-
1
-
-
85183818412
-
-
Lyman P, Varian H. How much information 2003? Tech. Rep, 2004. [Online]. Available:
-
Lyman P, Varian H. How much information 2003? Tech. Rep, 2004. [Online]. Available: http://www2.sims.berkeley.edu/research/projects/how-much-info-2003/printable_report.pdf.
-
-
-
-
4
-
-
0141613770
-
Efficient biased sampling for approximate clustering and outlier detection in large data sets
-
Kollios G, Gunopulos D, Koudas N, Berchtold S. Efficient biased sampling for approximate clustering and outlier detection in large data sets. IEEE Trans Knowl Data Eng. 2003;15(5):1170–87.
-
(2003)
IEEE Trans Knowl Data Eng
, vol.15
, Issue.5
, pp. 1170-1187
-
-
Kollios, G.1
Gunopulos, D.2
Koudas, N.3
Berchtold, S.4
-
5
-
-
84860519166
-
Interactions with big data analytics
-
Fisher D, DeLine R, Czerwinski M, Drucker S. Interactions with big data analytics. Interactions. 2012;19(3):50–9.
-
(2012)
Interactions
, vol.19
, Issue.3
, pp. 50-59
-
-
Fisher, D.1
DeLine, R.2
Czerwinski, M.3
Drucker, S.4
-
6
-
-
85183824557
-
-
Laney D. 3D data management: controlling data volume, velocity, and variety, META Group, Tech. Rep. 2001. [Online]. Available:
-
Laney D. 3D data management: controlling data volume, velocity, and variety, META Group, Tech. Rep. 2001. [Online]. Available: http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.
-
-
-
-
7
-
-
85183824860
-
-
van Rijmenam M. Why the 3v’s are not sufficient to describe big data, BigData Startups, Tech. Rep. 2013. [Online]. Available:
-
van Rijmenam M. Why the 3v’s are not sufficient to describe big data, BigData Startups, Tech. Rep. 2013. [Online]. Available: http://www.bigdata-startups.com/3vs-sufficient-describe-big-data/.
-
-
-
-
8
-
-
85183824997
-
-
Borne K. Top 10 big data challenges a serious look at 10 big data v’s, Tech. Rep. 2014. [Online]. Available:
-
Borne K. Top 10 big data challenges a serious look at 10 big data v’s, Tech. Rep. 2014. [Online]. Available: https://www.mapr.com/blog/top-10-big-data-challenges-look-10-big-data-v.
-
-
-
-
9
-
-
85183815889
-
-
Press G. 16.1 billion big data market: 2014 predictions from IDC and IIA, Forbes, Tech. Rep. 2013. [Online]. Available:
-
Press G. 16.1 billion big data market: 2014 predictions from IDC and IIA, Forbes, Tech. Rep. 2013. [Online]. Available: http://www.forbes.com/sites/gilpress/2013/12/12/16-1-billion-big-data-market-2014-predictions-from-idc-and-iia/.
-
-
-
-
10
-
-
85183795179
-
-
Big data and analytics—an IDC four pillar research area, IDC, Tech. Rep. 2013. [Online]. Available:
-
Big data and analytics—an IDC four pillar research area, IDC, Tech. Rep. 2013. [Online]. Available: http://www.idc.com/prodserv/FourPillars/bigData/index.jsp.
-
-
-
-
11
-
-
85183809899
-
EWEEK, Tech. Rep. 2013. [Online]
-
Taft DK. Big data market to reach 46.34 billion by 2018, EWEEK, Tech. Rep. 2013. [Online]. Available: http://www.eweek.com/database/big-data-market-to-reach-46.34-billion-by-2018.html.
-
(2018)
Available:
-
-
-
12
-
-
85183829227
-
-
Research A. Big data spending to reach 114 billion in 2018; look for machine learning to drive analytics, ABI Research, Tech. Rep. 2013. [Online]. Available:
-
Research A. Big data spending to reach 114 billion in 2018; look for machine learning to drive analytics, ABI Research, Tech. Rep. 2013. [Online]. Available: https://www.abiresearch.com/press/big-data-spending-to-reach-114-billion-in-2018-loo.
-
-
-
-
13
-
-
85183829590
-
-
Furrier J. Big data market 50 billion by 2017—HP vertica comes out #1—according to wikibon research, SiliconANGLE, Tech. Rep. 2012. [Online]. Available:
-
Furrier J. Big data market 50 billion by 2017—HP vertica comes out #1—according to wikibon research, SiliconANGLE, Tech. Rep. 2012. [Online]. Available: http://siliconangle.com/blog/2012/02/15/big-data-market-15-billion-by-2017-hp-vertica-comes-out-1-according-to-wikibon-research/.
-
-
-
-
14
-
-
85183806303
-
-
Kelly J, Vellante D, Floyer D. Big data market size and vendor revenues, Wikibon, Tech. Rep. 2014. [Online]. Available:
-
Kelly J, Vellante D, Floyer D. Big data market size and vendor revenues, Wikibon, Tech. Rep. 2014. [Online]. Available: http://wikibon.org/wiki/v/Big_Data_Market_Size_and_Vendor_Revenues.
-
-
-
-
15
-
-
85183817877
-
-
Kelly J, Floyer D, Vellante D, Miniman S. Big data vendor revenue and market forecast 2012-2017, Wikibon, Tech. Rep. 2014. [Online]. Available:
-
Kelly J, Floyer D, Vellante D, Miniman S. Big data vendor revenue and market forecast 2012-2017, Wikibon, Tech. Rep. 2014. [Online]. Available: http://wikibon.org/wiki/v/Big_Data_Vendor_Revenue_and_Market_Forecast_2012-2017.
-
-
-
-
17
-
-
84916597404
-
Business intelligence and analytics: from big data to big impact
-
Chen H, Chiang RHL, Storey VC. Business intelligence and analytics: from big data to big impact. MIS Quart. 2012;36(4):1165–88.
-
(2012)
MIS Quart
, vol.36
, Issue.4
, pp. 1165-1188
-
-
Chen, H.1
Chiang, R.H.L.2
Storey, V.C.3
-
18
-
-
84894317469
-
The real-time city? big data and smart urbanism
-
Kitchin R. The real-time city? big data and smart urbanism. Geo J. 2014;79(1):1–14.
-
(2014)
Geo J
, vol.79
, Issue.1
, pp. 1-14
-
-
Kitchin, R.1
-
19
-
-
0002283033
-
From data mining to knowledge discovery in databases
-
Fayyad UM, Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery in databases. AI Mag. 1996;17(3):37–54.
-
(1996)
AI Mag
, vol.17
, Issue.3
, pp. 37-54
-
-
Fayyad, U.M.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
24
-
-
10044293277
-
Distributed data mining on grids: services, tools, and applications
-
Cannataro M, Congiusta A, Pugliese A, Talia D, Trunfio P. Distributed data mining on grids: services, tools, and applications. IEEE Trans Syst Man Cyber Part B Cyber. 2004;34(6):2451–65.
-
(2004)
IEEE Trans Syst Man Cyber Part B Cyber
, vol.34
, Issue.6
, pp. 2451-2465
-
-
Cannataro, M.1
Congiusta, A.2
Pugliese, A.3
Talia, D.4
Trunfio, P.5
-
26
-
-
84894683129
-
Data mining for internet of things: a survey
-
Tsai C-W, Lai C-F, Chiang M-C, Yang L. Data mining for internet of things: a survey. IEEE Commun Surveys Tutor. 2014;16(1):77–97.
-
(2014)
IEEE Commun Surveys Tutor
, vol.16
, Issue.1
, pp. 77-97
-
-
Tsai, C.-W.1
Lai, C.-F.2
Chiang, M.-C.3
Yang, L.4
-
29
-
-
0026154509
-
A survey of decision tree classifier methodology
-
Safavian S, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cyber. 1991;21(3):660–74.
-
(1991)
IEEE Trans Syst Man Cyber
, vol.21
, Issue.3
, pp. 660-674
-
-
Safavian, S.1
Landgrebe, D.2
-
33
-
-
17644408058
-
Genetic algorithm based framework for mining fuzzy association rules
-
Kaya M, Alhajj R. Genetic algorithm based framework for mining fuzzy association rules. Fuzzy Sets Syst. 2005;152(3):587–601.
-
(2005)
Fuzzy Sets Syst
, vol.152
, Issue.3
, pp. 587-601
-
-
Kaya, M.1
Alhajj, R.2
-
35
-
-
0034826102
-
Spade: an efficient algorithm for mining frequent sequences
-
Zaki MJ. Spade: an efficient algorithm for mining frequent sequences. Mach Learn. 2001;42(1–2):31–60.
-
(2001)
Mach Learn
, vol.42
, Issue.1-2
, pp. 31-60
-
-
Zaki, M.J.1
-
38
-
-
85183820063
-
-
d’Aquin M, Jay N. Interpreting data mining results with linked data for learning analytics: motivation, case study and directions. In: Proceedings of the International Conference on Learning Analytics and Knowledge, pp 155–164
-
d’Aquin M, Jay N. Interpreting data mining results with linked data for learning analytics: motivation, case study and directions. In: Proceedings of the International Conference on Learning Analytics and Knowledge, pp 155–164.
-
-
-
-
41
-
-
33646513952
-
Visual techniques for the interpretation of data mining outcomes
-
Kopanakis I, Pelekis N, Karanikas H, Mavroudkis T. Visual techniques for the interpretation of data mining outcomes. In: Proceedings of the Panhellenic Conference on Advances in Informatics, 2005. pp 25–35.
-
In: Proceedings of the Panhellenic Conference on Advances in Informatics
, vol.2005
, pp. 25-35
-
-
Kopanakis, I.1
Pelekis, N.2
Karanikas, H.3
Mavroudkis, T.4
-
45
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996. pp 226–231.
-
In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
, vol.1996
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Xu, X.4
-
46
-
-
0001899154
-
Incremental clustering for mining in a data warehousing environment
-
Ester M, Kriegel HP, Sander J, Wimmer M, Xu X. Incremental clustering for mining in a data warehousing environment. In: Proceedings of the International Conference on Very Large Data Bases, 1998. pp 323–333.
-
In: Proceedings of the International Conference on Very Large Data Bases
, vol.1998
, pp. 323-333
-
-
Ester, M.1
Kriegel, H.P.2
Sander, J.3
Wimmer, M.4
Xu, X.5
-
47
-
-
4344647570
-
Efficient disk-based k-means clustering for relational databases
-
Ordonez C, Omiecinski E. Efficient disk-based k-means clustering for relational databases. IEEE Trans Knowl Data Eng. 2004;16(8):909–21.
-
(2004)
IEEE Trans Knowl Data Eng
, vol.16
, Issue.8
, pp. 909-921
-
-
Ordonez, C.1
Omiecinski, E.2
-
49
-
-
0036127265
-
Data mining in soft computing framework: a survey
-
Mitra S, Pal S, Mitra P. Data mining in soft computing framework: a survey. IEEE Trans Neural Netw. 2002;13(1):3–14.
-
(2002)
IEEE Trans Neural Netw
, vol.13
, Issue.1
, pp. 3-14
-
-
Mitra, S.1
Pal, S.2
Mitra, P.3
-
51
-
-
0030169250
-
A fast branch and bound nearest neighbour classifier in metric spaces
-
Micó L, Oncina J, Carrasco RC. A fast branch and bound nearest neighbour classifier in metric spaces. Pattern Recogn Lett. 1996;17(7):731–9.
-
(1996)
Pattern Recogn Lett
, vol.17
, Issue.7
, pp. 731-739
-
-
Micó, L.1
Oncina, J.2
Carrasco, R.C.3
-
53
-
-
50049092345
-
Fast and accurate sequential floating forward feature selection with the bayes classifier applied to speech emotion recognition
-
Ververidis D, Kotropoulos C. Fast and accurate sequential floating forward feature selection with the bayes classifier applied to speech emotion recognition. Signal Process. 2008;88(12):2956–70.
-
(2008)
Signal Process
, vol.88
, Issue.12
, pp. 2956-2970
-
-
Ververidis, D.1
Kotropoulos, C.2
-
55
-
-
17044438212
-
Efficient algorithms for mining closed itemsets and their lattice structure
-
Zaki MJ, Hsiao C-J. Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Trans Knowl Data Eng. 2005;17(4):462–78.
-
(2005)
IEEE Trans Knowl Data Eng
, vol.17
, Issue.4
, pp. 462-478
-
-
Zaki, M.J.1
Hsiao, C.-J.2
-
58
-
-
0034826102
-
SPADE: an efficient algorithm for mining frequent sequences
-
Zaki MJ. SPADE: an efficient algorithm for mining frequent sequences. Mach Learn. 2001;42(1–2):31–60.
-
(2001)
Mach Learn
, vol.42
, Issue.1-2
, pp. 31-60
-
-
Zaki, M.J.1
-
60
-
-
0035016443
-
PrefixSpan mining sequential patterns efficiently by prefix projected pattern growth
-
Pei J, Han J, Asl MB, Pinto H, Chen Q, Dayal U, Hsu MC. PrefixSpan mining sequential patterns efficiently by prefix projected pattern growth. In: Proceedings of the International Conference on Data Engineering, 2001. pp 215–226.
-
In: Proceedings of the International Conference on Data Engineering
, vol.2001
, pp. 215-226
-
-
Pei, J.1
Han, J.2
Asl, M.B.3
Pinto, H.4
Chen, Q.5
Dayal, U.6
Hsu, M.C.7
-
61
-
-
0242540443
-
Sequential PAttern Mining using a bitmap representation
-
Ayres J, Flannick J, Gehrke J, Yiu T. Sequential PAttern Mining using a bitmap representation. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002. pp 429–435.
-
In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, vol.2002
, pp. 429-435
-
-
Ayres, J.1
Flannick, J.2
Gehrke, J.3
Yiu, T.4
-
62
-
-
0037845220
-
Incremental mining of sequential patterns in large databases
-
Masseglia F, Poncelet P, Teisseire M. Incremental mining of sequential patterns in large databases. Data Knowl Eng. 2003;46(1):97–121.
-
(2003)
Data Knowl Eng
, vol.46
, Issue.1
, pp. 97-121
-
-
Masseglia, F.1
Poncelet, P.2
Teisseire, M.3
-
63
-
-
16444383160
-
Survey of clustering algorithms
-
Xu R, Wunsch-II DC. Survey of clustering algorithms. IEEE Trans Neural Netw. 2005;16(3):645–78.
-
(2005)
IEEE Trans Neural Netw
, vol.16
, Issue.3
, pp. 645-678
-
-
Xu, R.1
Wunsch, D.C.2
-
64
-
-
78649849282
-
A time-efficient pattern reduction algorithm for k-means clustering
-
Chiang M-C, Tsai C-W, Yang C-S. A time-efficient pattern reduction algorithm for k-means clustering. Inform Sci. 2011;181(4):716–31.
-
(2011)
Inform Sci
, vol.181
, Issue.4
, pp. 716-731
-
-
Chiang, M.-C.1
Tsai, C.-W.2
Yang, C.-S.3
-
66
-
-
33745777639
-
Incremental support vector learning: analysis, implementation and applications
-
Laskov P, Gehl C, Krüger S, Müller K-R. Incremental support vector learning: analysis, implementation and applications. J Mach Learn Res. 2006;7:1909–36.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1909-1936
-
-
Laskov, P.1
Gehl, C.2
Krüger, S.3
Müller, K.-R.4
-
68
-
-
84915785146
-
Machine learning for big data analytics in plants
-
Ma C, Zhang HH, Wang X. Machine learning for big data analytics in plants. Trends Plant Sci. 2014;19(12):798–808.
-
(2014)
Trends Plant Sci
, vol.19
, Issue.12
, pp. 798-808
-
-
Ma, C.1
Zhang, H.H.2
Wang, X.3
-
69
-
-
84861974217
-
Critical questions for big data
-
Boyd D, Crawford K. Critical questions for big data. Inform Commun Soc. 2012;15(5):662–79.
-
(2012)
Inform Commun Soc
, vol.15
, Issue.5
, pp. 662-679
-
-
Boyd, D.1
Crawford, K.2
-
70
-
-
84886540532
-
Big data: issues, challenges, tools and good practices
-
Katal A, Wazid M, Goudar R. Big data: issues, challenges, tools and good practices. In: Proceedings of the International Conference on Contemporary Computing, 2013. pp 404–409.
-
In: Proceedings of the International Conference on Contemporary Computing
, vol.2013
, pp. 404-409
-
-
Katal, A.1
Wazid, M.2
Goudar, R.3
-
71
-
-
79951478824
-
More is less: signal processing and the data deluge
-
Baraniuk RG. More is less: signal processing and the data deluge. Science. 2011;331(6018):717–9.
-
(2011)
Science
, vol.331
, Issue.6018
, pp. 717-719
-
-
Baraniuk, R.G.1
-
73
-
-
1342282223
-
Data preprocessing and intelligent data analysis
-
Famili A, Shen W-M, Weber R, Simoudis E. Data preprocessing and intelligent data analysis. Intel Data Anal. 1997;1(1–4):3–23.
-
(1997)
Intel Data Anal
, vol.1
, Issue.1-4
, pp. 3-23
-
-
Famili, A.1
Shen, W.-M.2
Weber, R.3
Simoudis, E.4
-
75
-
-
85017058303
-
International journal of advances in soft computing and its applications
-
Ham YJ, Lee H-W. International journal of advances in soft computing and its applications. Calc Paralleles Reseaux et Syst Repar. 2014;6(1):1–18.
-
(2014)
Calc Paralleles Reseaux et Syst Repar
, vol.6
, Issue.1
, pp. 1-18
-
-
Ham, Y.J.1
Lee, H.-W.2
-
78
-
-
84874075485
-
Zip-io: architecture for application-specific compression of big data
-
Jun SW, Fleming K, Adler M, Emer JS. Zip-io: architecture for application-specific compression of big data. In: Proceedings of the International Conference on Field-Programmable Technology, 2012, pp 343–351.
-
In: Proceedings of the International Conference on Field-Programmable Technology
, vol.2012
, pp. 343-351
-
-
Jun, S.W.1
Fleming, K.2
Adler, M.3
Emer, J.S.4
-
79
-
-
84918807309
-
Improving I/O performance with adaptive data compression for big data applications
-
Zou H, Yu Y, Tang W, Chen HM. Improving I/O performance with adaptive data compression for big data applications. In: Proceedings of the International Parallel and Distributed Processing Symposium Workshops, 2014. pp 1228–1237.
-
In: Proceedings of the International Parallel and Distributed Processing Symposium Workshops
, vol.2014
, pp. 1228-1237
-
-
Zou, H.1
Yu, Y.2
Tang, W.3
Chen, H.M.4
-
80
-
-
84905086045
-
A spatiotemporal compression based approach for efficient big data processing on cloud
-
Yang C, Zhang X, Zhong C, Liu C, Pei J, Ramamohanarao K, Chen J. A spatiotemporal compression based approach for efficient big data processing on cloud. J Comp Syst Sci. 2014;80(8):1563–83.
-
(2014)
J Comp Syst Sci
, vol.80
, Issue.8
, pp. 1563-1583
-
-
Yang, C.1
Zhang, X.2
Zhong, C.3
Liu, C.4
Pei, J.5
Ramamohanarao, K.6
Chen, J.7
-
81
-
-
84866606377
-
Compression-aware I/O performance analysis for big data clustering
-
Systems: Programming Models and Applications
-
Xue Z, Shen G, Li J, Xu Q, Zhang Y, Shao J. Compression-aware I/O performance analysis for big data clustering. In: Proceedings of the International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, 2012. pp 45–52.
-
(2012)
Proceedings of the International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms
, pp. 45-52
-
-
Xue, Z.1
Shen, G.2
Li, J.3
Xu, Q.4
Zhang, Y.5
Shao, J.6
-
82
-
-
85183803369
-
-
Pospiech M, Felden C. Big data—a state-of-the-art. In: Proceedings of the Americas Conference on Information Systems, 2012, pp 1–23. [Online]. Available:
-
Pospiech M, Felden C. Big data—a state-of-the-art. In: Proceedings of the Americas Conference on Information Systems, 2012, pp 1–23. [Online]. Available: http://aisel.aisnet.org/amcis2012/proceedings/DecisionSupport/22.
-
-
-
-
83
-
-
85183794072
-
-
Apache Hadoop, February 2, 2015. [Online]. Available:
-
Apache Hadoop, February 2, 2015. [Online]. Available: http://hadoop.apache.org.
-
-
-
-
84
-
-
85183817979
-
-
Cuda, February 2, 2015. [Online]. Available: URL:
-
Cuda, February 2, 2015. [Online]. Available: URL: http://www.nvidia.com/object/cuda_home_new.html.
-
-
-
-
85
-
-
85183797042
-
-
Apache Storm, February 2, 2015. [Online]. Available: URL:
-
Apache Storm, February 2, 2015. [Online]. Available: URL: http://storm.apache.org/.
-
-
-
-
86
-
-
84876211743
-
MLPACK: a scalable C++ machine learning library
-
Curtin RR, Cline JR, Slagle NP, March WB, Ram P, Mehta NA, Gray AG. MLPACK: a scalable C++ machine learning library. J Mach Learn Res. 2013;14:801–5.
-
(2013)
J Mach Learn Res
, vol.14
, pp. 801-805
-
-
Curtin, R.R.1
Cline, J.R.2
Slagle, N.P.3
March, W.B.4
Ram, P.5
Mehta, N.A.6
Gray, A.G.7
-
87
-
-
85183830356
-
-
Apache Mahout, February 2, 2015. [Online]. Available:
-
Apache Mahout, February 2, 2015. [Online]. Available: http://mahout.apache.org/.
-
-
-
-
88
-
-
82155168671
-
DOT: a matrix model for analyzing, optimizing and deploying software for big data analytics in distributed systems
-
Huai Y, Lee R, Zhang S, Xia CH, Zhang X. DOT: a matrix model for analyzing, optimizing and deploying software for big data analytics in distributed systems. In: Proceedings of the ACM Symposium on Cloud Computing, 2011. pp 4:1–4:14.
-
In: Proceedings of the ACM Symposium on Cloud Computing, 2011. pp 4
, vol.1-4
, pp. 14
-
-
Huai, Y.1
Lee, R.2
Zhang, S.3
Xia, C.H.4
Zhang, X.5
-
94
-
-
84903590331
-
Cloud-based big data mining and analyzing services platform integrating r
-
Ye F, Wang ZJ, Zhou FC, Wang YP, Zhou YC. Cloud-based big data mining and analyzing services platform integrating r. In: Proceedings of the International Conference on Advanced Cloud and Big Data, 2013. pp 147–151.
-
In: Proceedings of the International Conference on Advanced Cloud and Big Data
, vol.2013
, pp. 147-151
-
-
Ye, F.1
Wang, Z.J.2
Zhou, F.C.3
Wang, Y.P.4
Zhou, Y.C.5
-
95
-
-
84890419941
-
Data mining with big data
-
Wu X, Zhu X, Wu G-Q, Ding W. Data mining with big data. IEEE Trans Knowl Data Eng. 2014;26(1):97–107.
-
(2014)
IEEE Trans Knowl Data Eng
, vol.26
, Issue.1
, pp. 97-107
-
-
Wu, X.1
Zhu, X.2
Wu, G.-Q.3
Ding, W.4
-
96
-
-
84875208588
-
The mobile data challenge: big data for mobile computing research
-
Laurila JK, Gatica-Perez D, Aad I, Blom J, Bornet O, Do T, Dousse O, Eberle J, Miettinen M. The mobile data challenge: big data for mobile computing research. In: Proceedings of the Mobile Data Challenge by Nokia Workshop, 2012. pp 1–8.
-
In: Proceedings of the Mobile Data Challenge by Nokia Workshop
, vol.2012
, pp. 1-8
-
-
Laurila, J.K.1
Gatica-Perez, D.2
Aad, I.3
Blom, J.4
Bornet, O.5
Do, T.6
Dousse, O.7
Eberle, J.8
Miettinen, M.9
-
97
-
-
84877771183
-
Leveraging the capabilities of service-oriented decision support systems: putting analytics and big data in cloud
-
Demirkan H, Delen D. Leveraging the capabilities of service-oriented decision support systems: putting analytics and big data in cloud. Decision Support Syst. 2013;55(1):412–21.
-
(2013)
Decision Support Syst
, vol.55
, Issue.1
, pp. 412-421
-
-
Demirkan, H.1
Delen, D.2
-
98
-
-
84877885971
-
Clouds for scalable big data analytics
-
Talia D. Clouds for scalable big data analytics. Computer. 2013;46(5):98–101.
-
(2013)
Computer
, vol.46
, Issue.5
, pp. 98-101
-
-
Talia, D.1
-
99
-
-
84905024335
-
Toward efficient and privacy-preserving computing in big data era
-
Lu R, Zhu H, Liu X, Liu JK, Shao J. Toward efficient and privacy-preserving computing in big data era. IEEE Netw. 2014;28(4):46–50.
-
(2014)
IEEE Netw
, vol.28
, Issue.4
, pp. 46-50
-
-
Lu, R.1
Zhu, H.2
Liu, X.3
Liu, J.K.4
Shao, J.5
-
103
-
-
85183821116
-
-
Apache Drill February 2, 2015. [Online]. Available: URL:
-
Apache Drill February 2, 2015. [Online]. Available: URL: http://drill.apache.org/.
-
-
-
-
104
-
-
84923224316
-
Toward scalable systems for big data analytics: a technology tutorial
-
Hu H, Wen Y, Chua T-S, Li X. Toward scalable systems for big data analytics: a technology tutorial. IEEE Access. 2014;2:652–87.
-
(2014)
IEEE Access
, vol.2
, pp. 652-687
-
-
Hu, H.1
Wen, Y.2
Chua, T.-S.3
Li, X.4
-
106
-
-
84900644792
-
Mining big data: current status, and forecast to the future
-
Fan W, Bifet A. Mining big data: current status, and forecast to the future. ACM SIGKDD Explor Newslett. 2013;14(2):1–5.
-
(2013)
ACM SIGKDD Explor Newslett
, vol.14
, Issue.2
, pp. 1-5
-
-
Fan, W.1
Bifet, A.2
-
107
-
-
85183820771
-
-
Diebold FX. On the origin(s) and development of the term “big data”, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, Tech. Rep. 2012. [Online]. Available:
-
Diebold FX. On the origin(s) and development of the term “big data”, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, Tech. Rep. 2012. [Online]. Available: http://economics.sas.upenn.edu/sites/economics.sas.upenn.edu/files/12-037.pdf.
-
-
-
-
109
-
-
84908602473
-
A survey of clustering algorithms for big data: taxonomy and empirical analysis
-
Fahad A, Alshatri N, Tari Z, Alamri A, Khalil I, Zomaya A, Foufou S, Bouras A. A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg Topics Comp. 2014;2(3):267–79.
-
(2014)
IEEE Trans Emerg Topics Comp
, vol.2
, Issue.3
, pp. 267-279
-
-
Fahad, A.1
Alshatri, N.2
Tari, Z.3
Alamri, A.4
Khalil, I.5
Zomaya, A.6
Foufou, S.7
Bouras, A.8
-
110
-
-
84904893872
-
Big data clustering: a review
-
Shirkhorshidi AS, Aghabozorgi SR, Teh YW, Herawan T. Big data clustering: a review. In: Proceedings of the International Conference on Computational Science and Its Applications, 2014. pp 707–720.
-
In: Proceedings of the International Conference on Computational Science and Its Applications
, vol.2014
, pp. 707-720
-
-
Shirkhorshidi, A.S.1
Aghabozorgi, S.R.2
Teh, Y.W.3
Herawan, T.4
-
111
-
-
84873151200
-
Cloudvista: interactive and economical visual cluster analysis for big data in the cloud
-
Xu H, Li Z, Guo S, Chen K. Cloudvista: interactive and economical visual cluster analysis for big data in the cloud. Proc VLDB Endowment. 2012;5(12):1886–9.
-
(2012)
Proc VLDB Endowment
, vol.5
, Issue.12
, pp. 1886-1889
-
-
Xu, H.1
Li, Z.2
Guo, S.3
Chen, K.4
-
112
-
-
33745809539
-
A flocking based algorithm for document clustering analysis
-
Cui X, Gao J, Potok TE. A flocking based algorithm for document clustering analysis. J Syst Archit. 2006;52(89):505–15.
-
(2006)
J Syst Archit
, vol.52
, Issue.89
, pp. 505-515
-
-
Cui, X.1
Gao, J.2
Potok, T.E.3
-
113
-
-
84893775225
-
GPU enhanced parallel computing for large scale data clustering
-
Cui X, Charles JS, Potok T. GPU enhanced parallel computing for large scale data clustering. Future Gener Comp Syst. 2013;29(7):1736–41.
-
(2013)
Future Gener Comp Syst
, vol.29
, Issue.7
, pp. 1736-1741
-
-
Cui, X.1
Charles, J.S.2
Potok, T.3
-
114
-
-
84876035763
-
Constant-size coresets for k-means, pca and projective clustering
-
Feldman D, Schmidt M, Sohler C. Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2013. pp 1434–1453.
-
In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
, vol.2013
, pp. 1434-1453
-
-
Feldman, D.1
Schmidt, M.2
Sohler, C.3
-
115
-
-
85183804683
-
Proceedings of the Allerton Conference on Communication
-
Tekin C, van der Schaar M. Distributed online big data classification using context information. In: Proceedings of the Allerton Conference on Communication, Control, and Computing, 2013. pp 1435–1442.
-
Control, and Computing
, vol.2013
, pp. 1435-1442
-
-
-
116
-
-
85183817030
-
-
Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big feature and big data classification. CoRR, vol. abs/1307.0471, 2014. [Online]. Available:
-
Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big feature and big data classification. CoRR, vol. abs/1307.0471, 2014. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1307.html#RebentrostML13.
-
-
-
-
118
-
-
84871059721
-
PARMA: a parallel randomized algorithm for approximate association rules mining in mapreduce
-
Riondato M, DeBrabant JA, Fonseca R, Upfal E. PARMA: a parallel randomized algorithm for approximate association rules mining in mapreduce. In: Proceedings of the ACM International Conference on Information and Knowledge Management, 2012. pp 85–94.
-
In: Proceedings of the ACM International Conference on Information and Knowledge Management
, vol.2012
, pp. 85-94
-
-
Riondato, M.1
DeBrabant, J.A.2
Fonseca, R.3
Upfal, E.4
-
120
-
-
84863028097
-
DH-TRIE frequent pattern mining on hadoop using JPA
-
Yang L, Shi Z, Xu L, Liang F, Kirsh I. DH-TRIE frequent pattern mining on hadoop using JPA. In: Proceedings of the International Conference on Granular Computing, 2011. pp 875–878.
-
In: Proceedings of the International Conference on Granular Computing
, vol.2011
, pp. 875-878
-
-
Yang, L.1
Shi, Z.2
Xu, L.3
Liang, F.4
Kirsh, I.5
-
121
-
-
85183828848
-
DPSP: Distributed progressive sequential pattern mining on the cloud
-
Huang JW, Lin SC, Chen MS. DPSP: Distributed progressive sequential pattern mining on the cloud. In: Proceedings of the Advances in Knowledge Discovery and Data Mining, vol. 6119, 2010, pp 27–34.
-
In: Proceedings of the Advances in Knowledge Discovery and Data Mining, vol. 6119
, vol.2010
, pp. 27-34
-
-
Huang, J.W.1
Lin, S.C.2
Chen, M.S.3
-
122
-
-
0001574151
-
A survey of parallel genetic algorithms
-
Paz CE. A survey of parallel genetic algorithms. Calc Paralleles Reseaux et Syst Repar. 1998;10(2):141–71.
-
(1998)
Calc Paralleles Reseaux et Syst Repar
, vol.10
, Issue.2
, pp. 141-171
-
-
Paz, C.E.1
-
123
-
-
85013925428
-
A comparative study of issues in big data clustering algorithm with constraint based genetic algorithm for associative clustering
-
kranthi Kiran B, Babu AV. A comparative study of issues in big data clustering algorithm with constraint based genetic algorithm for associative clustering. Int J Innov Res Comp Commun Eng 2014; 2(8): 5423–5432.
-
(2014)
Int J Innov Res Comp Commun Eng
, vol.2
, Issue.8
, pp. 5423-5432
-
-
kranthi Kiran, B.1
Babu, A.V.2
-
124
-
-
85183820030
-
-
Bu Y, Borkar VR, Carey MJ, Rosen J, Polyzotis N, Condie T, Weimer M, Ramakrishnan R. Scaling datalog for machine learning on big data, CoRR, vol. abs/1203.0160, 2012. [Online]. Available:
-
Bu Y, Borkar VR, Carey MJ, Rosen J, Polyzotis N, Condie T, Weimer M, Ramakrishnan R. Scaling datalog for machine learning on big data, CoRR, vol. abs/1203.0160, 2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1203.html#abs-1203-0160.
-
-
-
-
125
-
-
77954723629
-
A system for large-scale graph processing
-
Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G. Pregel: A system for large-scale graph processing. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2010. pp 135–146.
-
In: Proceedings of the ACM SIGMOD International Conference on Management of Data
, vol.2010
, pp. 135-146
-
-
Malewicz, G.1
Austern, M.H.2
Bik, A.J.3
Dehnert, J.C.4
Horn, I.5
Leiser, N.6
Czajkowski, G.7
-
128
-
-
0003068867
-
The dynamics of collective sorting robot-like ants and ant-like robots
-
Deneubourg JL, Goss S, Franks N, Sendova-Franks A, Detrain C, Chrétien L. The dynamics of collective sorting robot-like ants and ant-like robots. In: Proceedings of the International Conference on Simulation of Adaptive Behavior on From Animals to Animats, 1990. pp 356–363.
-
In: Proceedings of the International Conference on Simulation of Adaptive Behavior on From Animals to Animats
, vol.1990
, pp. 356-363
-
-
Deneubourg, J.L.1
Goss, S.2
Franks, N.3
Sendova-Franks, A.4
Detrain, C.5
Chrétien, L.6
-
129
-
-
85183819762
-
-
Radoop [Online]. Accessed 2 Feb 2015
-
Radoop [Online]. https://rapidminer.com/products/radoop/. Accessed 2 Feb 2015.
-
-
-
-
130
-
-
85183817620
-
-
PigMix [Online]. Accessed 2 Feb 2015
-
PigMix [Online]. https://cwiki.apache.org/confluence/display/PIG/PigMix. Accessed 2 Feb 2015.
-
-
-
-
131
-
-
85183806143
-
-
GridMix [Online]. Accessed 2 Feb 2015
-
GridMix [Online]. http://hadoop.apache.org/docs/r1.2.1/gridmix.html. Accessed 2 Feb 2015.
-
-
-
-
132
-
-
85183799638
-
-
TeraSoft [Online]. Accessed 2 Feb 2015
-
TeraSoft [Online]. http://sortbenchmark.org/. Accessed 2 Feb 2015.
-
-
-
-
133
-
-
85183792516
-
-
TPC, transaction processing performance council [Online]. Accessed 2 Feb 2015
-
TPC, transaction processing performance council [Online]. http://www.tpc.org/. Accessed 2 Feb 2015.
-
-
-
-
134
-
-
77954889082
-
Benchmarking cloud serving systems with ycsb
-
Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving systems with ycsb. In: Proceedings of the ACM Symposium on Cloud Computing, 2010. pp 143–154.
-
In: Proceedings of the ACM Symposium on Cloud Computing
, vol.2010
, pp. 143-154
-
-
Cooper, B.F.1
Silberstein, A.2
Tam, E.3
Ramakrishnan, R.4
Sears, R.5
-
135
-
-
84880569459
-
BigBench: Towards an industry standard benchmark for big data analytics
-
Ghazal A, Rabl T, Hu M, Raab F, Poess M, Crolotte A, Jacobsen HA. BigBench: Towards an industry standard benchmark for big data analytics. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, 2013. pp 1197–1208.
-
In: Proceedings of the ACM SIGMOD International Conference on Management of Data
, vol.2013
, pp. 1197-1208
-
-
Ghazal, A.1
Rabl, T.2
Hu, M.3
Raab, F.4
Poess, M.5
Crolotte, A.6
Jacobsen, H.A.7
-
136
-
-
85183806152
-
An evaluation report for java-based data-intensive applications implemented with hadoop and openmpi
-
Cheptsov A. Hpc in big data age: An evaluation report for java-based data-intensive applications implemented with hadoop and openmpi. In: Proceedings of the European MPI Users’ Group Meeting, 2014. pp 175:175–175:180.
-
In: Proceedings of the European MPI Users’ Group Meeting, 2014. pp 175
, vol.175-175
, pp. 180
-
-
Cheptsov, A.1
-
137
-
-
84921388123
-
A highly scalable staged grid database system for oltp and big data applications
-
Yuan LY, Wu L, You JH, Chi Y. Rubato db: A highly scalable staged grid database system for oltp and big data applications. In: Proceedings of the ACM International Conference on Conference on Information and Knowledge Management, 2014. pp 1–10.
-
In: Proceedings of the ACM International Conference on Conference on Information and Knowledge Management
, vol.2014
, pp. 1-10
-
-
Yuan, L.Y.1
Wu, L.2
You, J.H.3
Chi, Y.4
-
138
-
-
85183807059
-
Big data benchmark - big DS
-
Zhao JM, Wang WS, Liu X, Chen YF. Big data benchmark - big DS. In: Proceedings of the Advancing Big Data Benchmarks, 2014, pp. 49–57.
-
In: Proceedings of the Advancing Big Data Benchmarks
, vol.2014
, pp. 49-57
-
-
Zhao, J.M.1
Wang, W.S.2
Liu, X.3
Chen, Y.F.4
-
139
-
-
85183818747
-
Methodology, development, and full-system characterization of a customer usage representative big data/hadoop benchmark
-
Saletore V, Krishnan K, Viswanathan V, Tolentino M. HcBench: Methodology, development, and full-system characterization of a customer usage representative big data/hadoop benchmark. In: Advancing Big Data Benchmarks, 2014. pp 73–93.
-
In: Advancing Big Data Benchmarks
, vol.2014
, pp. 73-93
-
-
Saletore, V.1
Krishnan, K.2
Viswanathan, V.3
Tolentino, M.4
-
140
-
-
84872914529
-
Visual analytics for the big data era—a comparative review of state-of-the-art commercial systems
-
Zhang L, Stoffel A, Behrisch M, Mittelstadt S, Schreck T, Pompl R, Weber S, Last H, Keim D. Visual analytics for the big data era—a comparative review of state-of-the-art commercial systems. In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology, 2012. pp 173–182.
-
In: Proceedings of the IEEE Conference on Visual Analytics Science and Technology
, vol.2012
, pp. 173-182
-
-
Zhang, L.1
Stoffel, A.2
Behrisch, M.3
Mittelstadt, S.4
Schreck, T.5
Pompl, R.6
Weber, S.7
Last, H.8
Keim, D.9
-
141
-
-
84921722975
-
The TUH EEG CORPUS: A big data resource for automated eeg interpretation
-
Harati A, Lopez S, Obeid I, Picone J, Jacobson M, Tobochnik S. The TUH EEG CORPUS: A big data resource for automated eeg interpretation. In: Proceeding of the IEEE Signal Processing in Medicine and Biology Symposium, 2014. pp 1–5.
-
In: Proceeding of the IEEE Signal Processing in Medicine and Biology Symposium
, vol.2014
, pp. 1-5
-
-
Harati, A.1
Lopez, S.2
Obeid, I.3
Picone, J.4
Jacobson, M.5
Tobochnik, S.6
-
142
-
-
84868325513
-
Hive: a warehousing solution over a map-reduce framework
-
Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hive: a warehousing solution over a map-reduce framework. Proc VLDB Endowment. 2009;2(2):1626–9.
-
(2009)
Proc VLDB Endowment
, vol.2
, Issue.2
, pp. 1626-1629
-
-
Thusoo, A.1
Sarma, J.S.2
Jain, N.3
Shao, Z.4
Chakka, P.5
Anthony, S.6
Liu, H.7
Wyckoff, P.8
Murthy, R.9
-
143
-
-
85183811725
-
-
Beckmann M, Ebecken NFF, de Lima BSLP, Costa MA. A user interface for big data with rapidminer. RapidMiner World, Boston, MA, Tech. Rep., 2014. [Online]. Available:
-
Beckmann M, Ebecken NFF, de Lima BSLP, Costa MA. A user interface for big data with rapidminer. RapidMiner World, Boston, MA, Tech. Rep., 2014. [Online]. Available: http://www.slideshare.net/RapidMiner/a-user-interface-for-big-data-with-rapidminer-marcelo-beckmann.
-
-
-
-
144
-
-
85183800358
-
DBDC: Density based distributed clustering
-
Januzaj E, Kriegel HP, Pfeifle M. DBDC: Density based distributed clustering. In: Proceedings of the Advances in Database Technology, 2004; vol. 2992, 2004, pp 88–105.
-
In: Proceedings of the Advances in Database Technology, 2004; vol. 2992
, vol.2004
, pp. 88-105
-
-
Januzaj, E.1
Kriegel, H.P.2
Pfeifle, M.3
-
145
-
-
71749094178
-
Parallel k-means clustering based on mapreduce
-
Zhao W, Ma H, He Q. Parallel k-means clustering based on mapreduce. Proceedings Cloud Comp. 2009;5931:674–9.
-
(2009)
Proceedings Cloud Comp
, vol.5931
, pp. 674-679
-
-
Zhao, W.1
Ma, H.2
He, Q.3
-
146
-
-
0000671970
-
Managing the crises in data processing
-
Nolan RL. Managing the crises in data processing. Harvard Bus Rev. 1979;57(1):115–26.
-
(1979)
Harvard Bus Rev
, vol.57
, Issue.1
, pp. 115-126
-
-
Nolan, R.L.1
-
147
-
-
84958545304
-
Recent development of metaheuristics for clustering. In: Proceedings of the Mobile
-
Tsai CW, Huang WC, Chiang MC. Recent development of metaheuristics for clustering. In: Proceedings of the Mobile, Ubiquitous, and Intelligent Computing, 2014; vol. 274, pp. 629–636.
-
Ubiquitous, and Intelligent Computing, 2014
, vol.274
, pp. 629-636
-
-
Tsai, C.W.1
Huang, W.C.2
Chiang, M.C.3
|