메뉴 건너뛰기




Volumn 2, Issue 1, 2015, Pages

Big data analytics: a survey

Author keywords

Big data; data analytics; data mining

Indexed keywords

BIG DATA;

EID: 85013880602     PISSN: None     EISSN: 21961115     Source Type: Journal    
DOI: 10.1186/s40537-015-0030-3     Document Type: Article
Times cited : (640)

References (147)
  • 1
    • 85183818412 scopus 로고    scopus 로고
    • Lyman P, Varian H. How much information 2003? Tech. Rep, 2004. [Online]. Available:
    • Lyman P, Varian H. How much information 2003? Tech. Rep, 2004. [Online]. Available: http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/printable_report.pdf.
  • 2
  • 4
    • 0141613770 scopus 로고    scopus 로고
    • Efficient biased sampling for approximate clustering and outlier detection in large data sets
    • Kollios G, Gunopulos D, Koudas N, Berchtold S. Efficient biased sampling for approximate clustering and outlier detection in large data sets. IEEE Trans Knowl Data Eng. 2003;15(5):1170–87.
    • (2003) IEEE Trans Knowl Data Eng , vol.15 , Issue.5 , pp. 1170-1187
    • Kollios, G.1    Gunopulos, D.2    Koudas, N.3    Berchtold, S.4
  • 6
    • 85183824557 scopus 로고    scopus 로고
    • Laney D. 3D data management: controlling data volume, velocity, and variety, META Group, Tech. Rep. 2001. [Online]. Available:
    • Laney D. 3D data management: controlling data volume, velocity, and variety, META Group, Tech. Rep. 2001. [Online]. Available: http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.
  • 7
    • 85183824860 scopus 로고    scopus 로고
    • van Rijmenam M. Why the 3v’s are not sufficient to describe big data, BigData Startups, Tech. Rep. 2013. [Online]. Available:
    • van Rijmenam M. Why the 3v’s are not sufficient to describe big data, BigData Startups, Tech. Rep. 2013. [Online]. Available: http://www.bigdata-startups.com/3vs-sufficient-describe-big-data/.
  • 8
    • 85183824997 scopus 로고    scopus 로고
    • Borne K. Top 10 big data challenges a serious look at 10 big data v’s, Tech. Rep. 2014. [Online]. Available:
    • Borne K. Top 10 big data challenges a serious look at 10 big data v’s, Tech. Rep. 2014. [Online]. Available: https://www.mapr.com/blog/top-10-big-data-challenges-look-10-big-data-v.
  • 9
    • 85183815889 scopus 로고    scopus 로고
    • Press G. 16.1 billion big data market: 2014 predictions from IDC and IIA, Forbes, Tech. Rep. 2013. [Online]. Available:
    • Press G. 16.1 billion big data market: 2014 predictions from IDC and IIA, Forbes, Tech. Rep. 2013. [Online]. Available: http://www.forbes.com/sites/gilpress/2013/12/12/16-1-billion-big-data-market-2014-predictions-from-idc-and-iia/.
  • 10
    • 85183795179 scopus 로고    scopus 로고
    • Big data and analytics—an IDC four pillar research area, IDC, Tech. Rep. 2013. [Online]. Available:
    • Big data and analytics—an IDC four pillar research area, IDC, Tech. Rep. 2013. [Online]. Available: http://www.idc.com/prodserv/FourPillars/bigData/index.jsp.
  • 11
    • 85183809899 scopus 로고    scopus 로고
    • EWEEK, Tech. Rep. 2013. [Online]
    • Taft DK. Big data market to reach 46.34 billion by 2018, EWEEK, Tech. Rep. 2013. [Online]. Available: http://www.eweek.com/database/big-data-market-to-reach-46.34-billion-by-2018.html.
    • (2018) Available:
  • 12
    • 85183829227 scopus 로고    scopus 로고
    • Research A. Big data spending to reach 114 billion in 2018; look for machine learning to drive analytics, ABI Research, Tech. Rep. 2013. [Online]. Available:
    • Research A. Big data spending to reach 114 billion in 2018; look for machine learning to drive analytics, ABI Research, Tech. Rep. 2013. [Online]. Available: https://www.abiresearch.com/press/big-data-spending-to-reach-114-billion-in-2018-loo.
  • 13
    • 85183829590 scopus 로고    scopus 로고
    • Furrier J. Big data market 50 billion by 2017—HP vertica comes out #1—according to wikibon research, SiliconANGLE, Tech. Rep. 2012. [Online]. Available:
    • Furrier J. Big data market 50 billion by 2017—HP vertica comes out #1—according to wikibon research, SiliconANGLE, Tech. Rep. 2012. [Online]. Available: http://siliconangle.com/blog/2012/02/15/big-data-market-15-billion-by-2017-hp-vertica-comes-out-1-according-to-wikibon-research/.
  • 14
    • 85183806303 scopus 로고    scopus 로고
    • Kelly J, Vellante D, Floyer D. Big data market size and vendor revenues, Wikibon, Tech. Rep. 2014. [Online]. Available:
    • Kelly J, Vellante D, Floyer D. Big data market size and vendor revenues, Wikibon, Tech. Rep. 2014. [Online]. Available: http://wikibon.org/wiki/v/Big_Data_Market_Size_and_Vendor_Revenues.
  • 15
    • 85183817877 scopus 로고    scopus 로고
    • Kelly J, Floyer D, Vellante D, Miniman S. Big data vendor revenue and market forecast 2012-2017, Wikibon, Tech. Rep. 2014. [Online]. Available:
    • Kelly J, Floyer D, Vellante D, Miniman S. Big data vendor revenue and market forecast 2012-2017, Wikibon, Tech. Rep. 2014. [Online]. Available: http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_Market_Forecast_2012-2017.
  • 17
    • 84916597404 scopus 로고    scopus 로고
    • Business intelligence and analytics: from big data to big impact
    • Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: from big data to big impact. MIS Quart. 2012;36(4):1165–88.
    • (2012) MIS Quart , vol.36 , Issue.4 , pp. 1165-1188
    • Chen, H.1    Chiang, R.H.L.2    Storey, V.C.3
  • 18
    • 84894317469 scopus 로고    scopus 로고
    • The real-time city? big data and smart urbanism
    • Kitchin R. The real-time city? big data and smart urbanism. Geo J. 2014;79(1):1–14.
    • (2014) Geo J , vol.79 , Issue.1 , pp. 1-14
    • Kitchin, R.1
  • 19
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • Fayyad UM, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. AI Mag. 1996;17(3):37–54.
    • (1996) AI Mag , vol.17 , Issue.3 , pp. 37-54
    • Fayyad, U.M.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 29
    • 0026154509 scopus 로고
    • A survey of decision tree classifier methodology
    • Safavian S, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cyber. 1991;21(3):660–74.
    • (1991) IEEE Trans Syst Man Cyber , vol.21 , Issue.3 , pp. 660-674
    • Safavian, S.1    Landgrebe, D.2
  • 33
    • 17644408058 scopus 로고    scopus 로고
    • Genetic algorithm based framework for mining fuzzy association rules
    • Kaya M, Alhajj R. Genetic algorithm based framework for mining fuzzy association rules. Fuzzy Sets Syst. 2005;152(3):587–601.
    • (2005) Fuzzy Sets Syst , vol.152 , Issue.3 , pp. 587-601
    • Kaya, M.1    Alhajj, R.2
  • 35
    • 0034826102 scopus 로고    scopus 로고
    • Spade: an efficient algorithm for mining frequent sequences
    • Zaki MJ. Spade: an efficient algorithm for mining frequent sequences. Mach Learn. 2001;42(1–2):31–60.
    • (2001) Mach Learn , vol.42 , Issue.1-2 , pp. 31-60
    • Zaki, M.J.1
  • 38
    • 85183820063 scopus 로고    scopus 로고
    • d’Aquin M, Jay N. Interpreting data mining results with linked data for learning analytics: motivation, case study and directions. In: Proceedings of the International Conference on Learning Analytics and Knowledge, pp 155–164
    • d’Aquin M, Jay N. Interpreting data mining results with linked data for learning analytics: motivation, case study and directions. In: Proceedings of the International Conference on Learning Analytics and Knowledge, pp 155–164.
  • 47
    • 4344647570 scopus 로고    scopus 로고
    • Efficient disk-based k-means clustering for relational databases
    • Ordonez C, Omiecinski E. Efficient disk-based k-means clustering for relational databases. IEEE Trans Knowl Data Eng. 2004;16(8):909–21.
    • (2004) IEEE Trans Knowl Data Eng , vol.16 , Issue.8 , pp. 909-921
    • Ordonez, C.1    Omiecinski, E.2
  • 49
    • 0036127265 scopus 로고    scopus 로고
    • Data mining in soft computing framework: a survey
    • Mitra S, Pal S, Mitra P. Data mining in soft computing framework: a survey. IEEE Trans Neural Netw. 2002;13(1):3–14.
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.1 , pp. 3-14
    • Mitra, S.1    Pal, S.2    Mitra, P.3
  • 51
    • 0030169250 scopus 로고    scopus 로고
    • A fast branch and bound nearest neighbour classifier in metric spaces
    • Micó L, Oncina J, Carrasco RC. A fast branch and bound nearest neighbour classifier in metric spaces. Pattern Recogn Lett. 1996;17(7):731–9.
    • (1996) Pattern Recogn Lett , vol.17 , Issue.7 , pp. 731-739
    • Micó, L.1    Oncina, J.2    Carrasco, R.C.3
  • 52
    • 0031099904 scopus 로고    scopus 로고
    • A fast algorithm for the nearest-neighbor classifier
    • Djouadi A, Bouktache E. A fast algorithm for the nearest-neighbor classifier. IEEE Trans Pattern Anal Mach Intel. 1997;19(3):277–82.
    • (1997) IEEE Trans Pattern Anal Mach Intel , vol.19 , Issue.3 , pp. 277-282
    • Djouadi, A.1    Bouktache, E.2
  • 53
    • 50049092345 scopus 로고    scopus 로고
    • Fast and accurate sequential floating forward feature selection with the bayes classifier applied to speech emotion recognition
    • Ververidis D, Kotropoulos C. Fast and accurate sequential floating forward feature selection with the bayes classifier applied to speech emotion recognition. Signal Process. 2008;88(12):2956–70.
    • (2008) Signal Process , vol.88 , Issue.12 , pp. 2956-2970
    • Ververidis, D.1    Kotropoulos, C.2
  • 55
    • 17044438212 scopus 로고    scopus 로고
    • Efficient algorithms for mining closed itemsets and their lattice structure
    • Zaki MJ, Hsiao C-J. Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Trans Knowl Data Eng. 2005;17(4):462–78.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.4 , pp. 462-478
    • Zaki, M.J.1    Hsiao, C.-J.2
  • 58
    • 0034826102 scopus 로고    scopus 로고
    • SPADE: an efficient algorithm for mining frequent sequences
    • Zaki MJ. SPADE: an efficient algorithm for mining frequent sequences. Mach Learn. 2001;42(1–2):31–60.
    • (2001) Mach Learn , vol.42 , Issue.1-2 , pp. 31-60
    • Zaki, M.J.1
  • 62
    • 0037845220 scopus 로고    scopus 로고
    • Incremental mining of sequential patterns in large databases
    • Masseglia F, Poncelet P, Teisseire M. Incremental mining of sequential patterns in large databases. Data Knowl Eng. 2003;46(1):97–121.
    • (2003) Data Knowl Eng , vol.46 , Issue.1 , pp. 97-121
    • Masseglia, F.1    Poncelet, P.2    Teisseire, M.3
  • 63
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • Xu R, Wunsch-II DC. Survey of clustering algorithms. IEEE Trans Neural Netw. 2005;16(3):645–78.
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.C.2
  • 64
    • 78649849282 scopus 로고    scopus 로고
    • A time-efficient pattern reduction algorithm for k-means clustering
    • Chiang M-C, Tsai C-W, Yang C-S. A time-efficient pattern reduction algorithm for k-means clustering. Inform Sci. 2011;181(4):716–31.
    • (2011) Inform Sci , vol.181 , Issue.4 , pp. 716-731
    • Chiang, M.-C.1    Tsai, C.-W.2    Yang, C.-S.3
  • 66
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: analysis, implementation and applications
    • Laskov P, Gehl C, Krüger S, Müller K-R. Incremental support vector learning: analysis, implementation and applications. J Mach Learn Res. 2006;7:1909–36.
    • (2006) J Mach Learn Res , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Krüger, S.3    Müller, K.-R.4
  • 68
    • 84915785146 scopus 로고    scopus 로고
    • Machine learning for big data analytics in plants
    • Ma C, Zhang HH, Wang X. Machine learning for big data analytics in plants. Trends Plant Sci. 2014;19(12):798–808.
    • (2014) Trends Plant Sci , vol.19 , Issue.12 , pp. 798-808
    • Ma, C.1    Zhang, H.H.2    Wang, X.3
  • 69
    • 84861974217 scopus 로고    scopus 로고
    • Critical questions for big data
    • Boyd D, Crawford K. Critical questions for big data. Inform Commun Soc. 2012;15(5):662–79.
    • (2012) Inform Commun Soc , vol.15 , Issue.5 , pp. 662-679
    • Boyd, D.1    Crawford, K.2
  • 71
    • 79951478824 scopus 로고    scopus 로고
    • More is less: signal processing and the data deluge
    • Baraniuk RG. More is less: signal processing and the data deluge. Science. 2011;331(6018):717–9.
    • (2011) Science , vol.331 , Issue.6018 , pp. 717-719
    • Baraniuk, R.G.1
  • 73
    • 1342282223 scopus 로고    scopus 로고
    • Data preprocessing and intelligent data analysis
    • Famili A, Shen W-M, Weber R, Simoudis E. Data preprocessing and intelligent data analysis. Intel Data Anal. 1997;1(1–4):3–23.
    • (1997) Intel Data Anal , vol.1 , Issue.1-4 , pp. 3-23
    • Famili, A.1    Shen, W.-M.2    Weber, R.3    Simoudis, E.4
  • 75
    • 85017058303 scopus 로고    scopus 로고
    • International journal of advances in soft computing and its applications
    • Ham YJ, Lee H-W. International journal of advances in soft computing and its applications. Calc Paralleles Reseaux et Syst Repar. 2014;6(1):1–18.
    • (2014) Calc Paralleles Reseaux et Syst Repar , vol.6 , Issue.1 , pp. 1-18
    • Ham, Y.J.1    Lee, H.-W.2
  • 80
    • 84905086045 scopus 로고    scopus 로고
    • A spatiotemporal compression based approach for efficient big data processing on cloud
    • Yang C, Zhang X, Zhong C, Liu C, Pei J, Ramamohanarao K, Chen J. A spatiotemporal compression based approach for efficient big data processing on cloud. J Comp Syst Sci. 2014;80(8):1563–83.
    • (2014) J Comp Syst Sci , vol.80 , Issue.8 , pp. 1563-1583
    • Yang, C.1    Zhang, X.2    Zhong, C.3    Liu, C.4    Pei, J.5    Ramamohanarao, K.6    Chen, J.7
  • 82
    • 85183803369 scopus 로고    scopus 로고
    • Pospiech M, Felden C. Big data—a state-of-the-art. In: Proceedings of the Americas Conference on Information Systems, 2012, pp 1–23. [Online]. Available:
    • Pospiech M, Felden C. Big data—a state-of-the-art. In: Proceedings of the Americas Conference on Information Systems, 2012, pp 1–23. [Online]. Available: http://aisel.aisnet.org/amcis2012/proceedings/DecisionSupport/22.
  • 83
    • 85183794072 scopus 로고    scopus 로고
    • Apache Hadoop, February 2, 2015. [Online]. Available:
    • Apache Hadoop, February 2, 2015. [Online]. Available: http://hadoop.apache.org.
  • 84
    • 85183817979 scopus 로고    scopus 로고
    • Cuda, February 2, 2015. [Online]. Available: URL:
    • Cuda, February 2, 2015. [Online]. Available: URL: http://www.nvidia.com/object/cuda_home_new.html.
  • 85
    • 85183797042 scopus 로고    scopus 로고
    • Apache Storm, February 2, 2015. [Online]. Available: URL:
    • Apache Storm, February 2, 2015. [Online]. Available: URL: http://storm.apache.org/.
  • 87
    • 85183830356 scopus 로고    scopus 로고
    • Apache Mahout, February 2, 2015. [Online]. Available:
    • Apache Mahout, February 2, 2015. [Online]. Available: http://mahout.apache.org/.
  • 97
    • 84877771183 scopus 로고    scopus 로고
    • Leveraging the capabilities of service-oriented decision support systems: putting analytics and big data in cloud
    • Demirkan H, Delen D. Leveraging the capabilities of service-oriented decision support systems: putting analytics and big data in cloud. Decision Support Syst. 2013;55(1):412–21.
    • (2013) Decision Support Syst , vol.55 , Issue.1 , pp. 412-421
    • Demirkan, H.1    Delen, D.2
  • 98
    • 84877885971 scopus 로고    scopus 로고
    • Clouds for scalable big data analytics
    • Talia D. Clouds for scalable big data analytics. Computer. 2013;46(5):98–101.
    • (2013) Computer , vol.46 , Issue.5 , pp. 98-101
    • Talia, D.1
  • 99
    • 84905024335 scopus 로고    scopus 로고
    • Toward efficient and privacy-preserving computing in big data era
    • Lu R, Zhu H, Liu X, Liu JK, Shao J. Toward efficient and privacy-preserving computing in big data era. IEEE Netw. 2014;28(4):46–50.
    • (2014) IEEE Netw , vol.28 , Issue.4 , pp. 46-50
    • Lu, R.1    Zhu, H.2    Liu, X.3    Liu, J.K.4    Shao, J.5
  • 103
    • 85183821116 scopus 로고    scopus 로고
    • Apache Drill February 2, 2015. [Online]. Available: URL:
    • Apache Drill February 2, 2015. [Online]. Available: URL: http://drill.apache.org/.
  • 104
    • 84923224316 scopus 로고    scopus 로고
    • Toward scalable systems for big data analytics: a technology tutorial
    • Hu H, Wen Y, Chua T-S, Li X. Toward scalable systems for big data analytics: a technology tutorial. IEEE Access. 2014;2:652–87.
    • (2014) IEEE Access , vol.2 , pp. 652-687
    • Hu, H.1    Wen, Y.2    Chua, T.-S.3    Li, X.4
  • 106
    • 84900644792 scopus 로고    scopus 로고
    • Mining big data: current status, and forecast to the future
    • Fan W, Bifet A. Mining big data: current status, and forecast to the future. ACM SIGKDD Explor Newslett. 2013;14(2):1–5.
    • (2013) ACM SIGKDD Explor Newslett , vol.14 , Issue.2 , pp. 1-5
    • Fan, W.1    Bifet, A.2
  • 107
    • 85183820771 scopus 로고    scopus 로고
    • Diebold FX. On the origin(s) and development of the term “big data”, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, Tech. Rep. 2012. [Online]. Available:
    • Diebold FX. On the origin(s) and development of the term “big data”, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, Tech. Rep. 2012. [Online]. Available: http://economics.sas.upenn.edu/sites/economics.sas.upenn.edu/files/12-037.pdf.
  • 111
    • 84873151200 scopus 로고    scopus 로고
    • Cloudvista: interactive and economical visual cluster analysis for big data in the cloud
    • Xu H, Li Z, Guo S, Chen K. Cloudvista: interactive and economical visual cluster analysis for big data in the cloud. Proc VLDB Endowment. 2012;5(12):1886–9.
    • (2012) Proc VLDB Endowment , vol.5 , Issue.12 , pp. 1886-1889
    • Xu, H.1    Li, Z.2    Guo, S.3    Chen, K.4
  • 112
    • 33745809539 scopus 로고    scopus 로고
    • A flocking based algorithm for document clustering analysis
    • Cui X, Gao J, Potok TE. A flocking based algorithm for document clustering analysis. J Syst Archit. 2006;52(89):505–15.
    • (2006) J Syst Archit , vol.52 , Issue.89 , pp. 505-515
    • Cui, X.1    Gao, J.2    Potok, T.E.3
  • 113
    • 84893775225 scopus 로고    scopus 로고
    • GPU enhanced parallel computing for large scale data clustering
    • Cui X, Charles JS, Potok T. GPU enhanced parallel computing for large scale data clustering. Future Gener Comp Syst. 2013;29(7):1736–41.
    • (2013) Future Gener Comp Syst , vol.29 , Issue.7 , pp. 1736-1741
    • Cui, X.1    Charles, J.S.2    Potok, T.3
  • 115
    • 85183804683 scopus 로고    scopus 로고
    • Proceedings of the Allerton Conference on Communication
    • Tekin C, van der Schaar M. Distributed online big data classification using context information. In: Proceedings of the Allerton Conference on Communication, Control, and Computing, 2013. pp 1435–1442.
    • Control, and Computing , vol.2013 , pp. 1435-1442
  • 116
    • 85183817030 scopus 로고    scopus 로고
    • Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big feature and big data classification. CoRR, vol. abs/1307.0471, 2014. [Online]. Available:
    • Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big feature and big data classification. CoRR, vol. abs/1307.0471, 2014. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1307.html#RebentrostML13.
  • 122
    • 0001574151 scopus 로고    scopus 로고
    • A survey of parallel genetic algorithms
    • Paz CE. A survey of parallel genetic algorithms. Calc Paralleles Reseaux et Syst Repar. 1998;10(2):141–71.
    • (1998) Calc Paralleles Reseaux et Syst Repar , vol.10 , Issue.2 , pp. 141-171
    • Paz, C.E.1
  • 123
    • 85013925428 scopus 로고    scopus 로고
    • A comparative study of issues in big data clustering algorithm with constraint based genetic algorithm for associative clustering
    • kranthi Kiran B, Babu AV. A comparative study of issues in big data clustering algorithm with constraint based genetic algorithm for associative clustering. Int J Innov Res Comp Commun Eng 2014; 2(8): 5423–5432.
    • (2014) Int J Innov Res Comp Commun Eng , vol.2 , Issue.8 , pp. 5423-5432
    • kranthi Kiran, B.1    Babu, A.V.2
  • 124
    • 85183820030 scopus 로고    scopus 로고
    • Bu Y, Borkar VR, Carey MJ, Rosen J, Polyzotis N, Condie T, Weimer M, Ramakrishnan R. Scaling datalog for machine learning on big data, CoRR, vol. abs/1203.0160, 2012. [Online]. Available:
    • Bu Y, Borkar VR, Carey MJ, Rosen J, Polyzotis N, Condie T, Weimer M, Ramakrishnan R. Scaling datalog for machine learning on big data, CoRR, vol. abs/1203.0160, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1203.html#abs-1203-0160.
  • 129
    • 85183819762 scopus 로고    scopus 로고
    • Radoop [Online]. Accessed 2 Feb 2015
    • Radoop [Online]. https://rapidminer.com/products/radoop/. Accessed 2 Feb 2015.
  • 130
    • 85183817620 scopus 로고    scopus 로고
    • PigMix [Online]. Accessed 2 Feb 2015
    • PigMix [Online]. https://cwiki.apache.org/confluence/display/PIG/PigMix. Accessed 2 Feb 2015.
  • 131
    • 85183806143 scopus 로고    scopus 로고
    • GridMix [Online]. Accessed 2 Feb 2015
    • GridMix [Online]. http://hadoop.apache.org/docs/r1.2.1/gridmix.html. Accessed 2 Feb 2015.
  • 132
    • 85183799638 scopus 로고    scopus 로고
    • TeraSoft [Online]. Accessed 2 Feb 2015
    • TeraSoft [Online]. http://sortbenchmark.org/. Accessed 2 Feb 2015.
  • 133
    • 85183792516 scopus 로고    scopus 로고
    • TPC, transaction processing performance council [Online]. Accessed 2 Feb 2015
    • TPC, transaction processing performance council [Online]. http://www.tpc.org/. Accessed 2 Feb 2015.
  • 136
    • 85183806152 scopus 로고    scopus 로고
    • An evaluation report for java-based data-intensive applications implemented with hadoop and openmpi
    • Cheptsov A. Hpc in big data age: An evaluation report for java-based data-intensive applications implemented with hadoop and openmpi. In: Proceedings of the European MPI Users’ Group Meeting, 2014. pp 175:175–175:180.
    • In: Proceedings of the European MPI Users’ Group Meeting, 2014. pp 175 , vol.175-175 , pp. 180
    • Cheptsov, A.1
  • 139
    • 85183818747 scopus 로고    scopus 로고
    • Methodology, development, and full-system characterization of a customer usage representative big data/hadoop benchmark
    • Saletore V, Krishnan K, Viswanathan V, Tolentino M. HcBench: Methodology, development, and full-system characterization of a customer usage representative big data/hadoop benchmark. In: Advancing Big Data Benchmarks, 2014. pp 73–93.
    • In: Advancing Big Data Benchmarks , vol.2014 , pp. 73-93
    • Saletore, V.1    Krishnan, K.2    Viswanathan, V.3    Tolentino, M.4
  • 143
    • 85183811725 scopus 로고    scopus 로고
    • Beckmann M, Ebecken NFF, de Lima BSLP, Costa MA. A user interface for big data with rapidminer. RapidMiner World, Boston, MA, Tech. Rep., 2014. [Online]. Available:
    • Beckmann M, Ebecken NFF, de Lima BSLP, Costa MA. A user interface for big data with rapidminer. RapidMiner World, Boston, MA, Tech. Rep., 2014. [Online]. Available: http://www.slideshare.net/RapidMiner/a-user-interface-for-big-data-with-rapidminer-marcelo-beckmann.
  • 145
    • 71749094178 scopus 로고    scopus 로고
    • Parallel k-means clustering based on mapreduce
    • Zhao W, Ma H, He Q. Parallel k-means clustering based on mapreduce. Proceedings Cloud Comp. 2009;5931:674–9.
    • (2009) Proceedings Cloud Comp , vol.5931 , pp. 674-679
    • Zhao, W.1    Ma, H.2    He, Q.3
  • 146
    • 0000671970 scopus 로고
    • Managing the crises in data processing
    • Nolan RL. Managing the crises in data processing. Harvard Bus Rev. 1979;57(1):115–26.
    • (1979) Harvard Bus Rev , vol.57 , Issue.1 , pp. 115-126
    • Nolan, R.L.1
  • 147


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.