
-
Triguero, I.1
Peralta, D.2
Bacardit, J.3
García, S.4
Herrera, F.5
-
63
-
-
85013974691
-
A survey of open source tools for machine learning with big data in the Hadoop ecosystem
-
[63] Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T., A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data 2 (2015), 1–36.
-
(2015)
J. Big Data
, vol.2
, pp. 1-36
-
-
Landset, S.1
Khoshgoftaar, T.M.2
Richter, A.N.3
Hasanin, T.4
-
64
-
-
80052668032
-
Large-scale matrix factorization with distributed stochastic gradient descent
-
in: Proceedings of the 17th ACM SIGKDD international conference ion Knowledge discovery and data mining, San Diego, California, USA,, pp.
-
[64] R.Gemulla, E.Nijkamp, P.J.Haas, Y.Sismanis, Large-scale matrix factorization with distributed stochastic gradient descent, in: Proceedings of the 17th ACM SIGKDD international conference ion Knowledge discovery and data mining, San Diego, California, USA, 2011, pp. 69–77.
-
(2011)
, pp. 69-77
-
-
Gemulla, R.1
Nijkamp, E.2
Haas, P.J.3
Sismanis, Y.4
-
65
-
-
84923396670
-
Parallel online learning
-
Cambridge University Press
-
[65] Hsu, D., Karampatziakis, N., Langford, J., Smola, A.J., Parallel online learning. Scaling up machine learning: Parallel and distributed approaches, 2011, Cambridge University Press.
-
(2011)
Scaling up machine learning: Parallel and distributed approaches
-
-
Hsu, D.1
Karampatziakis, N.2
Langford, J.3
Smola, A.J.4
-
66
-
-
0002815587
-
A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering
-
presented at Proceedings of the Eighteenth International Conference on Machine Learning,, pp.
-
[66] P.Domingos, G.Hulten, A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering, presented at Proceedings of the Eighteenth International Conference on Machine Learning, 2001, pp. 106–113.
-
(2001)
, pp. 106-113
-
-
Domingos, P.1
Hulten, G.2
-
67
-
-
84923409847
-
-
Cambridge University Press New York
-
[67] Bekkerman, R., Bilenko, M., Langford, J., (eds.) Scaling up Machine Learning: Parallel and Distributed Approaches, 2012, Cambridge University Press, New York.
-
(2012)
Scaling up Machine Learning: Parallel and Distributed Approaches
-
-
Bekkerman, R.1
Bilenko, M.2
Langford, J.3
-
68
-
-
84866628225
-
Unexpected challenges in large scale machine learning
-
[68] Parker, C., Unexpected challenges in large scale machine learning. Proc. 1st Int. Workshop Big Data, Streams Heterog. Source Min.: Algorithms, Syst., Program. Models Appl., 2012, 1–6.
-
(2012)
Proc. 1st Int. Workshop Big Data, Streams Heterog. Source Min.: Algorithms, Syst., Program. Models Appl.
, pp. 1-6
-
-
Parker, C.1
-
70
-
-
85172628539
-
Distributed class dependent feature analysis — A big data approach
-
in: proceedings of the 2014 IEEE International Conference on Big Data,.
-
[70] K.L.C.Zhu, M.Savvides, Distributed class dependent feature analysis — A big data approach, in: proceedings of the 2014 IEEE International Conference on Big Data, 2014.
-
(2014)
-
-
Zhu, K.L.C.1
Savvides, M.2
-
72
-
-
85017832664
-
Classification with boosting of extreme learning machine over arbitrarily partitioned data
-
[72] Çatak, F.Ö., Classification with boosting of extreme learning machine over arbitrarily partitioned data. Soft Comput., 2015, 1–13.
-
(2015)
Soft Comput.
, pp. 1-13
-
-
Çatak, F.Ö.1
-
73
-
-
84863889471
-
Distributed approximate spectral clustering for large-scale datasets
-
[73] M. Hefeeda, F. Gao, and W. Abd-Almageed, Distributed approximate spectral clustering for large-scale datasets, in: Proceedings of the 21st international symposium on High-Performance Parallel and Distributed Computing, 2012, pp. 223–234.
-
(2012)
Proceedings of the 21st international symposium on High-Performance Parallel and Distributed Computing
, pp. 223-234
-
-
Hefeeda, M.1
Gao, F.2
Abd-Almageed, W.3
-
74
-
-
84939177511
-
On Understanding Big data impacts in remotely sensed image classification using support vector machine methods
-
[74] Cavallaro, G., Riedel, M., Richerzhagen, M., Benediktsson, J.A., Plaza, A., On Understanding Big data impacts in remotely sensed image classification using support vector machine methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8 (2015), 4634–4646.
-
(2015)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.8
, pp. 4634-4646
-
-
Cavallaro, G.1
Riedel, M.2
Richerzhagen, M.3
Benediktsson, J.A.4
Plaza, A.5
-
75
-
-
84985022130
-
Big Learning with Bayesian Methods
-
Available.
-
[75] J.Zhu, J.Chen, W.Hu, Big Learning with Bayesian Methods. Available: 〈http://arxiv.org/pdf/1411.6370〉, 2014.
-
(2014)
-
-
Zhu, J.1
Chen, J.2
Hu, W.3
-
76
-
-
85120363281
-
Risk adjustment of patient expenditures: A big data analytics approach
-
in Proceedings of the 2013 IEEE International Conference on Big Data,.
-
[76] L.Bagheri, H.Goote, A.Hasan, G.Hazard, Risk adjustment of patient expenditures: A big data analytics approach, in Proceedings of the 2013 IEEE International Conference on Big Data, 2013.
-
(2013)
-
-
Bagheri, L.1
Goote, H.2
Hasan, A.3
Hazard, G.4
-
77
-
-
84878919540
-
-
[77] Krizhevsky, A., Sutskever, I., Hinton, G., Imagen. Classif. Deep convolutional Neural Netw., 2012.
-
(2012)
Imagen. Classif. Deep convolutional Neural Netw.
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
78
-
-
77955998889
-
Convolutional networks and applications in vision
-
[78] Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks and applications in vision, in: Proceedings of IEEE International Symposium on Circuits and Systems, 2010, pp. 253–256.
-
(2010)
Proceedings of IEEE International Symposium on Circuits and Systems
, pp. 253-256
-
-
LeCun, Y.1
Kavukcuoglu, K.2
Farabet, C.3
-
79
-
-
84946590544
-
Construction and analysis of a large scale image ontology
-
[79] Deng, J., Li, K., Do, M., Su, H., Fei-Fei, L., Construction and analysis of a large scale image ontology. Vis. Sci. Soc., 1, 2009.
-
(2009)
Vis. Sci. Soc.
, vol.1
-
-
Deng, J.1
Li, K.2
Do, M.3
Su, H.4
Fei-Fei, L.5
-
80
-
-
84957837518
-
Deep learning for visual understanding: a review
-
[80] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S., Deep learning for visual understanding: a review. Neurocomputing 187 (2016), 27–48.
-
(2016)
Neurocomputing
, vol.187
, pp. 27-48
-
-
Guo, Y.1
Liu, Y.2
Oerlemans, A.3
Lao, S.4
Wu, S.5
Lew, M.S.6
-
81
-
-
84952684616
-
Speed up deep neural network based pedestrian detection by sharing features across multi-scale models
-
[81] Jiang, X., Pang, Y., Li, X., Pan, J., Speed up deep neural network based pedestrian detection by sharing features across multi-scale models. Neurocomputing 185 (2016), 163–170.
-
(2016)
Neurocomputing
, vol.185
, pp. 163-170
-
-
Jiang, X.1
Pang, Y.2
Li, X.3
Pan, J.4
-
82
-
-
84926358845
-
Recursive deep models for semantic compositionality over a sentiment treebank
-
in: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP),.
-
[82] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, et al., Recursive deep models for semantic compositionality over a sentiment treebank, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2013.
-
(2013)
-
-
Socher, R.1
Perelygin, A.2
Wu, J.3
Chuang, J.4
Manning, C.5
Ng, A.6
-
83
-
-
84882929257
-
Active deep learning method for semi-supervised sentiment classification
-
[83] Zhou, S., Chen, Q., Wang, X., Active deep learning method for semi-supervised sentiment classification. Neurocomputing 120 (2013), 536–546.
-
(2013)
Neurocomputing
, vol.120
, pp. 536-546
-
-
Zhou, S.1
Chen, Q.2
Wang, X.3
-
84
-
-
84964598999
-
Deep belief networks for quantitative analysis of a gold immunochromatographic strip
-
[84] Zeng, N., Wang, Z., Zhang, H., Liu, W., Alsaadi, F.E., Deep belief networks for quantitative analysis of a gold immunochromatographic strip. Cogn. Comput. 8 (2016), 684–692.
-
(2016)
Cogn. Comput.
, vol.8
, pp. 684-692
-
-
Zeng, N.1
Wang, Z.2
Zhang, H.3
Liu, W.4
Alsaadi, F.E.5
-
85
-
-
51949106645
-
Self-taught learning: transfer learning from unlabeled data
-
in: Proceedings of the 24th international conference on Machine learning, Corvalis, Oregon, USA,.
-
[85] R.Raina, A.Battle, H.Lee, B.Packer, A.Y.Ng, Self-taught learning: transfer learning from unlabeled data, in: Proceedings of the 24th international conference on Machine learning, Corvalis, Oregon, USA, 2007.
-
(2007)
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
-
86
-
-
84944735469
-
Deep Learning
-
MIT Press
-
[86] Goodfellow, I., Bengio, Y., Courville, A., Deep Learning. 2016, MIT Press.
-
(2016)
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
87
-
-
77949522811
-
Why does Unsupervised Pre-training help deep learning?
-
[87] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., Bengio, S., Why does Unsupervised Pre-training help deep learning?. The J. Mach. Learn. Res. 11 (2010), 625–660.
-
(2010)
The J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
88
-
-
84902100258
-
Distributed Representations of Words and Phrases and their Compositionality
-
presented at the NIPS, Stateline, NV,.
-
[88] T.Mikolov, I.Sutskever, K.Chen, G.S.Corrado, J.Dean, Distributed Representations of Words and Phrases and their Compositionality, presented at the NIPS, Stateline, NV, 2013.
-
(2013)
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
89
-
-
84923318381
-
Big data deep learning: challenges and perspectives
-
[89] Chen, X.-w., Lin, X., Big data deep learning: challenges and perspectives. Access, IEEE 2 (2014), 514–525.
-
(2014)
Access, IEEE
, vol.2
, pp. 514-525
-
-
Chen, X.-W.1
Lin, X.2
-
90
-
-
84937706638
-
DaDianNao: a machine-learning Supercomputer
-
[90] Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., et al. DaDianNao: a machine-learning Supercomputer. 47th Annu. IEEE/ACM Int. Symp. Micro., 2014, 609–622.
-
(2014)
47th Annu. IEEE/ACM Int. Symp. Micro.
, pp. 609-622
-
-
Chen, Y.1
Luo, T.2
Liu, S.3
Zhang, S.4
He, L.5
Wang, J.6
-
91
-
-
84965008656
-
TABLA: a unified template-based framework for accelerating statistical machine learning
-
[91] Mahajan, D., Park, J., Amaro, E., Sharma, H., Yazdanbakhsh, A., Kim, J.K., et al. TABLA: a unified template-based framework for accelerating statistical machine learning. IEEE Int. Symp. High. Perform. Comput. Archit. (HPCA), 2016, 14–26.
-
(2016)
IEEE Int. Symp. High. Perform. Comput. Archit. (HPCA)
, pp. 14-26
-
-
Mahajan, D.1
Park, J.2
Amaro, E.3
Sharma, H.4
Yazdanbakhsh, A.5
Kim, J.K.6
-
92
-
-
85085251984
-
Spark: cluster computing with working sets
-
presented at in: Proceedings of the 2nd USENIX conference on Hot topics in Cloud Computing, Boston, MA,.
-
[92] M.Zaharia, M.Chowdhury, M.J.Franklin, S.Shenker, I.Stoica, Spark: cluster computing with working sets, presented at in: Proceedings of the 2nd USENIX conference on Hot topics in Cloud Computing, Boston, MA, 2010.
-
(2010)
-
-
Zaharia, M.1
Chowdhury, M.2
Franklin, M.J.3
Shenker, S.4
Stoica, I.5
-
93
-
-
84906706410
-
Predicting execution bottlenecks in map-reduce clusters
-
in: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing,, pp.
-
[93] E.Bortnikov, A.Frank, E.Hillel, S.Rao, Predicting execution bottlenecks in map-reduce clusters, in: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing, 2012, pp. 18–18.
-
(2012)
, pp. 18-18
-
-
Bortnikov, E.1
Frank, A.2
Hillel, E.3
Rao, S.4
-
94
-
-
84944328461
-
Privacy-preserving machine learning algorithms for big data systems
-
[94] K. Xu, H. Yue, L. Guo, Y. Guo, Y. Fang, Privacy-preserving machine learning algorithms for big data systems, in: Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS), 2015, pp. 318–327.
-
(2015)
Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing Systems (ICDCS)
, pp. 318-327
-
-
Xu, K.1
Yue, H.2
Guo, L.3
Guo, Y.4
Fang, Y.5
-
95
-
-
38649100979
-
Privacy-preserving SVM classification
-
[95] Vaidya, J., Yu, H., Jiang, X., Privacy-preserving SVM classification. Knowledge Inf. Syst. 14 (2008), 161–178.
-
(2008)
Knowledge Inf. Syst.
, vol.14
, pp. 161-178
-
-
Vaidya, J.1
Yu, H.2
Jiang, X.3
-
96
-
-
84891109198
-
PREDIcT: towards predicting the runtime of large scale iterative analytics
-
[96] Popescu, A.D., Balmin, A., Ercegovac, V., Ailamaki, A., PREDIcT: towards predicting the runtime of large scale iterative analytics. Proc. VLDB Endow. 6 (2013), 1678–1689.
-
(2013)
Proc. VLDB Endow.
, vol.6
, pp. 1678-1689
-
-
Popescu, A.D.1
Balmin, A.2
Ercegovac, V.3
Ailamaki, A.4
-
97
-
-
0032634129
-
Pasting small votes for classification in large databases and On-Line
-
[97] Breiman, L., Pasting small votes for classification in large databases and On-Line. Machine Learn. 36 (1999), 85–103.
-
(1999)
Machine Learn.
, vol.36
, pp. 85-103
-
-
Breiman, L.1
-
98
-
-
84960879246
-
-
[98] Kashyap, H., Ahmed, H.A., Hoque, N., Roy, S., Bhattacharyya, D.K., Big Data Anal. Bioinforma.: A Mach. Learn. Perspect., 2015.
-
(2015)
Big Data Anal. Bioinforma.: A Mach. Learn. Perspect.
-
-
Kashyap, H.1
Ahmed, H.A.2
Hoque, N.3
Roy, S.4
Bhattacharyya, D.K.5
-
99
-
-
84897723649
-
Learning optimal classifier chains for real-time big data mining
-
in Proceedings 51st Annu. Allerton Conference Comm., Control and Comput. (Allerton'13),.
-
[99] J.Xu, C.Tekin, M.van der Schaar, Learning optimal classifier chains for real-time big data mining, in Proceedings 51st Annu. Allerton Conference Comm., Control and Comput. (Allerton'13), 2013.
-
(2013)
-
-
Xu, J.1
Tekin, C.2
van der Schaar, M.3
-
100
-
-
84893053113
-
SAMOA: a platform for mining big data streams
-
in: Proceedings of the 22nd International Conference on World Wide Web,, pp.
-
[100] G.De Francisci Morales, SAMOA: a platform for mining big data streams, in: Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 777–778.
-
(2013)
, pp. 777-778
-
-
De Francisci Morales, G.1
-
101
-
-
84959040624
-
Big data, lifelong machine learning and transfer learning
-
in: Proceedings of the sixth ACM international conference on Web search and data mining,, pp.
-
[101] Q.Yang, Big data, lifelong machine learning and transfer learning, in: Proceedings of the sixth ACM international conference on Web search and data mining, 2013, pp. 505–506.
-
(2013)
, pp. 505-506
-
-
Yang, Q.1
-
102
-
-
84979917125
-
Large scale online kernel learning
-
[102] Lu, J., Hoi, S.C., Wang, J., Zhao, P., Liu, Z.-Y., Large scale online kernel learning. J. Mach. Learn. Res. 17 (2016), 1–43.
-
(2016)
J. Mach. Learn. Res.
, vol.17
, pp. 1-43
-
-
Lu, J.1
Hoi, S.C.2
Wang, J.3
Zhao, P.4
Liu, Z.-Y.5
-
103
-
-
84869463516
-
Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training
-
[103] Wang, Z., Crammer, K., Vucetic, S., Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training. The J. Mach. Learn. Res. 13 (2012), 3103–3131.
-
(2012)
The J. Mach. Learn. Res.
, vol.13
, pp. 3103-3131
-
-
Wang, Z.1
Crammer, K.2
Vucetic, S.3
-
104
-
-
84904651375
-
The emerging big dimensionality
-
[104] Zhai, Y., Ong, Y.S., Tsang, I.W., The emerging big dimensionality. IEEE Comput. Intell. Mag. 9 (2014), 14–26.
-
(2014)
IEEE Comput. Intell. Mag.
, vol.9
, pp. 14-26
-
-
Zhai, Y.1
Ong, Y.S.2
Tsang, I.W.3
-
105
-
-
84913546601
-
Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification
-
in: Proceedings of the ACM International Conference on Multimedia,, pp.
-
[105] T.Xiao, J.Zhang, K.Yang, Y.Peng, Z.Zhang, Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 177–186.
-
(2014)
, pp. 177-186
-
-
Xiao, T.1
Zhang, J.2
Yang, K.3
Peng, Y.4
Zhang, Z.5
-
106
-
-
85013916411
-
A survey on platforms for big data analytics
-
[106] Singh, D., Reddy, C.K., A survey on platforms for big data analytics. J. Big Data 2 (2014), 1–20.
-
(2014)
J. Big Data
, vol.2
, pp. 1-20
-
-
Singh, D.1
Reddy, C.K.2
-
107
-
-
85084017339
-
MLbase: A Distributed Machine-learning System
-
in: Proceedings of the 6th Biennial Conference on Innovative Data Systems Research, Asilomar, California, USA,.
-
[107] T.Kraska, A.Talwalkar, J.Duchi, R.Griffith, M.J.Franklin, M.I.Jordan, MLbase: A Distributed Machine-learning System, in: Proceedings of the 6th Biennial Conference on Innovative Data Systems Research, Asilomar, California, USA, 2013.
-
(2013)
-
-
Kraska, T.1
Talwalkar, A.2
Duchi, J.3
Griffith, R.4
Franklin, M.J.5
Jordan, M.I.6
-
108
-
-
84905833579
-
Breaking the chains: on declarative data analysis and data independence in the big data era
-
[108] Markl, V., Breaking the chains: on declarative data analysis and data independence in the big data era. Proc. VLDB Endow. 7 (2014), 1730–1733.
-
(2014)
Proc. VLDB Endow.
, vol.7
, pp. 1730-1733
-
-
Markl, V.1
-
110
-
-
84891347944
-
Using Big data and predictive machine learning in aerospace test environments
-
[110] Armes, M, T.R., Using Big data and predictive machine learning in aerospace test environments. IEEE Autotestcon, 2013.
-
(2013)
IEEE Autotestcon
-
-
Armes, M, T.R.1
-
111
-
-
85027560926
-
Big Data Security and Privacy
-
in: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, Texas, USA,.
-
[111] B.Thuraisingham, Big Data Security and Privacy, in: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, Texas, USA, 2015.
-
(2015)
-
-
Thuraisingham, B.1
-
112
-
-
85015167993
-
Security and Privacy for Big Data: A Systematic Literature Review
-
in: Proceedings of the 2016 IEEE International Conference on Big Data, Washington, D.C,, pp.
-
[112] B.Nelson, T.Olovsson, Security and Privacy for Big Data: A Systematic Literature Review, in: Proceedings of the 2016 IEEE International Conference on Big Data, Washington, D.C, 2016, pp. 3693–3702.
-
(2016)
, pp. 3693-3702
-
-
Nelson, B.1
Olovsson, T.2
|