메뉴 건너뛰기




Volumn 237, Issue , 2017, Pages 350-361

Machine learning on big data: Opportunities and challenges

Author keywords

Big data; Data preprocessing; Evaluation; Machine learning; Parallelization

Indexed keywords

ARTIFICIAL INTELLIGENCE; DISTRIBUTED COMPUTER SYSTEMS; LEARNING SYSTEMS;

EID: 85011371254     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2017.01.026     Document Type: Article
Times cited : (767)

References (112)
  • 1
    • 84937801713 scopus 로고    scopus 로고
    • Machine learning: trends, perspectives, and prospects
    • [1] Jordan, M.I., Mitchell, T.M., Machine learning: trends, perspectives, and prospects. Science 349 (2015), 255–260.
    • (2015) Science , vol.349 , pp. 255-260
    • Jordan, M.I.1    Mitchell, T.M.2
  • 4
    • 84924514239 scopus 로고    scopus 로고
    • Evaluating Learning Algorithms: a Classification Perspective
    • Cambridge University Press New York, NY, USA
    • [4] Japkowicz, N., Shah, M., Evaluating Learning Algorithms: a Classification Perspective. 2011, Cambridge University Press, New York, NY, USA.
    • (2011)
    • Japkowicz, N.1    Shah, M.2
  • 7
    • 84858766305 scopus 로고    scopus 로고
    • From Online to Batch Learning with Cutoff-Averaging
    • [7] Dekel, O., From Online to Batch Learning with Cutoff-Averaging. NIPS, 2008, 377–384.
    • (2008) NIPS , pp. 377-384
    • Dekel, O.1
  • 8
    • 84920541067 scopus 로고    scopus 로고
    • Power to the people: the role of humans in Interactive machine learning
    • [8] Amershi, S., Cakmak, M., Knox, W.B., Kulesza, T., Power to the people: the role of humans in Interactive machine learning. AI Mag. 35 (2014), 105–120.
    • (2014) AI Mag. , vol.35 , pp. 105-120
    • Amershi, S.1    Cakmak, M.2    Knox, W.B.3    Kulesza, T.4
  • 9
    • 84900465835 scopus 로고    scopus 로고
    • Combining domain knowledge and machine learning for robust fall detection
    • [9] Mirchevska, V., Luštrek, M., Gams, M., Combining domain knowledge and machine learning for robust fall detection. Expert Syst. 31 (2014), 163–175.
    • (2014) Expert Syst. , vol.31 , pp. 163-175
    • Mirchevska, V.1    Luštrek, M.2    Gams, M.3
  • 10
    • 67349165372 scopus 로고    scopus 로고
    • Incorporating Prior Domain Knowledge into Inductive Machine Learning
    • University of Technology Sydney Sydney, Augtralia
    • [10] Yu, T., Incorporating Prior Domain Knowledge into Inductive Machine Learning. Computing Sciences, 2007, University of Technology Sydney, Sydney, Augtralia.
    • (2007) Computing Sciences
    • Yu, T.1
  • 12
    • 84884994717 scopus 로고    scopus 로고
    • Addressing Big data time series: mining Trillions of time series subsequences Under dynamic time Warping
    • [12] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., et al. Addressing Big data time series: mining Trillions of time series subsequences Under dynamic time Warping. ACM Trans. Knowl. Discov. Data, 7, 2013, 10.
    • (2013) ACM Trans. Knowl. Discov. Data , vol.7 , pp. 10
    • Rakthanmanon, T.1    Campana, B.2    Mueen, A.3    Batista, G.4    Westover, B.5    Zhu, Q.6
  • 13
    • 84962814964 scopus 로고    scopus 로고
    • Overcoming relational learning biases to accurately predict preferences in large scale networks
    • in: Proceedings of the 24th International Conference on World Wide Web,, pp.
    • [13] J.J.Pfeiffer, III, J.Neville, P.N.Bennett, Overcoming relational learning biases to accurately predict preferences in large scale networks, in: Proceedings of the 24th International Conference on World Wide Web, 2015, pp. 853–863.
    • (2015) , pp. 853-863
    • Pfeiffer, J.J.1    Neville, J.2    Bennett, P.N.3
  • 14
    • 84954091352 scopus 로고    scopus 로고
    • Online outlier exploration over large datasets
    • in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,, pp.
    • [14] L.Cao, M.Wei, D.Yang, E.A.Rundensteiner, Online outlier exploration over large datasets, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 89–98.
    • (2015) , pp. 89-98
    • Cao, L.1    Wei, M.2    Yang, D.3    Rundensteiner, E.A.4
  • 15
    • 84919389514 scopus 로고    scopus 로고
    • Beyond the hype: Big data concepts, methods, and analytics
    • [15] Gandomi, A., Haider, M., Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 35 (2015), 137–144.
    • (2015) Int. J. Inf. Manag. , vol.35 , pp. 137-144
    • Gandomi, A.1    Haider, M.2
  • 16
    • 84896062416 scopus 로고    scopus 로고
    • Multi-view K-means clustering on big data
    • in: Proceedings of the Twenty-Third international joint conference on Artificial Intelligence,, pp.
    • [16] X.Cai, F.Nie, H.Huang, Multi-view K-means clustering on big data, in: Proceedings of the Twenty-Third international joint conference on Artificial Intelligence, 2013, pp. 2598–2604.
    • (2013) , pp. 2598-2604
    • Cai, X.1    Nie, F.2    Huang, H.3
  • 17
    • 84955198976 scopus 로고    scopus 로고
    • “Data discretization: taxonomy and big data challenge,” Wiley Interdisciplinary Reviews
    • Data Mining and Knowledge Discovery, vol. 6, pp.
    • [17] S. Ramírez-Gallego, S. García, H. Mouriño-Talín, D. Martínez-Rego, V. Bolón-Canedo, A. Alonso-Betanzos, et al., “Data discretization: taxonomy and big data challenge,” Wiley Interdisciplinary Reviews, Data Mining and Knowledge Discovery, vol. 6, pp. 5-21, 2016.
    • (2016) , pp. 5-21
    • Ramírez-Gallego, S.1    García, S.2    Mouriño-Talín, H.3    Martínez-Rego, D.4    Bolón-Canedo, V.5    Alonso-Betanzos, A.6
  • 18
    • 85014401604 scopus 로고    scopus 로고
    • Discretizing Numerical Attributes in Decision Tree for Big Data Analysis
    • in: Proceedings of the 2014 IEEE International Conference on Data Mining Workshop (ICDMW),.
    • [18] Y.Z.Y.-M.Cheung, Discretizing Numerical Attributes in Decision Tree for Big Data Analysis, in: Proceedings of the 2014 IEEE International Conference on Data Mining Workshop (ICDMW), 2014.
    • (2014)
    • Cheung, Y.Z.Y.-M.1
  • 20
    • 84949683101 scopus 로고    scopus 로고
    • Human-level concept learning through probabilistic program induction
    • [20] Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B., Human-level concept learning through probabilistic program induction. Science 350 (2015), 1332–1338.
    • (2015) Science , vol.350 , pp. 1332-1338
    • Lake, B.M.1    Salakhutdinov, R.2    Tenenbaum, J.B.3
  • 21
    • 85014313261 scopus 로고    scopus 로고
    • Semi-supervised learning methods for large scale healthcare data analysis
    • [21] Zhang, G., Ou, S.-X., Huang, Y.-H., Wang, C.-R., Semi-supervised learning methods for large scale healthcare data analysis. Int. J. Comput. Healthc. 2 (2015), 98–110.
    • (2015) Int. J. Comput. Healthc. , vol.2 , pp. 98-110
    • Zhang, G.1    Ou, S.-X.2    Huang, Y.-H.3    Wang, C.-R.4
  • 23
    • 84938053293 scopus 로고    scopus 로고
    • Scaling up crowd-sourcing to very large datasets: a case for active learning
    • [23] Mozafari, B., Sarkar, P., Franklin, M., Jordan, M., Madden, S., Scaling up crowd-sourcing to very large datasets: a case for active learning. Proc. VLDB Endow. 8 (2014), 125–136.
    • (2014) Proc. VLDB Endow. , vol.8 , pp. 125-136
    • Mozafari, B.1    Sarkar, P.2    Franklin, M.3    Jordan, M.4    Madden, S.5
  • 26
    • 84939997221 scopus 로고    scopus 로고
    • A review of Nyström methods for large-scale machine learning
    • [26] Sun, S., Zhao, Jing, Zhu, J., A review of Nyström methods for large-scale machine learning. Inf. Fusion 26 (2015), 36–48.
    • (2015) Inf. Fusion , vol.26 , pp. 36-48
    • Sun, S.1    Zhao, J.2    Zhu, J.3
  • 27
    • 84901642365 scopus 로고    scopus 로고
    • Towards ultrahigh dimensional feature selection for big data
    • [27] Tan, M., Tsang, I.W., Wang, L., Towards ultrahigh dimensional feature selection for big data. J. Mach. Learn. Res. 15 (2014), 1371–1429.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 1371-1429
    • Tan, M.1    Tsang, I.W.2    Wang, L.3
  • 28
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • in: Proceedings of the 24th international conference on Machine learning,, pp.
    • [28] Z.Zhao, H.Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th international conference on Machine learning, 2007, pp. 1151–1157.
    • (2007) , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2
  • 29
    • 85014348211 scopus 로고    scopus 로고
    • Support vector machine classification based on fuzzy clustering for large data sets
    • [29] J. Cervantes, X. Li, W. Yu, Support vector machine classification based on fuzzy clustering for large data sets, in: Proceedings of the 5th MICAI, 2015, pp. 572–582.
    • (2015) Proceedings of the 5th MICAI , pp. 572-582
    • Cervantes, J.1    Li, X.2    Yu, W.3
  • 30
    • 84988385241 scopus 로고    scopus 로고
    • Machine-Learning-Based Feature Selection Techniques for Large-Scale Network Intrusion Detection
    • in: Proceedings of the IEEE 34th International Conference on in Distributed Computing Systems Workshops (ICDCSW).
    • [30] O. Y. S. Al-Jarrah, A., M. Elsalamouny, P. D. Yoo, S. Muhaidat, and K. Kim, Machine-Learning-Based Feature Selection Techniques for Large-Scale Network Intrusion Detection, in: Proceedings of the 2014 IEEE 34th International Conference on in Distributed Computing Systems Workshops (ICDCSW).
    • (2014)
    • Al-Jarrah, O.Y.S.1    Elsalamouny, A.M.2    Yoo, P.D.3    Muhaidat, S.4    Kim, K.5
  • 31
    • 84925289085 scopus 로고    scopus 로고
    • Dimensionality reduction of medical big data using neural-fuzzy classifier
    • (04/01/2015)
    • [31] Azar, A.T., Hassanien, A.E., Dimensionality reduction of medical big data using neural-fuzzy classifier. (04/01/2015) Soft Comput. - A Fusion Found., Methodol. Appl. 19 (2015), 1115–1127.
    • (2015) Soft Comput. - A Fusion Found., Methodol. Appl. , vol.19 , pp. 1115-1127
    • Azar, A.T.1    Hassanien, A.E.2
  • 32
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising Autoencoders: learning useful representations in a deep network with a local denoising criterion
    • [32] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A., Stacked denoising Autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 35
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards, AI
    • (ed) L. Bottou O. Chapelle D. DeCoste J. Weston MIT Press Cambridge, MA
    • [35] Bengio, Y., LeCun, Y., Scaling learning algorithms towards, AI. (ed) Bottou, L., Chapelle, O., DeCoste, D., Weston, J., (eds.) Large Scale Kernel Machines, 2007, MIT Press, Cambridge, MA.
    • (2007) Large Scale Kernel Machines
    • Bengio, Y.1    LeCun, Y.2
  • 36
    • 84971577321 scopus 로고    scopus 로고
    • “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,”
    • CoRR
    • [36] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,” CoRR, 2016.
    • (2016)
    • Abadi, M.1    Agarwal, A.2    Barham, P.3    Brevdo, E.4    Chen, Z.5    Citro, C.6
  • 38
    • 77955032649 scopus 로고    scopus 로고
    • PLANET: massively parallel learning of tree ensembles with MapReduce
    • [38] Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J., PLANET: massively parallel learning of tree ensembles with MapReduce. Proc. VLDB Endow. 2 (2009), 1426–1437.
    • (2009) Proc. VLDB Endow. , vol.2 , pp. 1426-1437
    • Panda, B.1    Herbach, J.S.2    Basu, S.3    Bayardo, R.J.4
  • 39
    • 85018903177 scopus 로고    scopus 로고
    • Petuum: a new platform for distributed machine learning on Big data
    • [39] Xing, E., Ho, Q., Dai, W., Kim, J.-K., Wei, J., Lee, S., et al. Petuum: a new platform for distributed machine learning on Big data. IEEE Trans. Big Data, 2015, 49–67.
    • (2015) IEEE Trans. Big Data , pp. 49-67
    • Xing, E.1    Ho, Q.2    Dai, W.3    Kim, J.-K.4    Wei, J.5    Lee, S.6
  • 41
    • 85014416170 scopus 로고    scopus 로고
    • Big data analytics: Optimization and randomization
    • in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,, pp.
    • [41] T.Yang, Q.Lin, R.Jin, Big data analytics: Optimization and randomization, in: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015, pp. 2327–2327.
    • (2015) , pp. 2327-2327
    • Yang, T.1    Lin, Q.2    Jin, R.3
  • 42
    • 84867119104 scopus 로고    scopus 로고
    • Towards Optimal one pass large scale learning with averaged stochastic gradient descent
    • Available at: arXiv:1107.2490.
    • [42] W. Xu, Towards Optimal one pass large scale learning with averaged stochastic gradient descent, 2011. Available at: arXiv:1107.2490.
    • (2011)
    • Xu, W.1
  • 43
    • 84904136037 scopus 로고    scopus 로고
    • Large-Scale Machine Learning with Stochastic Gradient Descent
    • [43] L. Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent, in: Proceedings of COMPSTAT, 2010, pp. 177–186.
    • (2010) Proceedings of COMPSTAT , pp. 177-186
    • Bottou, L.1
  • 45
    • 84998679620 scopus 로고    scopus 로고
    • A data-intensive approach for discovering user similarities in social behavioral interactions based on the bayesian network
    • [45] Yue, K., Wu, H., Fu, X., Xu, J., Yin, Z., Liu, W., A data-intensive approach for discovering user similarities in social behavioral interactions based on the bayesian network. Neurocomputing 219 (2017), 364–375.
    • (2017) Neurocomputing , vol.219 , pp. 364-375
    • Yue, K.1    Wu, H.2    Fu, X.3    Xu, J.4    Yin, Z.5    Liu, W.6
  • 48
    • 79960530372 scopus 로고    scopus 로고
    • Mahout in Action
    • Manning Publications Co.
    • [48] Owen, S., Anil, R., Dunning, T., Friedman, E., Mahout in Action. 2011, Manning Publications Co.
    • (2011)
    • Owen, S.1    Anil, R.2    Dunning, T.3    Friedman, E.4
  • 49
  • 50
    • 79957859069 scopus 로고    scopus 로고
    • SystemML: Declarative machine learning on MapReduce
    • in: Proceedings of the 27th International Conference on Data Engineering (ICDE),.
    • [50] A.K.Ghoting, R.E.Pednault, B.Reinwald, V.Sindhwani, S.Tatikonda, Y.Tian, et al., SystemML: Declarative machine learning on MapReduce, in: Proceedings of the 27th International Conference on Data Engineering (ICDE), 2011.
    • (2011)
    • Ghoting, A.K.1    Pednault, R.E.2    Reinwald, B.3    Sindhwani, V.4    Tatikonda, S.5    Tian, Y.6
  • 53
    • 85014362958 scopus 로고    scopus 로고
    • Theano: A Python framework for fast computation of mathematical expression
    • Available: arXiv:1605.02688.
    • [53] Theano Development Team, Theano: A Python framework for fast computation of mathematical expression. Available: arXiv:1605.02688.
    • (1999)
  • 54
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional Architecture for Fast Feature Embedding
    • in: Proceedings of the 22nd ACM international conference on Multimedia, Orlando, Florida, USA,.
    • [54] Y.Jia, E.Shelhamer, J.Donahue, S.Karayev, J.Long, R.Girshick, et al., Caffe: Convolutional Architecture for Fast Feature Embedding, in: Proceedings of the 22nd ACM international conference on Multimedia, Orlando, Florida, USA, 2014.
    • (2014)
    • Jia, Y.1    Shelhamer, E.2    Donahue, J.3    Karayev, S.4    Long, J.5    Girshick, R.6
  • 55
    • 17144374074 scopus 로고    scopus 로고
    • Fast SVM training algorithm with decomposition on very large data sets
    • [55] Dong, J.-x., Krzyzak, A., Suen, C.Y., Fast SVM training algorithm with decomposition on very large data sets. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005), 603–618.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 603-618
    • Dong, J.-X.1    Krzyzak, A.2    Suen, C.Y.3
  • 56
    • 84877760312 scopus 로고    scopus 로고
    • Large scale distributed deep networks
    • in: Proceedings of the Neural Information Processing Systems, Lake Tahoe, Nevada, United States,, pp.
    • [56] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, et al., Large scale distributed deep networks, in: Proceedings of the Neural Information Processing Systems, Lake Tahoe, Nevada, United States, 2012, pp. 1232–1240.
    • (2012) , pp. 1232-1240
    • Dean, J.1    Corrado, G.S.2    Monga, R.3    Chen, K.4    Devin, M.5    Le, Q.V.6
  • 57
    • 85016727244 scopus 로고    scopus 로고
    • Machine Learning Techniques for Gait Biometric Recognition: Using the Ground Reaction Force
    • Springer Switzerland
    • [57] Mason, J.E., Traoré, I., Woungang, I., Machine Learning Techniques for Gait Biometric Recognition: Using the Ground Reaction Force. 2016, Springer, Switzerland.
    • (2016)
    • Mason, J.E.1    Traoré, I.2    Woungang, I.3
  • 58
    • 80053437034 scopus 로고    scopus 로고
    • On optimization methods for deep learning
    • in: Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA,.
    • [58] Q.V.Le, J.Ngiam, A.Coates, A.Lahiri, B.Prochnow, A.Y.Ng, On optimization methods for deep learning, in: Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA, 2011.
    • (2011)
    • Le, Q.V.1    Ngiam, J.2    Coates, A.3    Lahiri, A.4    Prochnow, B.5    Ng, A.Y.6
  • 60
    • 84874086853 scopus 로고    scopus 로고
    • Parallelization with ultiplicative algorithms for big data mining
    • in: Proceedings of the 12th International Conference on Data Mining (ICDM),, pp.
    • [60] C.Dijun Luo, Ding, H.Huang, Parallelization with ultiplicative algorithms for big data mining, in: Proceedings of the 12th International Conference on Data Mining (ICDM), 2012, pp. 489–498.
    • (2012) , pp. 489-498
    • Dijun Luo, C.1    Huang, D.H.2
  • 61
    • 84923858295 scopus 로고    scopus 로고
    • A Parallel Spatial Co-location Mining Algorithm Based on MapReduce
    • in: proceedings of the IEEE International Congress on Big Data, 3rd, pp.
    • [61] J.S.Yoo, D.Boulware, D.Kimmey, A Parallel Spatial Co-location Mining Algorithm Based on MapReduce, in: proceedings of the 2014 IEEE International Congress on Big Data, 3rd, pp. 25–31.
    • (2014) , pp. 25-31
    • Yoo, J.S.1    Boulware, D.2    Kimmey, D.3
  • 62
    • 84912100031 scopus 로고    scopus 로고
    • MRPR: A MapReduce solution for prototype reduction in big data classification
    • Part A
    • [62] Triguero, I., Peralta, D., Bacardit, J., García, S., Herrera, F., MRPR: A MapReduce solution for prototype reduction in big data classification. Neurocomputing 150 (2015), 331–345 Part A.
    • (2015) Neurocomputing , vol.150 , pp. 331-345
    • Triguero, I.1    Peralta, D.2    Bacardit, J.3    García, S.4    Herrera, F.5
  • 63
    • 85013974691 scopus 로고    scopus 로고
    • A survey of open source tools for machine learning with big data in the Hadoop ecosystem
    • [63] Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T., A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data 2 (2015), 1–36.
    • (2015) J. Big Data , vol.2 , pp. 1-36
    • Landset, S.1    Khoshgoftaar, T.M.2    Richter, A.N.3    Hasanin, T.4
  • 64
    • 80052668032 scopus 로고    scopus 로고
    • Large-scale matrix factorization with distributed stochastic gradient descent
    • in: Proceedings of the 17th ACM SIGKDD international conference ion Knowledge discovery and data mining, San Diego, California, USA,, pp.
    • [64] R.Gemulla, E.Nijkamp, P.J.Haas, Y.Sismanis, Large-scale matrix factorization with distributed stochastic gradient descent, in: Proceedings of the 17th ACM SIGKDD international conference ion Knowledge discovery and data mining, San Diego, California, USA, 2011, pp. 69–77.
    • (2011) , pp. 69-77
    • Gemulla, R.1    Nijkamp, E.2    Haas, P.J.3    Sismanis, Y.4
  • 66
    • 0002815587 scopus 로고    scopus 로고
    • A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering
    • presented at Proceedings of the Eighteenth International Conference on Machine Learning,, pp.
    • [66] P.Domingos, G.Hulten, A General Method for Scaling Up Machine Learning Algorithms and its Application to Clustering, presented at Proceedings of the Eighteenth International Conference on Machine Learning, 2001, pp. 106–113.
    • (2001) , pp. 106-113
    • Domingos, P.1    Hulten, G.2
  • 70
    • 85172628539 scopus 로고    scopus 로고
    • Distributed class dependent feature analysis — A big data approach
    • in: proceedings of the 2014 IEEE International Conference on Big Data,.
    • [70] K.L.C.Zhu, M.Savvides, Distributed class dependent feature analysis — A big data approach, in: proceedings of the 2014 IEEE International Conference on Big Data, 2014.
    • (2014)
    • Zhu, K.L.C.1    Savvides, M.2
  • 71
    • 84886017591 scopus 로고    scopus 로고
    • A database-Hadoop hybrid approach to Scalable machine learning
    • [71] Yui, M., Kojima, I., A database-Hadoop hybrid approach to Scalable machine learning. IEEE Int. Congr. Big Data (BigData Congr.), 2013, 1–8.
    • (2013) IEEE Int. Congr. Big Data (BigData Congr.) , pp. 1-8
    • Yui, M.1    Kojima, I.2
  • 72
    • 85017832664 scopus 로고    scopus 로고
    • Classification with boosting of extreme learning machine over arbitrarily partitioned data
    • [72] Çatak, F.Ö., Classification with boosting of extreme learning machine over arbitrarily partitioned data. Soft Comput., 2015, 1–13.
    • (2015) Soft Comput. , pp. 1-13
    • Çatak, F.Ö.1
  • 75
    • 84985022130 scopus 로고    scopus 로고
    • Big Learning with Bayesian Methods
    • Available.
    • [75] J.Zhu, J.Chen, W.Hu, Big Learning with Bayesian Methods. Available: 〈http://arxiv.org/pdf/1411.6370〉, 2014.
    • (2014)
    • Zhu, J.1    Chen, J.2    Hu, W.3
  • 76
    • 85120363281 scopus 로고    scopus 로고
    • Risk adjustment of patient expenditures: A big data analytics approach
    • in Proceedings of the 2013 IEEE International Conference on Big Data,.
    • [76] L.Bagheri, H.Goote, A.Hasan, G.Hazard, Risk adjustment of patient expenditures: A big data analytics approach, in Proceedings of the 2013 IEEE International Conference on Big Data, 2013.
    • (2013)
    • Bagheri, L.1    Goote, H.2    Hasan, A.3    Hazard, G.4
  • 79
    • 84946590544 scopus 로고    scopus 로고
    • Construction and analysis of a large scale image ontology
    • [79] Deng, J., Li, K., Do, M., Su, H., Fei-Fei, L., Construction and analysis of a large scale image ontology. Vis. Sci. Soc., 1, 2009.
    • (2009) Vis. Sci. Soc. , vol.1
    • Deng, J.1    Li, K.2    Do, M.3    Su, H.4    Fei-Fei, L.5
  • 81
    • 84952684616 scopus 로고    scopus 로고
    • Speed up deep neural network based pedestrian detection by sharing features across multi-scale models
    • [81] Jiang, X., Pang, Y., Li, X., Pan, J., Speed up deep neural network based pedestrian detection by sharing features across multi-scale models. Neurocomputing 185 (2016), 163–170.
    • (2016) Neurocomputing , vol.185 , pp. 163-170
    • Jiang, X.1    Pang, Y.2    Li, X.3    Pan, J.4
  • 82
    • 84926358845 scopus 로고    scopus 로고
    • Recursive deep models for semantic compositionality over a sentiment treebank
    • in: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP),.
    • [82] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, et al., Recursive deep models for semantic compositionality over a sentiment treebank, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2013.
    • (2013)
    • Socher, R.1    Perelygin, A.2    Wu, J.3    Chuang, J.4    Manning, C.5    Ng, A.6
  • 83
    • 84882929257 scopus 로고    scopus 로고
    • Active deep learning method for semi-supervised sentiment classification
    • [83] Zhou, S., Chen, Q., Wang, X., Active deep learning method for semi-supervised sentiment classification. Neurocomputing 120 (2013), 536–546.
    • (2013) Neurocomputing , vol.120 , pp. 536-546
    • Zhou, S.1    Chen, Q.2    Wang, X.3
  • 84
    • 84964598999 scopus 로고    scopus 로고
    • Deep belief networks for quantitative analysis of a gold immunochromatographic strip
    • [84] Zeng, N., Wang, Z., Zhang, H., Liu, W., Alsaadi, F.E., Deep belief networks for quantitative analysis of a gold immunochromatographic strip. Cogn. Comput. 8 (2016), 684–692.
    • (2016) Cogn. Comput. , vol.8 , pp. 684-692
    • Zeng, N.1    Wang, Z.2    Zhang, H.3    Liu, W.4    Alsaadi, F.E.5
  • 85
    • 51949106645 scopus 로고    scopus 로고
    • Self-taught learning: transfer learning from unlabeled data
    • in: Proceedings of the 24th international conference on Machine learning, Corvalis, Oregon, USA,.
    • [85] R.Raina, A.Battle, H.Lee, B.Packer, A.Y.Ng, Self-taught learning: transfer learning from unlabeled data, in: Proceedings of the 24th international conference on Machine learning, Corvalis, Oregon, USA, 2007.
    • (2007)
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 88
    • 84902100258 scopus 로고    scopus 로고
    • Distributed Representations of Words and Phrases and their Compositionality
    • presented at the NIPS, Stateline, NV,.
    • [88] T.Mikolov, I.Sutskever, K.Chen, G.S.Corrado, J.Dean, Distributed Representations of Words and Phrases and their Compositionality, presented at the NIPS, Stateline, NV, 2013.
    • (2013)
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 89
    • 84923318381 scopus 로고    scopus 로고
    • Big data deep learning: challenges and perspectives
    • [89] Chen, X.-w., Lin, X., Big data deep learning: challenges and perspectives. Access, IEEE 2 (2014), 514–525.
    • (2014) Access, IEEE , vol.2 , pp. 514-525
    • Chen, X.-W.1    Lin, X.2
  • 92
    • 85085251984 scopus 로고    scopus 로고
    • Spark: cluster computing with working sets
    • presented at in: Proceedings of the 2nd USENIX conference on Hot topics in Cloud Computing, Boston, MA,.
    • [92] M.Zaharia, M.Chowdhury, M.J.Franklin, S.Shenker, I.Stoica, Spark: cluster computing with working sets, presented at in: Proceedings of the 2nd USENIX conference on Hot topics in Cloud Computing, Boston, MA, 2010.
    • (2010)
    • Zaharia, M.1    Chowdhury, M.2    Franklin, M.J.3    Shenker, S.4    Stoica, I.5
  • 93
    • 84906706410 scopus 로고    scopus 로고
    • Predicting execution bottlenecks in map-reduce clusters
    • in: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing,, pp.
    • [93] E.Bortnikov, A.Frank, E.Hillel, S.Rao, Predicting execution bottlenecks in map-reduce clusters, in: Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing, 2012, pp. 18–18.
    • (2012) , pp. 18-18
    • Bortnikov, E.1    Frank, A.2    Hillel, E.3    Rao, S.4
  • 95
    • 38649100979 scopus 로고    scopus 로고
    • Privacy-preserving SVM classification
    • [95] Vaidya, J., Yu, H., Jiang, X., Privacy-preserving SVM classification. Knowledge Inf. Syst. 14 (2008), 161–178.
    • (2008) Knowledge Inf. Syst. , vol.14 , pp. 161-178
    • Vaidya, J.1    Yu, H.2    Jiang, X.3
  • 96
    • 84891109198 scopus 로고    scopus 로고
    • PREDIcT: towards predicting the runtime of large scale iterative analytics
    • [96] Popescu, A.D., Balmin, A., Ercegovac, V., Ailamaki, A., PREDIcT: towards predicting the runtime of large scale iterative analytics. Proc. VLDB Endow. 6 (2013), 1678–1689.
    • (2013) Proc. VLDB Endow. , vol.6 , pp. 1678-1689
    • Popescu, A.D.1    Balmin, A.2    Ercegovac, V.3    Ailamaki, A.4
  • 97
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and On-Line
    • [97] Breiman, L., Pasting small votes for classification in large databases and On-Line. Machine Learn. 36 (1999), 85–103.
    • (1999) Machine Learn. , vol.36 , pp. 85-103
    • Breiman, L.1
  • 99
    • 84897723649 scopus 로고    scopus 로고
    • Learning optimal classifier chains for real-time big data mining
    • in Proceedings 51st Annu. Allerton Conference Comm., Control and Comput. (Allerton'13),.
    • [99] J.Xu, C.Tekin, M.van der Schaar, Learning optimal classifier chains for real-time big data mining, in Proceedings 51st Annu. Allerton Conference Comm., Control and Comput. (Allerton'13), 2013.
    • (2013)
    • Xu, J.1    Tekin, C.2    van der Schaar, M.3
  • 100
    • 84893053113 scopus 로고    scopus 로고
    • SAMOA: a platform for mining big data streams
    • in: Proceedings of the 22nd International Conference on World Wide Web,, pp.
    • [100] G.De Francisci Morales, SAMOA: a platform for mining big data streams, in: Proceedings of the 22nd International Conference on World Wide Web, 2013, pp. 777–778.
    • (2013) , pp. 777-778
    • De Francisci Morales, G.1
  • 101
    • 84959040624 scopus 로고    scopus 로고
    • Big data, lifelong machine learning and transfer learning
    • in: Proceedings of the sixth ACM international conference on Web search and data mining,, pp.
    • [101] Q.Yang, Big data, lifelong machine learning and transfer learning, in: Proceedings of the sixth ACM international conference on Web search and data mining, 2013, pp. 505–506.
    • (2013) , pp. 505-506
    • Yang, Q.1
  • 103
    • 84869463516 scopus 로고    scopus 로고
    • Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training
    • [103] Wang, Z., Crammer, K., Vucetic, S., Breaking the curse of kernelization: budgeted stochastic gradient descent for large-scale SVM training. The J. Mach. Learn. Res. 13 (2012), 3103–3131.
    • (2012) The J. Mach. Learn. Res. , vol.13 , pp. 3103-3131
    • Wang, Z.1    Crammer, K.2    Vucetic, S.3
  • 105
    • 84913546601 scopus 로고    scopus 로고
    • Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification
    • in: Proceedings of the ACM International Conference on Multimedia,, pp.
    • [105] T.Xiao, J.Zhang, K.Yang, Y.Peng, Z.Zhang, Error-Driven Incremental Learning in Deep Convolutional Neural Network for Large-Scale Image Classification, in: Proceedings of the ACM International Conference on Multimedia, 2014, pp. 177–186.
    • (2014) , pp. 177-186
    • Xiao, T.1    Zhang, J.2    Yang, K.3    Peng, Y.4    Zhang, Z.5
  • 106
    • 85013916411 scopus 로고    scopus 로고
    • A survey on platforms for big data analytics
    • [106] Singh, D., Reddy, C.K., A survey on platforms for big data analytics. J. Big Data 2 (2014), 1–20.
    • (2014) J. Big Data , vol.2 , pp. 1-20
    • Singh, D.1    Reddy, C.K.2
  • 107
    • 85084017339 scopus 로고    scopus 로고
    • MLbase: A Distributed Machine-learning System
    • in: Proceedings of the 6th Biennial Conference on Innovative Data Systems Research, Asilomar, California, USA,.
    • [107] T.Kraska, A.Talwalkar, J.Duchi, R.Griffith, M.J.Franklin, M.I.Jordan, MLbase: A Distributed Machine-learning System, in: Proceedings of the 6th Biennial Conference on Innovative Data Systems Research, Asilomar, California, USA, 2013.
    • (2013)
    • Kraska, T.1    Talwalkar, A.2    Duchi, J.3    Griffith, R.4    Franklin, M.J.5    Jordan, M.I.6
  • 108
    • 84905833579 scopus 로고    scopus 로고
    • Breaking the chains: on declarative data analysis and data independence in the big data era
    • [108] Markl, V., Breaking the chains: on declarative data analysis and data independence in the big data era. Proc. VLDB Endow. 7 (2014), 1730–1733.
    • (2014) Proc. VLDB Endow. , vol.7 , pp. 1730-1733
    • Markl, V.1
  • 110
    • 84891347944 scopus 로고    scopus 로고
    • Using Big data and predictive machine learning in aerospace test environments
    • [110] Armes, M, T.R., Using Big data and predictive machine learning in aerospace test environments. IEEE Autotestcon, 2013.
    • (2013) IEEE Autotestcon
    • Armes, M, T.R.1
  • 111
    • 85027560926 scopus 로고    scopus 로고
    • Big Data Security and Privacy
    • in: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, Texas, USA,.
    • [111] B.Thuraisingham, Big Data Security and Privacy, in: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, San Antonio, Texas, USA, 2015.
    • (2015)
    • Thuraisingham, B.1
  • 112
    • 85015167993 scopus 로고    scopus 로고
    • Security and Privacy for Big Data: A Systematic Literature Review
    • in: Proceedings of the 2016 IEEE International Conference on Big Data, Washington, D.C,, pp.
    • [112] B.Nelson, T.Olovsson, Security and Privacy for Big Data: A Systematic Literature Review, in: Proceedings of the 2016 IEEE International Conference on Big Data, Washington, D.C, 2016, pp. 3693–3702.
    • (2016) , pp. 3693-3702
    • Nelson, B.1    Olovsson, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.