메뉴 건너뛰기




Volumn 7, Issue 1, 2010, Pages 73-80

An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace

Author keywords

AdaBoost.RT; Ensemble algorithm; Extreme learning machine (ELM); Ladle furnace; Self adaptive

Indexed keywords

ARTIFICIAL INTELLIGENT; BP NETWORKS; ENSEMBLE ALGORITHMS; EXTREME LEARNING MACHINE; GENERALIZATION PERFORMANCE; HYBRID INTELLIGENCE; INDUSTRIAL PROCESSS; INDUSTRIAL PRODUCTION; INTELLIGENT ALGORITHMS; INTELLIGENT METHOD; INTELLIGENT MODELS; INTELLIGENT PREDICTION; IRON AND STEEL; LADLE FURNACES; METALLURGIC PROCESS; MOLTEN STEEL; PRODUCTION DATA; REGRESSION PROBLEM; SELF-ADAPTIVE; TEMPERATURE PREDICTION;

EID: 73849104985     PISSN: 15455955     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASE.2008.2005640     Document Type: Article
Times cited : (173)

References (26)
  • 1
    • 33947654306 scopus 로고    scopus 로고
    • Hierarchical Collective Agent Network (HCAN) for efficient fusion and management of multiple networked sensors
    • Q. Zhu, S. L. Aldridge, and T. N. Resha, "Hierarchical Collective Agent Network (HCAN) for efficient fusion and management of multiple networked sensors," Inf. Fusion, vol.8, pp. 266-280, 2007.
    • (2007) Inf. Fusion , vol.8 , pp. 266-280
    • Zhu, Q.1    Aldridge, S.L.2    Resha, T.N.3
  • 2
    • 34548147062 scopus 로고    scopus 로고
    • A new hybrid evolutionary mechanism based on unsupervised learning for connectionist systems
    • A. Porto, A. Araque, J. Rabuñal, J. Dorado, and A. Pazos, "A new hybrid evolutionary mechanism based on unsupervised learning for connectionist systems," Neurocomputing, vol.70, pp. 2799-2808, 2007.
    • (2007) Neurocomputing , vol.70 , pp. 2799-2808
    • Porto, A.1    Araque, A.2    Rabuñal, J.3    Dorado, J.4    Pazos, A.5
  • 3
    • 34249329952 scopus 로고    scopus 로고
    • A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting
    • P. Melin, A. Mancilla, M. Lopez, and O. Mendoza, "A hybrid modular neural network architecture with fuzzy Sugeno integration for time series forecasting," Appl. Soft Comput., vol.7, pp. 1217-1226, 2007.
    • (2007) Appl. Soft Comput. , vol.7 , pp. 1217-1226
    • Melin, P.1    Mancilla, A.2    Lopez, M.3    Mendoza, O.4
  • 4
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G. B. Huang, Q. Y. Zhu, and C. K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol.70, pp. 489-501, 2006.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 6
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Jul.
    • G. B. Huang, L. Chen, and C. K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Networks, vol.17, no.4, pp. 879-892, Jul. 2006.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 7
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • G. B. Huang and L. Chen, "Convex incremental extreme learning machine," Neurocomputing, vol.70, pp. 3056-3062, 2007.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.B.1    Chen, L.2
  • 8
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressor
    • L. Breiman, "Stacked regressor," Mach. Learn., vol.24, pp. 49-64, 1996.
    • (1996) Mach. Learn. , vol.24 , pp. 49-64
    • Breiman, L.1
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Mach. Learn., vol.24, pp. 123-140, 1996.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman, "Arcing classifiers," Ann. Stat., vol.26, pp. 801-849, 1998. (Pubitemid 128450035)
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theroretic generalization of on-line learning and an application of boosting
    • Y. Freund and R. Schapire, "A decision-theroretic generalization of on-line learning and an application of boosting," J. Comput. Syst. Sci., vol.55, pp. 119-139, 1997.
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 12
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapir, "The strength of weak learnability," Mach. Learn., vol.5, pp. 197-227, 1990.
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapir, R.1
  • 13
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P. Barttlett, and W. S. Lee, "Boosting the margin: A new explanation for the effectiveness of voting methods," Ann. Stat., vol.29, pp. 1651-1686, 1998.
    • (1998) Ann. Stat. , vol.29 , pp. 1651-1686
    • Schapire, R.1    Freund, Y.2    Barttlett, P.3    Lee, W.S.4
  • 15
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire, "The strength of weak learnability," Mach. Learn., vol.5, pp. 197-227, 1990.
    • (1990) Mach. Learn. , vol.5 , pp. 197-227
    • Schapire, R.1
  • 16
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • R. Meir and G. Ratsch, "An introduction to boosting and leveraging," Lecture Notes in Computer Scince, vol.2600, pp. 118-183, 2003.
    • (2003) Lecture Notes in Computer Scince , vol.2600 , pp. 118-183
    • Meir, R.1    Ratsch, G.2
  • 17
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • T. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization," Mach. Learn., vol.40, pp. 139-157, 2000.
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 19
    • 0033556775 scopus 로고    scopus 로고
    • Boosting regression estimators
    • R. Avnimelech and N. Intrator, "Boosting regression estimators," Neural Comput., vol.11, pp. 499-520, 1999.
    • (1999) Neural Comput. , vol.11 , pp. 499-520
    • Avnimelech, R.1    Intrator, N.2
  • 22
    • 33745780111 scopus 로고    scopus 로고
    • Experiments with AdaBoost.RT: An improved boosting scheme for regression
    • D. L. Shrestha and D. P. Solomatine, "Experiments with AdaBoost.RT: An improved boosting scheme for regression," Neural Comput., vol.18, pp. 1678-1710, 2006.
    • (2006) Neural Comput. , vol.18 , pp. 1678-1710
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 23
    • 0035314099 scopus 로고    scopus 로고
    • A thermodynamic analysis of a steel production step carried out in the ladle furnace
    • U. Camdali, M. Tunc, and F. Dikec, "A thermodynamic analysis of a steel production step carried out in the ladle furnace," Appl. Thermal Eng., vol.21, pp. 643-655, 2001.
    • (2001) Appl. Thermal Eng. , vol.21 , pp. 643-655
    • Camdali, U.1    Tunc, M.2    Dikec, F.3
  • 24
    • 33745522228 scopus 로고    scopus 로고
    • Steady state heat transfer of ladle furnace during steel production process
    • 25
    • U. Camdali and M. Tunc, "Steady state heat transfer of ladle furnace during steel production process," Int. J. Iron and Steel Res., vol.13, pp. 18-20, 25, 2006.
    • (2006) Int. J. Iron and Steel Res. , vol.13 , pp. 18-20
    • Camdali, U.1    Tunc, M.2
  • 26
    • 34047225577 scopus 로고    scopus 로고
    • Application of genetic algorithm combined with BP neural network in soft sensor of molten steel temperature
    • H. X. Tian, Z. Z. Mao, S. Wang, and K. Li, "Application of genetic algorithm combined with BP neural network in soft sensor of molten steel temperature," in Proc. 6th World Congr. Control Autom., 2006, pp. 7742-7745.
    • (2006) Proc. 6th World Congr. Control Autom. , pp. 7742-7745
    • Tian, H.X.1    Mao, Z.Z.2    Wang, S.3    Li, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.