메뉴 건너뛰기




Volumn 38, Issue , 2013, Pages 76-89

Reservoir computing and extreme learning machines for non-linear time-series data analysis

Author keywords

Extreme learning machine; Non linearity; Reservoir computing; Reservoir with random static projections; Short term memory; Time series data

Indexed keywords

EXTREME LEARNING MACHINE; NON-LINEARITY; RESERVOIR COMPUTING; SHORT TERM MEMORY; TIME-SERIES DATA;

EID: 84871651156     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2012.11.011     Document Type: Article
Times cited : (159)

References (29)
  • 1
    • 51649102889 scopus 로고    scopus 로고
    • Mobile robot control in the road sign problem using reservoir computing networks. In Proceedings of the IEEE international conference on robotics and automation
    • Antonelo, E., Schrauwen, B., & Stroobandt, D. (2008). Mobile robot control in the road sign problem using reservoir computing networks. In Proceedings of the IEEE international conference on robotics and automation (pp. 911-916).
    • (2008) , pp. 911-916
    • Antonelo, E.1    Schrauwen, B.2    Stroobandt, D.3
  • 2
    • 77953355233 scopus 로고    scopus 로고
    • Connectivity, dynamics and memory in reservoir computing with binary and analog neurons
    • Büsing L., Schrauwen B., Legenstein R. Connectivity, dynamics and memory in reservoir computing with binary and analog neurons. Neural Computation 2010, 22(5):1272-1311.
    • (2010) Neural Computation , vol.22 , Issue.5 , pp. 1272-1311
    • Büsing, L.1    Schrauwen, B.2    Legenstein, R.3
  • 3
    • 84871652785 scopus 로고    scopus 로고
    • Reservoir computing with high non-linear separation and long-term memory for time-series data analysis
    • Ph.D. Thesis, Institute for the Environment, Physical Sciences and Applied Mathematics (EPSAM), Keele University, Staffordshire, ST5 5BG, UK.
    • Butcher, J.B. (2012). Reservoir computing with high non-linear separation and long-term memory for time-series data analysis, Ph.D. Thesis, Institute for the Environment, Physical Sciences and Applied Mathematics (EPSAM), Keele University, Staffordshire, ST5 5BG, UK.
    • (2012)
    • Butcher, J.B.1
  • 4
    • 79953702893 scopus 로고    scopus 로고
    • Extending reservoir computing with random static projections: a hybrid between OP-ELM and RC. In European symposium on artificial neural networks, ESANN
    • Butcher, J.B., Verstraeten, D., Schrauwen, B., Day, C.R., & Haycock, P.W. (2010a). Extending reservoir computing with random static projections: a hybrid between OP-ELM and RC. In European symposium on artificial neural networks, ESANN (pp. 303-308).
    • (2010) , pp. 303-308
    • Butcher, J.B.1    Verstraeten, D.2    Schrauwen, B.3    Day, C.R.4    Haycock, P.W.5
  • 5
    • 78449293605 scopus 로고    scopus 로고
    • Pruning reservoirs with random static projections. In IEEE International workshop on machine learning for signal processing, MLSP
    • Butcher, J.B., Verstraeten, D., Schrauwen, B., Day, C.R., & Haycock, P.W. (2010b). Pruning reservoirs with random static projections. In IEEE International workshop on machine learning for signal processing, MLSP (pp. 250-255). http://dx.doi.org/10.1109/MLSP.2010.5589251.
    • (2010) , pp. 250-255
    • Butcher, J.B.1    Verstraeten, D.2    Schrauwen, B.3    Day, C.R.4    Haycock, P.W.5
  • 6
    • 84871650513 scopus 로고    scopus 로고
    • Defect detection in reinforced concrete using random neural architectures
    • In Computer aided civil and infrastructure engineering (submitted for publication).
    • Butcher, J.B., Verstraeten, D., Schrauwen, B., Day, C.R., & Haycock, P.W. (2012). Defect detection in reinforced concrete using random neural architectures. In Computer aided civil and infrastructure engineering (submitted for publication).
    • (2012)
    • Butcher, J.B.1    Verstraeten, D.2    Schrauwen, B.3    Day, C.R.4    Haycock, P.W.5
  • 7
    • 78049526620 scopus 로고    scopus 로고
    • Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry
    • Chen F., Ou T. Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry. Expert Systems with Applications 2011, 38(3):1336-1345.
    • (2011) Expert Systems with Applications , vol.38 , Issue.3 , pp. 1336-1345
    • Chen, F.1    Ou, T.2
  • 8
    • 0019612337 scopus 로고
    • Speech recognition: turning theory to practice
    • Doddington G., Schalk T. Speech recognition: turning theory to practice. IEEE Spectrum 1981, 18(9):26-32.
    • (1981) IEEE Spectrum , vol.18 , Issue.9 , pp. 26-32
    • Doddington, G.1    Schalk, T.2
  • 9
    • 79953685443 scopus 로고    scopus 로고
    • Architectural and Markovian factors of echo state networks
    • Gallicchio C., Micheli A. Architectural and Markovian factors of echo state networks. Neural Networks 2011, 24(5):440-456.
    • (2011) Neural Networks , vol.24 , Issue.5 , pp. 440-456
    • Gallicchio, C.1    Micheli, A.2
  • 10
    • 85137621524 scopus 로고    scopus 로고
    • Reservoir computing: a powerful black-box framework for nonlinear audio processing. In 12th international conference on digital audio effects, DAFx-09. Como, Italy.
    • Holzmann, G. (2009). Reservoir computing: a powerful black-box framework for nonlinear audio processing. In 12th international conference on digital audio effects, DAFx-09. Como, Italy.
    • (2009)
    • Holzmann, G.1
  • 11
    • 80051579893 scopus 로고    scopus 로고
    • Advances in extreme learning machines (elm2010)
    • Huang G., Wang D. Advances in extreme learning machines (elm2010). Neurocomputing 2011, 74(16):2411-2412.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2411-2412
    • Huang, G.1    Wang, D.2
  • 12
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machines: theory and applications
    • Huang G., Zhu Q., Siew C. Extreme learning machines: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Siew, C.3
  • 13
    • 84871642391 scopus 로고    scopus 로고
    • The "echo state" approach to analysing and training recurrent neural networks, Tech. rep., German National Research Institute for Computer Science.
    • Jaeger, H. (2001). The "echo state" approach to analysing and training recurrent neural networks, Tech. rep., German National Research Institute for Computer Science.
    • (2001)
    • Jaeger, H.1
  • 14
    • 84871641858 scopus 로고    scopus 로고
    • Adaptive nonlinear system identification with echo state networks. In Neural information processing systems, NIPS.
    • Jaeger, H. (2002a). Adaptive nonlinear system identification with echo state networks. In Neural information processing systems, NIPS.
    • (2002)
    • Jaeger, H.1
  • 15
    • 84871649024 scopus 로고    scopus 로고
    • A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach, Tech. Rep. GMD Report 159, German National Research Center for Information Technology
    • Jaeger, H. (2002b). A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the "echo state network" approach, Tech. Rep. GMD Report 159, German National Research Center for Information Technology.
    • (2002)
    • Jaeger, H.1
  • 16
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
    • Jaeger H., Haas H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 2004, 304(5667):78-80.
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 17
    • 34249938474 scopus 로고    scopus 로고
    • Optimisation and applications of echo state networks with leaky-integrator neurons
    • Jaeger H., Lukoševičius M., Popovici D., Siewert U. Optimisation and applications of echo state networks with leaky-integrator neurons. Neural Networks 2007, 20(3):335-352.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 335-352
    • Jaeger, H.1    Lukoševičius, M.2    Popovici, D.3    Siewert, U.4
  • 18
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir computing approaches to recurrent neural network training
    • Lukoševičius M., Jaeger H. Reservoir computing approaches to recurrent neural network training. Computer Science Review 2009, 3(3):127-149.
    • (2009) Computer Science Review , vol.3 , Issue.3 , pp. 127-149
    • Lukoševičius, M.1    Jaeger, H.2
  • 22
    • 0004241104 scopus 로고    scopus 로고
    • Chapman and Hall, London, UK
    • Rees D. Essential statistics 2000, Chapman and Hall, London, UK. 4th Ed.
    • (2000) Essential statistics
    • Rees, D.1
  • 23
  • 25
    • 84871646589 scopus 로고    scopus 로고
    • Reservoir computing: computation with dynamical systems, Ph.D. Thesis, Electronics and Information Systems department, University of Ghent, Belgium.
    • Verstraeten, D. (2009). Reservoir computing: computation with dynamical systems, Ph.D. Thesis, Electronics and Information Systems department, University of Ghent, Belgium.
    • (2009)
    • Verstraeten, D.1
  • 26
    • 85180619651 scopus 로고    scopus 로고
    • Memory versus non-linearity in reservoirs. In International joint conference on neural networks, IJCNN
    • Verstraeten, D., Dambre, J., Dutoit, X., & Schrauwen, B. (2010). Memory versus non-linearity in reservoirs. In International joint conference on neural networks, IJCNN (pp. 2669-2676).
    • (2010) , pp. 2669-2676
    • Verstraeten, D.1    Dambre, J.2    Dutoit, X.3    Schrauwen, B.4
  • 28
    • 40649104619 scopus 로고    scopus 로고
    • Reservoir-based techniques for speech recognition. In Proceedings of the international joint conference on neural networks, IJCNN
    • Verstraeten, D., Schrauwen, B., & Stroobandt, D. (2006). Reservoir-based techniques for speech recognition. In Proceedings of the international joint conference on neural networks, IJCNN (pp. 1050-1053).
    • (2006) , pp. 1050-1053
    • Verstraeten, D.1    Schrauwen, B.2    Stroobandt, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.