메뉴 건너뛰기




Volumn 36, Issue 6, 2016, Pages 1231-1247

Big data: From beginning to future

Author keywords

Analytics; Big data; Cloud computing; Internet of things; Parallel and distributed computing; Social media

Indexed keywords

BIG DATA; CLOUD COMPUTING; DATA ANALYTICS; DATA HANDLING; DISTRIBUTED COMPUTER SYSTEMS; INTERNET OF THINGS;

EID: 84987937059     PISSN: 02684012     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijinfomgt.2016.07.009     Document Type: Review
Times cited : (334)

References (139)
  • 1
    • 84894646273 scopus 로고    scopus 로고
    • Cloud-based augmentation for mobile devices: motivation, taxonomies, and open challenges
    • Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya, R., Cloud-based augmentation for mobile devices: motivation, taxonomies, and open challenges. IEEE Communications Surveys & Tutorials 16:1 (2014), 337–368.
    • (2014) IEEE Communications Surveys & Tutorials , vol.16 , Issue.1 , pp. 337-368
    • Abolfazli, S.1    Sanaei, Z.2    Ahmed, E.3    Gani, A.4    Buyya, R.5
  • 2
    • 84896313884 scopus 로고    scopus 로고
    • Rich Mobile Applications: Genesis, taxonomy, and open issues
    • Journal of Network and Computer Applications,40, April 2014, Pages 345–362, ISSN 1084–8045, doi: 10.1016/j.jnca.2013.09.009.
    • Abolfazli, Saeid, Zohreh, Sanaei, Gani, Abdullah, Xia, Feng, T. Yang, Laurence. (2014). Rich Mobile Applications: Genesis, taxonomy, and open issues, Journal of Network and Computer Applications,40, April 2014, Pages 345–362, ISSN 1084–8045, doi: 10.1016/j.jnca.2013.09.009.
    • (2014)
    • Saeid, A.1    Sanaei, Z.2    Abdullah, G.3    Feng, X.4    Yang Laurence, T.5
  • 3
    • 84898022359 scopus 로고    scopus 로고
    • An experimental analysis on cloud-based mobile augmentation in mobile cloud computing
    • in IEEE Transactions on Consumer Electronics, vol. 60, no. 1, pp. 146–154, February 2014. doi: 10.1109/TCE.2014.6780937.
    • Abolfazli, S., Sanaei, Z., Alizadeh, M., Gani, A., Xia, F. (2014). An experimental analysis on cloud-based mobile augmentation in mobile cloud computing, in IEEE Transactions on Consumer Electronics, vol. 60, no. 1, pp. 146–154, February 2014. doi: 10.1109/TCE.2014.6780937.
    • (2014)
    • Abolfazli, S.1    Sanaei, Z.2    Alizadeh, M.3    Gani, A.4    Xia, F.5
  • 4
    • 84928730965 scopus 로고    scopus 로고
    • Cloud adoption in Malaysia: Trends, opportunities, and challenges Cloud Computing
    • Abolfazli, S., Sanaei, Z., Tabassi, A., Rosen, S., Gani, A., Khan, S.U., Cloud adoption in Malaysia: Trends, opportunities, and challenges Cloud Computing. IEEE 1 (2015), 60–68.
    • (2015) IEEE , vol.1 , pp. 60-68
    • Abolfazli, S.1    Sanaei, Z.2    Tabassi, A.3    Rosen, S.4    Gani, A.5    Khan, S.U.6
  • 5
    • 84990022019 scopus 로고    scopus 로고
    • A Survey on Mobile Edge Computing, in 10th international conference on intelligents systems and control
    • Ahmed, A., Ahmed, E., A Survey on Mobile Edge Computing, in 10th international conference on intelligents systems and control. IEEE India, 2016, 1–8.
    • (2016) IEEE India , pp. 1-8
    • Ahmed, A.1    Ahmed, E.2
  • 6
    • 0036570564 scopus 로고    scopus 로고
    • E-business process modeling: The next big step
    • Aissi, S., Malu, P., Srinivasan, K., E-business process modeling: The next big step. Computer 35:5 (2002), 55–62.
    • (2002) Computer , vol.35 , Issue.5 , pp. 55-62
    • Aissi, S.1    Malu, P.2    Srinivasan, K.3
  • 7
    • 84927770130 scopus 로고    scopus 로고
    • Securing software defined networks: Taxonomy, requirements, and open issues
    • Akhunzada, A., et al. Securing software defined networks: Taxonomy, requirements, and open issues. Communications Magazine, IEEE 53:4 (2015), 36–44.
    • (2015) Communications Magazine, IEEE , vol.53 , Issue.4 , pp. 36-44
    • Akhunzada, A.1
  • 8
    • 84987992407 scopus 로고    scopus 로고
    • Case studies: Big data
    • Available from: Accessed 24.07.14
    • Alacer, Case studies: Big data. 2014 Available from: http://www.alacergroup.com/practice-category/big-data/casestudies/ Accessed 24.07.14.
    • (2014)
    • Alacer1
  • 9
    • 84878810103 scopus 로고    scopus 로고
    • AWS case study: SwiftKey
    • Available from: Accessed 3.08.14
    • Amazon, AWS case study: SwiftKey. 2014 Available from: http://aws.amazon.com/solutions/case-studies/big-data/ Accessed 3.08.14.
    • (2014)
    • Amazon1
  • 10
    • 84987998714 scopus 로고    scopus 로고
    • Usage statistics
    • Available from: Accessed 21.04.14
    • Apple, Usage statistics. 2014 Available from: http://www.statisticbrain.com/apple-computer-company-statistics/ Accessed 21.04.14.
    • (2014)
    • Apple1
  • 11
    • 84955135969 scopus 로고    scopus 로고
    • Case study
    • Available from: Accessed 23.08.14
    • Appnexus, Case study. 2014 Available from: http://techblog.appnexus.com/2012/a-hadoop-success-story-horizontally-scaling-our-data-pipeline/ Accessed 23.08.14.
    • (2014)
    • Appnexus1
  • 12
    • 77956517766 scopus 로고    scopus 로고
    • Web structure mining, in advanced techniques in web intelligence-I
    • Springer
    • Baeza-Yates, R., Boldi, P., Web structure mining, in advanced techniques in web intelligence-I. 2010, Springer, 113–142.
    • (2010) , pp. 113-142
    • Baeza-Yates, R.1    Boldi, P.2
  • 15
    • 84943350772 scopus 로고    scopus 로고
    • Social big data: Recent achievements and new challenges
    • Bello-Orgaz, G., Jung, J.J., Camacho, D., Social big data: Recent achievements and new challenges. Information Fusion 28 (2016), 45–59.
    • (2016) Information Fusion , vol.28 , pp. 45-59
    • Bello-Orgaz, G.1    Jung, J.J.2    Camacho, D.3
  • 16
    • 0035953739 scopus 로고    scopus 로고
    • Publishing on the semantic web
    • Berners-Lee, T., Hendler, J., Publishing on the semantic web. Nature 410:6832 (2001), 1023–1024.
    • (2001) Nature , vol.410 , Issue.6832 , pp. 1023-1024
    • Berners-Lee, T.1    Hendler, J.2
  • 17
    • 0003900693 scopus 로고    scopus 로고
    • Indexing techniques for advanced database systems
    • Springer Publishing Company, Incorporated
    • Bertino, E., et al. Indexing techniques for advanced database systems. 2012, Springer Publishing Company, Incorporated.
    • (2012)
    • Bertino, E.1
  • 18
    • 84987998711 scopus 로고    scopus 로고
    • Beyond the PC. Special Report on Personal Technology.
    • Beyond the PC. Special Report on Personal Technology.
  • 19
    • 0004008854 scopus 로고
    • Pattern recognition with fuzzy objective function algorithms
    • Kluwer Academic Publishers
    • Bezdek, J.C., Pattern recognition with fuzzy objective function algorithms. 1981, Kluwer Academic Publishers.
    • (1981)
    • Bezdek, J.C.1
  • 21
    • 0014814325 scopus 로고
    • Space/time trade-offs in hash coding with allowable errors
    • Bloom, B.H., Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13:7 (1970), 422–426.
    • (1970) Communications of the ACM , vol.13 , Issue.7 , pp. 422-426
    • Bloom, B.H.1
  • 22
    • 84870402156 scopus 로고    scopus 로고
    • Big-data computing: Creating revolutionary breakthroughs in commerce, science and society
    • Bryant, R., Katz, R.H., Lazowska, E.D., Big-data computing: Creating revolutionary breakthroughs in commerce, science and society. 2008.
    • (2008)
    • Bryant, R.1    Katz, R.H.2    Lazowska, E.D.3
  • 24
    • 84870514323 scopus 로고    scopus 로고
    • A parallel computing framework for large-scale air traffic flow optimization
    • Cao, Y., Sun, D., A parallel computing framework for large-scale air traffic flow optimization. Intelligent Transportation Systems, IEEE Transactions on 13:4 (2012), 1855–1864.
    • (2012) Intelligent Transportation Systems, IEEE Transactions on , vol.13 , Issue.4 , pp. 1855-1864
    • Cao, Y.1    Sun, D.2
  • 25
    • 84892181254 scopus 로고    scopus 로고
    • Exploring splunk
    • CITO Research New York, NY
    • Carasso, D., Exploring splunk. 2012, CITO Research, New York, NY.
    • (2012)
    • Carasso, D.1
  • 26
    • 84861574837 scopus 로고    scopus 로고
    • Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review
    • Castillo, O., Melin, P., Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review. Information Sciences 205 (2012), 1–19.
    • (2012) Information Sciences , vol.205 , pp. 1-19
    • Castillo, O.1    Melin, P.2
  • 27
    • 84987974949 scopus 로고    scopus 로고
    • Analysis of unstructured data: Applications of text analytics and sentiment mining
    • Chakraborty, G., Analysis of unstructured data: Applications of text analytics and sentiment mining. SAS global forum, 2014.
    • (2014) SAS global forum
    • Chakraborty, G.1
  • 33
    • 84987979874 scopus 로고    scopus 로고
    • Using big data to bridge the virtual & physical worlds
    • Available from: Accessed 23.07.14
    • Cloudera, Using big data to bridge the virtual & physical worlds. 2014 Available from: http://www.cloudera.com/content/dam/cloudera/documents/Cloudera-Nokia-case-study-final.pdf Accessed 23.07.14.
    • (2014)
    • Cloudera1
  • 34
    • 84883809465 scopus 로고    scopus 로고
    • What is analytics? Definition and essential characteristics
    • Cooper, A., What is analytics? Definition and essential characteristics. CETIS Analytics Series 1:5 (2012), 1–10.
    • (2012) CETIS Analytics Series , vol.1 , Issue.5 , pp. 1-10
    • Cooper, A.1
  • 35
    • 84864453108 scopus 로고    scopus 로고
    • jModelTest 2: more models, new heuristics and parallel computing
    • Darriba, D., Taboada, G.L., Doallo, R., Posada, D., jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 2012, 772.
    • (2012) Nature Methods , vol.9 , Issue.8 , pp. 772
    • Darriba, D.1    Taboada, G.L.2    Doallo, R.3    Posada, D.4
  • 38
    • 84988031709 scopus 로고    scopus 로고
    • Statistics of Facebook data
    • Available from: Accessed 28.04.14
    • Facebook, Statistics of Facebook data. 2014 Available from: http://www.statisticbrain.com/facebook-statistics/ Accessed 28.04.14.
    • (2014)
    • Facebook1
  • 41
    • 84988023165 scopus 로고    scopus 로고
    • Statistics of Flickr data
    • Available from: Accessed 21.03.14
    • Flickr, Statistics of Flickr data. 2014 Available from: https://www.quantcast.com/flickr.com Accessed 21.03.14.
    • (2014)
    • Flickr1
  • 42
    • 84987979841 scopus 로고    scopus 로고
    • Statistics of Foursquare data
    • Available from: Accessed 21.03.14
    • Foursquare, Statistics of Foursquare data. 2014 Available from: https://www.foursquare.org/about/stats Accessed 21.03.14.
    • (2014)
    • Foursquare1
  • 43
    • 84962728242 scopus 로고    scopus 로고
    • Evaluation of Parallel Indexing Scheme for Big Data
    • In Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015 3rd International Conference on (pp. 148–153). IEEE.
    • Funaki, K., Hochin, T., Nomiya, H., & Nakanishi, H. (2015). Evaluation of Parallel Indexing Scheme for Big Data. In Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence (ACIT-CSI), 2015 3rd International Conference on (pp. 148–153). IEEE.
    • (2015)
    • Funaki, K.1    Hochin, T.2    Nomiya, H.3    Nakanishi, H.4
  • 45
    • 84958165993 scopus 로고    scopus 로고
    • A survey on indexing techniques for big data: taxonomy and performance evaluation
    • Gani, A., Siddiqa, A., Shamshirband, S., Hanum, F., A survey on indexing techniques for big data: taxonomy and performance evaluation. Knowledge and Information Systems 46:2 (2016), 241–284.
    • (2016) Knowledge and Information Systems , vol.46 , Issue.2 , pp. 241-284
    • Gani, A.1    Siddiqa, A.2    Shamshirband, S.3    Hanum, F.4
  • 46
    • 84864133585 scopus 로고    scopus 로고
    • Extracting value from chaos
    • Gantz, J., Reinsel, D., Extracting value from chaos. IDC iview, 2011, 1–12.
    • (2011) IDC iview , pp. 1-12
    • Gantz, J.1    Reinsel, D.2
  • 47
    • 84878440494 scopus 로고    scopus 로고
    • A big data implementation based on Grid computing
    • In Roedunet International Conference (RoEduNet), 2013 11th (pp. 1–4). IEEE.
    • Garlasu, D., Sandulescu, V., Halcu, I., Neculoiu, G., Grigoriu, O., Marinescu, M., et al. (2013). A big data implementation based on Grid computing. In Roedunet International Conference (RoEduNet), 2013 11th (pp. 1–4). IEEE.
    • (2013)
    • Garlasu, D.1    Sandulescu, V.2    Halcu, I.3    Neculoiu, G.4    Grigoriu, O.5    Marinescu, M.6
  • 49
    • 84894902759 scopus 로고    scopus 로고
    • Introduction to Special Issue on quantum cryptography
    • Gilbert, G., Weinstein, Y.S., Introduction to Special Issue on quantum cryptography. Quantum Information Processing 13:1 (2014), 1–4.
    • (2014) Quantum Information Processing , vol.13 , Issue.1 , pp. 1-4
    • Gilbert, G.1    Weinstein, Y.S.2
  • 50
    • 84988007810 scopus 로고    scopus 로고
    • Statistics of Google data
    • Available from: Accessed 17.03.14
    • Google, Statistics of Google data. 2014 Available from: http://www.statisticbrain.com/google-searches/ Accessed 17.03.14.
    • (2014)
    • Google1
  • 51
    • 84988004925 scopus 로고    scopus 로고
    • Case study: How redBus uses BigQuery to master big data
    • Available from: Accessed 22.07.14
    • Google, Case study: How redBus uses BigQuery to master big data. 2014 Available from: https://developers.google.com/bigquery/case-studies/ Accessed 22.07.14.
    • (2014)
    • Google1
  • 52
    • 79959958479 scopus 로고    scopus 로고
    • Tableau tool for testing satisfiability in ltl: Implementation and experimental analysis
    • Goranko, V., Kyrilov, A., Shkatov, D., Tableau tool for testing satisfiability in ltl: Implementation and experimental analysis. Electronic Notes in Theoretical Computer Science 262 (2010), 113–125.
    • (2010) Electronic Notes in Theoretical Computer Science , vol.262 , pp. 113-125
    • Goranko, V.1    Kyrilov, A.2    Shkatov, D.3
  • 53
    • 84946411120 scopus 로고    scopus 로고
    • Journey from Data Mining to Web Mining to Big Data
    • arXiv preprint arXiv:1404.4140.
    • Gupta, R. (2014). Journey from Data Mining to Web Mining to Big Data. arXiv preprint arXiv:1404.4140.
    • (2014)
    • Gupta, R.1
  • 54
    • 33646486708 scopus 로고    scopus 로고
    • Ultra-high-density phase-change storage and memory
    • Hamann, H.F., et al. Ultra-high-density phase-change storage and memory. Nature Materials 5:5 (2006), 383–387.
    • (2006) Nature Materials , vol.5 , Issue.5 , pp. 383-387
    • Hamann, H.F.1
  • 55
    • 84855888662 scopus 로고    scopus 로고
    • Survey on NoSQL database
    • In Pervasive computing and applications (ICPCA), 2011 6th international conference on (pp. 363-366). IEEE
    • Han, J., Haihong, E., Le, G., & Du, J. (2011). Survey on NoSQL database. In Pervasive computing and applications (ICPCA), 2011 6th international conference on (pp. 363-366). IEEE.
    • (2011)
    • Han, J.1    Haihong, E.2    Le, G.3    Du, J.4
  • 59
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 60
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Computation 18:7 (2006), 1527–1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 61
    • 84988001825 scopus 로고    scopus 로고
    • Statistics of Instagram data
    • Available from: Accessed 27.02.14
    • Instagram, Statistics of Instagram data. 2014 Available from: http://nitrogr.am/instagram-statistics/ Accessed 27.02.14.
    • (2014)
    • Instagram1
  • 63
    • 0035331665 scopus 로고    scopus 로고
    • Computing with words in intelligent database querying: Standalone and Internet-based applications
    • Kacprzyk, J., Zadrożny, S., Computing with words in intelligent database querying: Standalone and Internet-based applications. Information Sciences 134:1 (2001), 71–109.
    • (2001) Information Sciences , vol.134 , Issue.1 , pp. 71-109
    • Kacprzyk, J.1    Zadrożny, S.2
  • 64
    • 50249164320 scopus 로고    scopus 로고
    • Visual analytics: Scope and challenges. In Visual data mining
    • Springer Berlin Heidelberg
    • Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H., Visual analytics: Scope and challenges. In Visual data mining. 2008, Springer Berlin Heidelberg, 76–90.
    • (2008) , pp. 76-90
    • Keim, D.A.1    Mansmann, F.2    Schneidewind, J.3    Thomas, J.4    Ziegler, H.5
  • 65
    • 0036264672 scopus 로고    scopus 로고
    • Information visualization and visual data mining. Visualization and Computer Graphics
    • Keim, D.A., Information visualization and visual data mining. Visualization and Computer Graphics. IEEE Transactions on 8:1 (2002), 1–8.
    • (2002) IEEE Transactions on , vol.8 , Issue.1 , pp. 1-8
    • Keim, D.A.1
  • 67
    • 84928207325 scopus 로고    scopus 로고
    • Big data: Survey, technologies, opportunities, and challenges
    • Khan, N., et al. Big data: Survey, technologies, opportunities, and challenges. The Scientific World Journal, 2014, 2014, 18.
    • (2014) The Scientific World Journal , vol.2014 , pp. 18
    • Khan, N.1
  • 68
    • 84946687842 scopus 로고    scopus 로고
    • Big data: Magnification beyond the relational database and data mining exigency of cloud computing
    • IT in Business, Industry and Government (CSIBIG), Conference on. IEEE.
    • Khare, Abhishek (2014). Big data: Magnification beyond the relational database and data mining exigency of cloud computing. IT in Business, Industry and Government (CSIBIG), Conference on. IEEE.
    • (2014)
    • Abhishek, K.1
  • 69
    • 84873208422 scopus 로고    scopus 로고
    • Parallel clustering algorithms: survey
    • Parallel Algorithms, Spring.
    • Kim, W. (2009). Parallel clustering algorithms: survey. Parallel Algorithms, Spring.
    • (2009)
    • Kim, W.1
  • 71
    • 84899458050 scopus 로고    scopus 로고
    • Data quality management: Data usage experience and acquisition intention of big data analytics
    • Kwon, O., Lee, N., Shin, B., Data quality management: Data usage experience and acquisition intention of big data analytics. International Journal of Information Management 34:3 (2014), 387–394.
    • (2014) International Journal of Information Management , vol.34 , Issue.3 , pp. 387-394
    • Kwon, O.1    Lee, N.2    Shin, B.3
  • 73
    • 84881429415 scopus 로고    scopus 로고
    • Bringing big analytics to the masses
    • Leavitt, N., Bringing big analytics to the masses. Computer 46:1 (2013), 20–23.
    • (2013) Computer , vol.46 , Issue.1 , pp. 20-23
    • Leavitt, N.1
  • 74
    • 0023138886 scopus 로고
    • Static scheduling of synchronous data flow programs for digital signal processing
    • Lee, E., Messerschmitt, D.G., Static scheduling of synchronous data flow programs for digital signal processing. Computers, IEEE Transactions on 100:1 (1987), 24–35.
    • (1987) Computers, IEEE Transactions on , vol.100 , Issue.1 , pp. 24-35
    • Lee, E.1    Messerschmitt, D.G.2
  • 75
    • 49749112240 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction
    • Springer
    • Lee, J.A., Verleysen, M., Nonlinear dimensionality reduction. 2007, Springer.
    • (2007)
    • Lee, J.A.1    Verleysen, M.2
  • 76
    • 0031594022 scopus 로고    scopus 로고
    • Execution characteristics of desktop applications on Windows NT
    • In ACM SIGARCH Computer Architecture News (Vol. 26, No. 3, pp. 27–38). IEEE Computer Society.
    • Lee, D. C., Crowley, P. J., Baer, J. L., Anderson, T. E., & Bershad, B. N. (1998). Execution characteristics of desktop applications on Windows NT. In ACM SIGARCH Computer Architecture News (Vol. 26, No. 3, pp. 27–38). IEEE Computer Society.
    • (1998)
    • Lee, D.C.1    Crowley, P.J.2    Baer, J.L.3    Anderson, T.E.4    Bershad, B.N.5
  • 77
    • 84859719176 scopus 로고    scopus 로고
    • Cooperatively coevolving particle swarms for large scale optimization
    • Li, X., Yao, X., Cooperatively coevolving particle swarms for large scale optimization. Evolutionary Computation, IEEE Transactions on 16:2 (2012), 210–224.
    • (2012) Evolutionary Computation, IEEE Transactions on , vol.16 , Issue.2 , pp. 210-224
    • Li, X.1    Yao, X.2
  • 78
    • 84874263116 scopus 로고    scopus 로고
    • Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships
    • In Proceedings of the sixth ACM international conference on Web search and data mining (pp. 657–666). ACM.
    • Li, Y., Chen, W., Wang, Y., & Zhang, Z. L. (2013). Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships. In Proceedings of the sixth ACM international conference on Web search and data mining (pp. 657–666). ACM.
    • (2013)
    • Li, Y.1    Chen, W.2    Wang, Y.3    Zhang, Z.L.4
  • 80
    • 84987929539 scopus 로고    scopus 로고
    • Statistics of LinkedIn data
    • Available from: Accessed 23.03.14
    • LinkedIn, Statistics of LinkedIn data. 2014 Available from: http://www.statista.com/statistics/274050/quarterly-numbers-of-linkedin-members/ Accessed 23.03.14.
    • (2014)
    • LinkedIn1
  • 81
    • 79960150696 scopus 로고    scopus 로고
    • Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems
    • Liu, Y.J., Chen, C.P., Wen, G.X., Tong, S., Adaptive neural output feedback tracking control for a class of uncertain discrete-time nonlinear systems. IEEE Transactions on Neural Networks 22:7 (2011), 1162–1167.
    • (2011) IEEE Transactions on Neural Networks , vol.22 , Issue.7 , pp. 1162-1167
    • Liu, Y.J.1    Chen, C.P.2    Wen, G.X.3    Tong, S.4
  • 82
    • 79952194000 scopus 로고    scopus 로고
    • A survey of multilinear subspace learning for tensor data
    • Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N., A survey of multilinear subspace learning for tensor data. Pattern Recognition 44:7 (2011), 1540–1551.
    • (2011) Pattern Recognition , vol.44 , Issue.7 , pp. 1540-1551
    • Lu, H.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 83
    • 84899432669 scopus 로고    scopus 로고
    • Open: efficient indexing
    • querying, and visualization of geo-spatial big data. In Machine Learning and Applications (ICMLA), 2013 12th International Conference on (Vol. 2, pp. 495–500). IEEE
    • Lu, Y., Zhang, M., Witherspoon, S., Yesha, Y., Yesha, Y., & Rishe, N. (2013). sksOpen: efficient indexing, querying, and visualization of geo-spatial big data. In Machine Learning and Applications (ICMLA), 2013 12th International Conference on (Vol. 2, pp. 495–500). IEEE.
    • (2013)
    • Lu, Y.1    Zhang, M.2    Witherspoon, S.3    Yesha, Y.4    Yesha, Y.5    Rishe, N.6
  • 84
    • 0035396759 scopus 로고    scopus 로고
    • Massively parallel software rendering for visualizing large-scale data sets
    • Ma, K.-L., Parker, S., Massively parallel software rendering for visualizing large-scale data sets. Computer Graphics and Applications, IEEE 21:4 (2001), 72–83.
    • (2001) Computer Graphics and Applications, IEEE , vol.21 , Issue.4 , pp. 72-83
    • Ma, K.-L.1    Parker, S.2
  • 86
    • 84871857828 scopus 로고    scopus 로고
    • Big data: The management revolution
    • McAfee, A., et al. Big data: The management revolution. Harvard Bus Rev 90:10 (2012), 61–67.
    • (2012) Harvard Bus Rev , vol.90 , Issue.10 , pp. 61-67
    • McAfee, A.1
  • 87
    • 84988007830 scopus 로고    scopus 로고
    • 343 industries gets new user insights from big data in the cloud
    • Available from: Accessed 16.07.14
    • Microsoft, 343 industries gets new user insights from big data in the cloud. 2014 Available from: http://www.microsoft.com/casestudies/ Accessed 16.07.14.
    • (2014)
    • Microsoft1
  • 88
    • 84966513946 scopus 로고    scopus 로고
    • Big data imperatives: Enterprise ‘Big Data’ Warehouse, ‘BI’ implementations and analytics
    • Apress
    • Mohanty, S., Jagadeesh, M., Srivatsa, H., Big data imperatives: Enterprise ‘Big Data’ Warehouse, ‘BI’ implementations and analytics. 2013, Apress.
    • (2013)
    • Mohanty, S.1    Jagadeesh, M.2    Srivatsa, H.3
  • 89
    • 79951736167 scopus 로고    scopus 로고
    • S4: Distributed stream computing platform
    • In 2010 IEEE International Conference on Data Mining Workshops (pp. 170–177). IEEE.
    • Neumeyer, L., Robbins, B., Nair, A., & Kesari, A. (2010). S4: Distributed stream computing platform. In 2010 IEEE International Conference on Data Mining Workshops (pp. 170–177). IEEE.
    • (2010)
    • Neumeyer, L.1    Robbins, B.2    Nair, A.3    Kesari, A.4
  • 91
    • 84960971255 scopus 로고    scopus 로고
    • Big data and privacy: Emerging issues
    • O'Leary, D.E., Big data and privacy: Emerging issues. Intelligent Systems, IEEE 30:6 (2015), 92–96.
    • (2015) Intelligent Systems, IEEE , vol.30 , Issue.6 , pp. 92-96
    • O'Leary, D.E.1
  • 93
    • 0036944132 scopus 로고    scopus 로고
    • Social network analysis: A powerful strategy, also for the information sciences
    • Otte, E., Rousseau, R., Social network analysis: A powerful strategy, also for the information sciences. Journal of Information Science 28:6 (2002), 441–453.
    • (2002) Journal of Information Science , vol.28 , Issue.6 , pp. 441-453
    • Otte, E.1    Rousseau, R.2
  • 94
    • 85051588953 scopus 로고    scopus 로고
    • Granular computing: Analysis and design of intelligent systems
    • CRC Press
    • Pedrycz, W., Granular computing: Analysis and design of intelligent systems. 2013, CRC Press.
    • (2013)
    • Pedrycz, W.1
  • 95
    • 84991495881 scopus 로고    scopus 로고
    • Google cloud platform
    • Available from: Accessed 8.03.16
    • Peter, D., Google cloud platform. 2016 Available from: https://cloud.google.com/bigquery/case-studies/safari-books Accessed 8.03.16.
    • (2016)
    • Peter, D.1
  • 96
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on Big Data
    • Philip Chen, C., Zhang, C.-Y., Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences 275 (2014), 314–347.
    • (2014) Information Sciences , vol.275 , pp. 314-347
    • Philip Chen, C.1    Zhang, C.-Y.2
  • 97
    • 84987964272 scopus 로고    scopus 로고
    • Statistics of Pinterest data
    • Available from: Accessed 18.04.14
    • Pinterest, Statistics of Pinterest data. 2014 Available from: http://www.pinterest.com/craigpsmith/pinterest-resources/ Accessed 18.04.14.
    • (2014)
    • Pinterest1
  • 98
    • 84987938578 scopus 로고    scopus 로고
    • Statistics of Google plus data
    • Available from: Accessed 26.04.14
    • plus, G., Statistics of Google plus data. 2014 Available from: http://www.socialbakers.com/google-plus-statistics/ Accessed 26.04.14.
    • (2014)
    • plus, G.1
  • 101
    • 84987964267 scopus 로고    scopus 로고
    • The six most fascinating technology statistics today
    • Available from: Accessed 31.07.14
    • Reckoning, T.D., The six most fascinating technology statistics today. 2014 Available from: http://www.dailyreckoning.com.au/the-six-most-fascinating-technology-statistics-today/2013/06/11/ Accessed 31.07.14.
    • (2014)
    • Reckoning, T.D.1
  • 102
    • 84882256468 scopus 로고    scopus 로고
    • Parallel coordinate descent methods for big data optimization
    • arXiv preprint arXiv:1212.0873.
    • Richtárik, P., & Takáč, M. (2012). Parallel coordinate descent methods for big data optimization. arXiv preprint arXiv:1212.0873.
    • (2012)
    • Richtárik, P.1    Takáč, M.2
  • 104
    • 84987953855 scopus 로고    scopus 로고
    • SDN technology
    • Available from: Accessed 7.01.14
    • Rouse, M., SDN technology. 2014 Available from: http://searchsdn.techtarget.com/definition/software-defined-storage Accessed 7.01.14.
    • (2014)
    • Rouse, M.1
  • 108
    • 77954201922 scopus 로고    scopus 로고
    • Efficient computational strategies for solving global optimization problems
    • Sahimi, M., Hamzehpour, H., Efficient computational strategies for solving global optimization problems. Computing in Science & Engineering 12:4 (2010), 0074–83.
    • (2010) Computing in Science & Engineering , vol.12 , Issue.4 , pp. 0074-0083
    • Sahimi, M.1    Hamzehpour, H.2
  • 111
    • 84987938566 scopus 로고    scopus 로고
    • Big Data, for better or worse: 90% of world's data generated over last two years
    • Available from: Acccessed 24.03.16
    • ScienceDaily, Big Data, for better or worse: 90% of world's data generated over last two years. 2016 Available from: https://www.sciencedaily.com/releases/2013/05/130522085217.htm Acccessed 24.03.16.
    • (2016)
    • ScienceDaily1
  • 112
    • 84886412175 scopus 로고    scopus 로고
    • Assisting developers of big data analytics applications when deploying on hadoop clouds
    • In Proceedings of the 2013 International Conference on Software Engineering (pp. 402–411). IEEE Press.
    • Shang, W., Jiang, Z. M., Hemmati, H., Adams, B., Hassan, A. E., & Martin, P. (2013). Assisting developers of big data analytics applications when deploying on hadoop clouds. In Proceedings of the 2013 International Conference on Software Engineering (pp. 402–411). IEEE Press.
    • (2013)
    • Shang, W.1    Jiang, Z.M.2    Hemmati, H.3    Adams, B.4    Hassan, A.E.5    Martin, P.6
  • 113
    • 33749535541 scopus 로고    scopus 로고
    • Visual analysis of large heterogeneous social networks by semantic and structural abstraction. Visualization and Computer Graphics
    • Shen, Z., Ma, K.-L., Eliassi-Rad, T., Visual analysis of large heterogeneous social networks by semantic and structural abstraction. Visualization and Computer Graphics. IEEE Transactions on 12:6 (2006), 1427–1439.
    • (2006) IEEE Transactions on , vol.12 , Issue.6 , pp. 1427-1439
    • Shen, Z.1    Ma, K.-L.2    Eliassi-Rad, T.3
  • 114
    • 60649086555 scopus 로고    scopus 로고
    • An improved generalized discriminant analysis for large-scale data set
    • In Machine Learning and Applications, 2008. ICMLA'08. Seventh International Conference on (pp. 769–772). IEEE.
    • Shi, W., Guo, Y. F., Jin, C., & Xue, X. (2008). An improved generalized discriminant analysis for large-scale data set. In Machine Learning and Applications, 2008. ICMLA'08. Seventh International Conference on (pp. 769–772). IEEE.
    • (2008)
    • Shi, W.1    Guo, Y.F.2    Jin, C.3    Xue, X.4
  • 115
    • 77951143201 scopus 로고    scopus 로고
    • Effect of number of hidden neurons on learning in large-scale layered neural networks ICCAS-SICE
    • 2009; IEEE.
    • Shibata, K., Ikeda Y. (2009). Effect of number of hidden neurons on learning in large-scale layered neural networks ICCAS-SICE, 2009; IEEE.
    • (2009)
    • Shibata, K.1    Ikeda, Y.2
  • 116
    • 84978946777 scopus 로고    scopus 로고
    • A survey of big data management: Taxonomy and state-of-the-art
    • Journal of Network and Computer Applications, 71, 2016, (pp. 151–166), ISSN 1084-8045,. ().
    • Siddiqa, Aisha, Hashem, Ibrahim Abaker Targio, Yaqoob, Ibrar, Marjani, Mohsen, Shamshirband, Shahabuddin, Gani, Abdullah, et al. (2016). A survey of big data management: Taxonomy and state-of-the-art, Journal of Network and Computer Applications, 71, 2016, (pp. 151–166), ISSN 1084-8045, http://dx.doi.org/10.1016/j.jnca.2016.04.008. ( http://www.sciencedirect.com/science/article/pii/S1084804516300583).
    • (2016)
    • Aisha, S.1    Ibrahim, H.2    Targio, A.3    Ibrar, Y.4    Mohsen, M.5    Shahabuddin, S.6    Abdullah, G.7
  • 119
    • 84055192862 scopus 로고    scopus 로고
    • Analysis of large-scale scalar data using hixels
    • In Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on (pp. 23–30). IEEE.
    • Thompson, D., Levine, J. A., Bennett, J. C., Bremer, P. T., Gyulassy, A., Pascucci, V., et al. (2011). Analysis of large-scale scalar data using hixels. In Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium on (pp. 23–30). IEEE.
    • (2011)
    • Thompson, D.1    Levine, J.A.2    Bennett, J.C.3    Bremer, P.T.4    Gyulassy, A.5    Pascucci, V.6
  • 120
    • 84868325513 scopus 로고    scopus 로고
    • Hive: a warehousing solution over a map-reduce framework
    • Proceedings of the VLDB Endowment, 2(2), 1626–1629.
    • Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., et al. (2009). Hive: a warehousing solution over a map-reduce framework. Proceedings of the VLDB Endowment, 2(2), 1626–1629.
    • (2009)
    • Thusoo, A.1    Sarma, J.S.2    Jain, N.3    Shao, Z.4    Chakka, P.5    Anthony, S.6
  • 121
    • 78049401607 scopus 로고    scopus 로고
    • Qualitative quality: Eight big-tent criteria for excellent qualitative research
    • Tracy, S.J., Qualitative quality: Eight big-tent criteria for excellent qualitative research. Qualitative Inquiry 16:10 (2010), 837–851.
    • (2010) Qualitative Inquiry , vol.16 , Issue.10 , pp. 837-851
    • Tracy, S.J.1
  • 122
    • 84987987740 scopus 로고    scopus 로고
    • Statistics of Tumblr data
    • Available from: Accessed 7.05.14
    • Tumblr, Statistics of Tumblr data. 2014 Available from: http://www.statisticbrain.com/top-us-websites-by-traffic Accessed 7.05.14.
    • (2014)
    • Tumblr1
  • 123
    • 84987987745 scopus 로고    scopus 로고
    • Statistics of Twitter data
    • Available from: Accessed 2.05.14
    • Twitter, Statistics of Twitter data. 2014 Available from: http://www.statisticbrain.com/twitter-statistics/ Accessed 2.05.14.
    • (2014)
    • Twitter1
  • 124
    • 84987964305 scopus 로고    scopus 로고
    • World's data volume to grow 40% per year & 50 times by 2020: Aureus
    • Available from: Accessed 24.03.16
    • Waal-Montgomery, M.D., World's data volume to grow 40% per year & 50 times by 2020: Aureus. 2016 Available from: https://e27.co/worlds-data-volume-to-grow-40-per-year-50-times-by-2020-aureus-20150115-2/ Accessed 24.03.16.
    • (2016)
    • Waal-Montgomery, M.D.1
  • 125
    • 84891317227 scopus 로고    scopus 로고
    • LSM: A Highly Efficient LSM-Tree Index Supporting Real-Time Big Data Analysis
    • In Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual (pp. 240–245). IEEE.
    • Wang, J., Zhang, Y., Gao, Y., & Xing, C. (2013). pLSM: A Highly Efficient LSM-Tree Index Supporting Real-Time Big Data Analysis. In Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual (pp. 240–245). IEEE.
    • (2013)
    • Wang, J.1    Zhang, Y.2    Gao, Y.3    Xing, C.4
  • 126
    • 84987964307 scopus 로고    scopus 로고
    • Big data and visualization: Methods, challenges and technology progress
    • Wang, L., Wang, G., Alexander, C.A., Big data and visualization: Methods, challenges and technology progress. Digital Technologies 1:1 (2015), 33–38.
    • (2015) Digital Technologies , vol.1 , Issue.1 , pp. 33-38
    • Wang, L.1    Wang, G.2    Alexander, C.A.3
  • 127
    • 84900820770 scopus 로고    scopus 로고
    • 7 top tools for taming big data
    • Available from:
    • Wayner, P., 7 top tools for taming big data. 2012 Available from: http://www.networkworld.com/reviews/2012/041812-7-top-tools-for-taming-258398.html.
    • (2012)
    • Wayner, P.1
  • 128
    • 84859373318 scopus 로고    scopus 로고
    • Optical computing: photonic neural networks
    • Woods, D., Naughton, T.J., Optical computing: photonic neural networks. Nature Physics 8:4 (2012), 257–259.
    • (2012) Nature Physics , vol.8 , Issue.4 , pp. 257-259
    • Woods, D.1    Naughton, T.J.2
  • 129
    • 84987964287 scopus 로고    scopus 로고
    • Statistics of Wordpress data
    • Available from: Accessed 29.03.14
    • Wordpress, Statistics of Wordpress data. 2014 Available from: http://w3techs.com/technologies/details/cm-wordpress/all/all Accessed 29.03.14.
    • (2014)
    • Wordpress1
  • 131
    • 84918847394 scopus 로고    scopus 로고
    • Web content mining, in web mining and social networking
    • Springer
    • Xu, G., Zhang Li, Y.L., Web content mining, in web mining and social networking. 2011, Springer, 71–87.
    • (2011) , pp. 71-87
    • Xu, G.1    Zhang Li, Y.L.2
  • 132
    • 44949109048 scopus 로고    scopus 로고
    • Large scale evolutionary optimization using cooperative coevolution
    • Yang, Z., Tang, K., Yao, X., Large scale evolutionary optimization using cooperative coevolution. Information Sciences 178:15 (2008), 2985–2999.
    • (2008) Information Sciences , vol.178 , Issue.15 , pp. 2985-2999
    • Yang, Z.1    Tang, K.2    Yao, X.3
  • 134
    • 84975804508 scopus 로고    scopus 로고
    • Multimedia augmented m-learning: Issues, trends and open challenges
    • International Journal of Information Management, 36.5: 784–792.
    • Yousafzai, Abdullah, et al. (2016) Multimedia augmented m-learning: Issues, trends and open challenges. International Journal of Information Management, 36.5: 784–792.
    • (2016)
    • Abdullah, Y.1
  • 135
    • 84987939897 scopus 로고    scopus 로고
    • Cloud resource allocation schemes: review
    • taxonomy, and opportunities. Knowledge and Information Systems, 1–35.
    • Yousafzai, Abdullah, et al. (2016). Cloud resource allocation schemes: review, taxonomy, and opportunities. Knowledge and Information Systems, 1–35.
    • (2016)
    • Abdullah, Y.1
  • 136
    • 84987958665 scopus 로고    scopus 로고
    • Statistics of youtube data
    • Available from: Accessed 4.05.14
    • Youtube, Statistics of youtube data. 2014 Available from: http://www.statisticbrain.com/youtube-statistics/ Accessed 4.05.14.
    • (2014)
    • Youtube1
  • 137
    • 84896978885 scopus 로고    scopus 로고
    • Sensing as a service and big data
    • arXiv preprint arXiv:1301.0159.
    • Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013) Sensing as a service and big data. arXiv preprint arXiv:1301.0159.
    • (2013)
    • Zaslavsky, A.1    Perera, C.2    Georgakopoulos, D.3
  • 138
    • 84894238996 scopus 로고    scopus 로고
    • VegaIndexer: A Distributed composite index scheme for big spatio-temporal sensor data on cloud
    • Zhong, Y., Fang, J., Zhao, X., VegaIndexer: A Distributed composite index scheme for big spatio-temporal sensor data on cloud. IGARSS, 2013.
    • (2013) IGARSS
    • Zhong, Y.1    Fang, J.2    Zhao, X.3
  • 139
    • 84869497238 scopus 로고    scopus 로고
    • Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems
    • Zhou, Q., Shi, P., Liu, H., Xu, S., Neural-network-based decentralized adaptive output-feedback control for large-scale stochastic nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42:6 (2012), 1608–1619.
    • (2012) IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , vol.42 , Issue.6 , pp. 1608-1619
    • Zhou, Q.1    Shi, P.2    Liu, H.3    Xu, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.