-
1
-
-
33947654306
-
Hierarchical Collective Agent Network (HCAN) for efficient fusion and management of multiple networked sensors
-
Q. Zhu, S. L. Aldridge, and T. N. Resha, "Hierarchical Collective Agent Network (HCAN) for efficient fusion and management of multiple networked sensors," Inf. Fusion, vol.8, pp. 266-280, 2007.
-
(2007)
Inf. Fusion
, vol.8
, pp. 266-280
-
-
Zhu, Q.1
Aldridge, S.L.2
Resha, T.N.3
-
2
-
-
34548147062
-
A new hybrid evolutionary mechanism based on unsupervised learning for connectionist systems
-
A. Porto, A. Araque, J. Rabuñal, J. Dorado, and A. Pazos, "A new hybrid evolutionary mechanism based on unsupervised learning for connectionist systems," Neurocomputing, vol.70, pp. 2799-2808, 2007.
-
(2007)
Neurocomputing
, vol.70
, pp. 2799-2808
-
-
Porto, A.1
Araque, A.2
Rabuñal, J.3
Dorado, J.4
Pazos, A.5
-
3
-
-
34249329952
-
A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting
-
P. Melin, A. Mancilla, M. Lopez, and O. Mendoza, "A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting," Appl. Soft Comput., vol.7, pp. 1217-1226, 2007.
-
(2007)
Appl. Soft Comput.
, vol.7
, pp. 1217-1226
-
-
Melin, P.1
Mancilla, A.2
Lopez, M.3
Mendoza, O.4
-
4
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol.70, pp. 489-501, 2006.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
6
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Jul.
-
G. B. Huang, L. Chen, and C. K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Networks, vol.17, no.4, pp. 879-892, Jul. 2006.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.B.1
Chen, L.2
Siew, C.K.3
-
7
-
-
34548158996
-
Convex incremental extreme learning machine
-
G. B. Huang and L. Chen, "Convex incremental extreme learning machine," Neurocomputing, vol.70, pp. 3056-3062, 2007.
-
(2007)
Neurocomputing
, vol.70
, pp. 3056-3062
-
-
Huang, G.B.1
Chen, L.2
-
8
-
-
0030196364
-
Stacked regressor
-
L. Breiman, "Stacked regressor," Mach. Learn., vol.24, pp. 49-64, 1996.
-
(1996)
Mach. Learn.
, vol.24
, pp. 49-64
-
-
Breiman, L.1
-
9
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Mach. Learn., vol.24, pp. 123-140, 1996.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
10
-
-
0346786584
-
Arcing classifiers
-
L. Breiman, "Arcing classifiers," Ann. Stat., vol.26, pp. 801-849, 1998. (Pubitemid 128450035)
-
(1998)
Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
11
-
-
0031211090
-
A decision-theroretic generalization of on-line learning and an application of boosting
-
Y. Freund and R. Schapire, "A decision-theroretic generalization of on-line learning and an application of boosting," J. Comput. Syst. Sci., vol.55, pp. 119-139, 1997.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
12
-
-
0025448521
-
The strength of weak learnability
-
R. Schapir, "The strength of weak learnability," Mach. Learn., vol.5, pp. 197-227, 1990.
-
(1990)
Mach. Learn.
, vol.5
, pp. 197-227
-
-
Schapir, R.1
-
13
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. Schapire, Y. Freund, P. Barttlett, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Stat., vol.29, pp. 1651-1686, 1998.
-
(1998)
Ann. Stat.
, vol.29
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Barttlett, P.3
Lee, W.S.4
-
14
-
-
0002978642
-
Experiment with a new boosting algorithm
-
San Francisco, CA
-
Y. Freund and R. Schapire, "Experiment with a new boosting algorithm," in Proc. 13th Int. Conf. Comput. Learning Theory, San Francisco, CA, 1996, pp. 208-219.
-
(1996)
Proc. 13th Int. Conf. Comput. Learning Theory
, pp. 208-219
-
-
Freund, Y.1
Schapire, R.2
-
15
-
-
0025448521
-
The strength of weak learnability
-
R. Schapire, "The strength of weak learnability," Mach. Learn., vol.5, pp. 197-227, 1990.
-
(1990)
Mach. Learn.
, vol.5
, pp. 197-227
-
-
Schapire, R.1
-
16
-
-
35248862907
-
An introduction to boosting and leveraging
-
R. Meir and G. Ratsch, "An introduction to boosting and leveraging," Lecture Notes in Computer Scince, vol.2600, pp. 118-183, 2003.
-
(2003)
Lecture Notes in Computer Scince
, vol.2600
, pp. 118-183
-
-
Meir, R.1
Ratsch, G.2
-
17
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
T. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization," Mach. Learn., vol.40, pp. 139-157, 2000.
-
(2000)
Mach. Learn.
, vol.40
, pp. 139-157
-
-
Dietterich, T.1
-
19
-
-
0033556775
-
Boosting regression estimators
-
R. Avnimelech and N. Intrator, "Boosting regression estimators," Neural Comput., vol.11, pp. 499-520, 1999.
-
(1999)
Neural Comput.
, vol.11
, pp. 499-520
-
-
Avnimelech, R.1
Intrator, N.2
-
20
-
-
25544438757
-
-
B.A. (Mod.) thesis (unpublished), Trinity College Dublin, Dublin, Ireland
-
R. Feely, "Predicting stock market volatility using neural networks," B.A. (Mod.) thesis (unpublished), Trinity College Dublin, Dublin, Ireland, 2000.
-
(2000)
Predicting Stock Market Volatility using Neural Networks
-
-
Feely, R.1
-
22
-
-
33745780111
-
Experiments with AdaBoost.RT: An improved boosting scheme for regression
-
D. L. Shrestha and D. P. Solomatine, "Experiments with AdaBoost.RT: An improved boosting scheme for regression," Neural Comput., vol.18, pp. 1678-1710, 2006.
-
(2006)
Neural Comput.
, vol.18
, pp. 1678-1710
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
23
-
-
0035314099
-
A thermodynamic analysis of a steel production step carried out in the ladle furnace
-
U. Camdali, M. Tunc, and F. Dikec, "A thermodynamic analysis of a steel production step carried out in the ladle furnace," Appl. Thermal Eng., vol.21, pp. 643-655, 2001.
-
(2001)
Appl. Thermal Eng.
, vol.21
, pp. 643-655
-
-
Camdali, U.1
Tunc, M.2
Dikec, F.3
-
24
-
-
33745522228
-
Steady state heat transfer of ladle furnace during steel production process
-
25
-
U. Camdali and M. Tunc, "Steady state heat transfer of ladle furnace during steel production process," Int. J. Iron and Steel Res., vol.13, pp. 18-20, 25, 2006.
-
(2006)
Int. J. Iron and Steel Res.
, vol.13
, pp. 18-20
-
-
Camdali, U.1
Tunc, M.2
-
25
-
-
0034591565
-
An intelligent ladle furnace control system
-
Y. G. Sun, D. X. Wang, B. S. Tao, T. Y. Yan, F. Yang, S. B. Fang, and Y. H. Wang, "An intelligent ladle furnace control system," in Proc. 3th World Congr. Intell. Control Autom., 2000, pp. 330-334.
-
(2000)
Proc. 3th World Congr. Intell. Control Autom.
, pp. 330-334
-
-
Sun, Y.G.1
Wang, D.X.2
Tao, B.S.3
Yan, T.Y.4
Yang, F.5
Fang, S.B.6
Wang, Y.H.7
-
26
-
-
34047225577
-
Application of genetic algorithm combined with BP neural network in soft sensor of molten steel temperature
-
H. X. Tian, Z. Z. Mao, S. Wang, and K. Li, "Application of genetic algorithm combined with BP neural network in soft sensor of molten steel temperature," in Proc. 6th World Congr. Control Autom., 2006, pp. 7742-7745.
-
(2006)
Proc. 6th World Congr. Control Autom.
, pp. 7742-7745
-
-
Tian, H.X.1
Mao, Z.Z.2
Wang, S.3
Li, K.4
|