메뉴 건너뛰기




Volumn 6, Issue 2, 2014, Pages 264-277

Fast Face Recognition Via Sparse Coding and Extreme Learning Machine

Author keywords

Common feature hypothesis; Extreme learning machine; Face recognition; Sparse coding

Indexed keywords

CODES (SYMBOLS); IMAGE CODING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; NETWORK LAYERS;

EID: 84901191688     PISSN: 18669956     EISSN: 18669964     Source Type: Journal    
DOI: 10.1007/s12559-013-9224-1     Document Type: Article
Times cited : (55)

References (48)
  • 2
    • 78651523478 scopus 로고    scopus 로고
    • Cognitive processes in eye guidance: algorithms for attention in image processing
    • Underwood G. Cognitive processes in eye guidance: algorithms for attention in image processing. Cogn Comput. 2009;1(1): 64-76.
    • (2009) Cogn Comput , vol.1 , Issue.1 , pp. 64-76
    • Underwood, G.1
  • 3
    • 84870441970 scopus 로고    scopus 로고
    • Sentic album: content-, concept-, and context-based online personal photo management system
    • Cambria E, Hussain A. Sentic album: content-, concept-, and context-based online personal photo management system. Cogn Comput. 2012;4(4): 477-96.
    • (2012) Cogn Comput , vol.4 , Issue.4 , pp. 477-496
    • Cambria, E.1    Hussain, A.2
  • 4
    • 33846006213 scopus 로고    scopus 로고
    • Probabilistic 3D object recognition from 2D invariant view sequence based on similarity
    • Nian R, Ji GR, Zhao WC, Feng C. Probabilistic 3D object recognition from 2D invariant view sequence based on similarity. Neurocomputing. 2007;70(4-6): 785-93.
    • (2007) Neurocomputing , vol.70 , Issue.4-6 , pp. 785-793
    • Nian, R.1    Ji, G.R.2    Zhao, W.C.3    Feng, C.4
  • 6
    • 0026065565 scopus 로고
    • Eigenfaces for recognition
    • Turk M, Pentland A. Eigenfaces for recognition. J Cogn Neurosci. 1991;3: 71-86.
    • (1991) J Cogn Neurosci , vol.3 , pp. 71-86
    • Turk, M.1    Pentland, A.2
  • 10
    • 34248388087 scopus 로고    scopus 로고
    • A component-based framework for face detection and identification
    • Heisele B, Serre T, Poggio T. A component-based framework for face detection and identification. Int J Comput Vision. 2007;74(2): 167-81.
    • (2007) Int J Comput Vision , vol.74 , Issue.2 , pp. 167-181
    • Heisele, B.1    Serre, T.2    Poggio, T.3
  • 11
    • 34648825723 scopus 로고    scopus 로고
    • A comparative study of local matching approach for face recognition
    • Zou J, Ji Q, Nagy G. A comparative study of local matching approach for face recognition. IEEE Trans Image Process. 2007;16(10): 2617-28.
    • (2007) IEEE Trans Image Process , vol.16 , Issue.10 , pp. 2617-2628
    • Zou, J.1    Ji, Q.2    Nagy, G.3
  • 13
    • 0014266913 scopus 로고
    • Receptive fields and functional architecture of monkey striate cortex
    • Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195(3): 215-43.
    • (1968) J Physiol , vol.195 , Issue.3 , pp. 215-243
    • Hubel, D.H.1    Wiesel, T.N.2
  • 14
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381(13): 607-9.
    • (1996) Nature , vol.381 , Issue.13 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 15
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an over-complete basis set: a strategy employed by v1?
    • Olshausen BA, Field DJ. Sparse coding with an over-complete basis set: a strategy employed by v1? Vis Res. 1997;37(23): 3311-25.
    • (1997) Vis Res , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 17
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • Lewicki MS, Sejnowski TJ. Learning overcomplete representations. Neural Comput. 2000;12(2): 337-65.
    • (2000) Neural Comput , vol.12 , Issue.2 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 18
    • 0642342991 scopus 로고    scopus 로고
    • Timecourse of neural signatures of object recognition
    • Johnson JS, Olshausen BA. Timecourse of neural signatures of object recognition. J Vis. 2003;3(7): 499-512.
    • (2003) J Vis , vol.3 , Issue.7 , pp. 499-512
    • Johnson, J.S.1    Olshausen, B.A.2
  • 20
    • 51949108630 scopus 로고    scopus 로고
    • Simultaneous image transformation and sparse representation recovery
    • Huang JZ, Huang XL, Metaxas D. Simultaneous image transformation and sparse representation recovery. CVPR. 2008;1-8.
    • (2008) CVPR , pp. 1-8
    • Huang, J.Z.1    Huang, X.L.2    Metaxas, D.3
  • 21
    • 70450162109 scopus 로고    scopus 로고
    • Towards a practical face recognition system: robust registration and illumination by sparse representation
    • Wagner A, Wright J, Ganesh A, Zhou ZH, Ma Y. Towards a practical face recognition system: robust registration and illumination by sparse representation. CVPR. 2009;597-604.
    • (2009) CVPR , pp. 597-604
    • Wagner, A.1    Wright, J.2    Ganesh, A.3    Zhou, Z.H.4    Ma, Y.5
  • 22
    • 78149327980 scopus 로고    scopus 로고
    • Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary
    • Yang M, Zhang L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. ECCV. 2010;448-61.
    • (2010) ECCV , pp. 448-461
    • Yang, M.1    Zhang, L.2
  • 24
    • 51949094985 scopus 로고    scopus 로고
    • Looking around the backyard helps to recognize faces and digits
    • Shan HH, Cottrell GW. Looking around the backyard helps to recognize faces and digits. CVPR. 2008;1-8.
    • (2008) CVPR , pp. 1-8
    • Shan, H.H.1    Cottrell, G.W.2
  • 25
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang GB, Zhu Q, Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006;70: 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.2    Siew, C.K.3
  • 27
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang GB, Chen L, Siew CK. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw. 2006;17(4): 879-92.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 28
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang GB, Chen L. Convex incremental extreme learning machine. Neurocomputing. 2007;70: 3056-62.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.B.1    Chen, L.2
  • 29
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang GB, Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing. 2008;71: 3460-8.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 30
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multi-class classification
    • Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multi-class classification. IEEE Trans Syst Man Cybern. 2012;42(2): 513-29.
    • (2012) IEEE Trans Syst Man Cybern , vol.42 , Issue.2 , pp. 513-529
    • Huang, G.B.1    Zhou, H.2    Ding, X.3    Zhang, R.4
  • 32
    • 80051670315 scopus 로고    scopus 로고
    • Parameter-insensitive kernel in extreme learning for non-linear support vector regression
    • Frénay B, Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing. 2011;74(16): 2526-31.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2526-2531
    • Frénay, B.1    Verleysen, M.2
  • 33
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • Huang GB, Li M, Chen L, Siew C-K CK. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing. 2008;71: 576-83.
    • (2008) Neurocomputing , vol.71 , pp. 576-583
    • Huang, G.B.1    Li, M.2    Chen, L.3    Siew, C.-K.4
  • 34
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate on-line sequential learning algorithm for feedforward networks
    • Liang N, Huang GB, Saratchandran P, Sundararajan N. A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw. 2006;17(6): 1411-23.
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.1    Huang, G.B.2    Saratchandran, P.3    Sundararajan, N.4
  • 35
    • 85008039450 scopus 로고    scopus 로고
    • Online sequential fuzzy extreme learning machine for function approximation and classification problems
    • Rong HJ, Huang GB, Sundararajan N, Saratchandran P. Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans Syst Man Cybern. 2009;39(4): 1067-72.
    • (2009) IEEE Trans Syst Man Cybern , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.J.1    Huang, G.B.2    Sundararajan, N.3    Saratchandran, P.4
  • 36
    • 80051597055 scopus 로고    scopus 로고
    • An OS-ELM based distributed ensemble classification framework in P2P networks
    • Sun Y, Yuan Y, Wang G. An OS-ELM based distributed ensemble classification framework in P2P networks. Neurocomputing. 2011;74: 2438-43.
    • (2011) Neurocomputing , vol.74 , pp. 2438-2443
    • Sun, Y.1    Yuan, Y.2    Wang, G.3
  • 37
    • 55949132682 scopus 로고    scopus 로고
    • A fast pruned extreme learning machine for classification problem
    • Rong H, Ong YS, Tan AH, Zhu Z. A fast pruned extreme learning machine for classification problem. Neurocomputing. 2008;72: 359-66.
    • (2008) Neurocomputing , vol.72 , pp. 359-366
    • Rong, H.1    Ong, Y.S.2    Tan, A.H.3    Zhu, Z.4
  • 39
    • 84870245922 scopus 로고    scopus 로고
    • Circular-ELM for the reduced-reference assessment of perceived image quality
    • Decherchi S, Gastaldo P, Zunino R, Cambria E, Redi J. Circular-ELM for the reduced-reference assessment of perceived image quality. Neurocomputing. 2013;102: 78-89.
    • (2013) Neurocomputing , vol.102 , pp. 78-89
    • Decherchi, S.1    Gastaldo, P.2    Zunino, R.3    Cambria, E.4    Redi, J.5
  • 41
    • 80051584618 scopus 로고    scopus 로고
    • Gpu accelerated and parallelized ELM ensembles for large-scale regression
    • van Heeswijk M, Miche Y, Oja E, Lendasse A. Gpu accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing. 2011;74: 2430-7.
    • (2011) Neurocomputing , vol.74 , pp. 2430-2437
    • van Heeswijk, M.1    Miche, Y.2    Oja, E.3    Lendasse, A.4
  • 42
    • 80051579328 scopus 로고    scopus 로고
    • A new robust training algorithm for a class of single-hidden layer feedforward neural networks
    • Man ZH, Lee K, Wang DH, Cao ZW, Miao CY. A new robust training algorithm for a class of single-hidden layer feedforward neural networks. Neurocomputing. 2011;74: 2491-501.
    • (2011) Neurocomputing , vol.74 , pp. 2491-2501
    • Man, Z.H.1    Lee, K.2    Wang, D.H.3    Cao, Z.W.4    Miao, C.Y.5
  • 45
    • 84874017920 scopus 로고    scopus 로고
    • 3D object recognition based on a geometrical topology model and extreme learning machine
    • Nian R, He B, Lendasse A. 3D object recognition based on a geometrical topology model and extreme learning machine. Neural Comput Appl. 2012;22(3-4): 427-33.
    • (2012) Neural Comput Appl , vol.22 , Issue.3 , pp. 427-433
    • Nian, R.1    He, B.2    Lendasse, A.3
  • 46
    • 55949118135 scopus 로고    scopus 로고
    • A protein secondary structure prediction framework based on the extreme learning machine
    • Wang GR, Zhao Y, Wang D. A protein secondary structure prediction framework based on the extreme learning machine. Neurocomputing. 2008;72: 262-8.
    • (2008) Neurocomputing , vol.72 , pp. 262-268
    • Wang, G.R.1    Zhao, Y.2    Wang, D.3
  • 47
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett PL. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory. 1998;44(2): 525-36.
    • (1998) IEEE Trans Inf Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.