-
1
-
-
25444492633
-
The exceptionally high rate of spontaneous mutations in the polymerase delta proofreading exonuclease-deficient Saccharomyces cerevisiae strain starved for adenine
-
Achilli A., Matmati N., Casalone E., Morpurgo G., Lucaccioni A., Pavlov Y.I., Babudri N. The exceptionally high rate of spontaneous mutations in the polymerase delta proofreading exonuclease-deficient Saccharomyces cerevisiae strain starved for adenine. BMC Genet. 2004, 5:7429-7437. 10.1186/1471-2156-5-34..
-
(2004)
BMC Genet.
, vol.5
, pp. 7429-7437
-
-
Achilli, A.1
Matmati, N.2
Casalone, E.3
Morpurgo, G.4
Lucaccioni, A.5
Pavlov, Y.I.6
Babudri, N.7
-
2
-
-
84929572600
-
Homology-Integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae
-
Bao Z., Xiao H., Liang J., Zhang L., Xiong X., Sun N., Si T., Zhao H. Homology-Integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synth. Biol. 2014, 41(15). 10.1021/sb500255k..
-
(2014)
ACS Synth. Biol.
, vol.41
, Issue.15
-
-
Bao, Z.1
Xiao, H.2
Liang, J.3
Zhang, L.4
Xiong, X.5
Sun, N.6
Si, T.7
Zhao, H.8
-
3
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard D., Jiang W., Samai P., Hochschild A., Zhang F., Marraffini L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013, 41(15):7429-7437. 10.1093/nar/gkt520..
-
(2013)
Nucleic Acids Res.
, vol.41
, Issue.15
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
4
-
-
84909594451
-
Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine
-
Borodina I., Kildegaard K.R., Jensen N.B., Blicher T.H., Maury J., Sherstyk S., Schneider K., Lamosa P., Herrgård M.J., Rosenstand I., Öberg F., Forster J., Nielsen J. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab. Eng. 2015, 27:57-64. 10.1016/j.ymben.2014.10.003..
-
(2015)
Metab. Eng.
, vol.27
, pp. 57-64
-
-
Borodina, I.1
Kildegaard, K.R.2
Jensen, N.B.3
Blicher, T.H.4
Maury, J.5
Sherstyk, S.6
Schneider, K.7
Lamosa, P.8
Herrgård, M.J.9
Rosenstand, I.10
Öberg, F.11
Forster, J.12
Nielsen, J.13
-
5
-
-
84899976199
-
Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals
-
Borodina I., Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol. J. 2014, 9:609-620. 10.1002/biot.201300445..
-
(2014)
Biotechnol. J.
, vol.9
, pp. 609-620
-
-
Borodina, I.1
Nielsen, J.2
-
6
-
-
33144462944
-
Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export
-
Branduardi P., Sauer M., Gioia L.D., Zampella G., Valli M., Mattanovich D., Porro D. Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export. Microb. Cell Factories 2006, 5:4. 10.1186/1475-2859-5-4..
-
(2006)
Microb. Cell Factories
, vol.5
, pp. 4
-
-
Branduardi, P.1
Sauer, M.2
Gioia, L.D.3
Zampella, G.4
Valli, M.5
Mattanovich, D.6
Porro, D.7
-
7
-
-
79251556819
-
Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains
-
Canelas A.B., Harrison N., Fazio A., Zhang J., Pitkänen J.-P., van den Brink J., Bakker B.M., Bogner L., Bouwman J., Castrillo J.I., Cankorur A., Chumnanpuen P., Daran-Lapujade P., Dikicioglu D., van Eunen K., Ewald J.C., Heijnen J.J., Kirdar B., Mattila I., Mensonides F.I.C., Niebel A., Penttilä M., Pronk J.T., Reuss M., Salusjärvi L., Sauer U., Sherman D., Siemann-Herzberg M., Westerhoff H., de Winde J., Petranovic D., Oliver S.G., Workman C.T., Zamboni N., Nielsen J. Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat. Commun. 2010, 1:145. 10.1038/ncomms1150..
-
(2010)
Nat. Commun.
, vol.1
, pp. 145
-
-
Canelas, A.B.1
Harrison, N.2
Fazio, A.3
Zhang, J.4
Pitkänen, J.-P.5
van den Brink, J.6
Bakker, B.M.7
Bogner, L.8
Bouwman, J.9
Castrillo, J.I.10
Cankorur, A.11
Chumnanpuen, P.12
Daran-Lapujade, P.13
Dikicioglu, D.14
van Eunen, K.15
Ewald, J.C.16
Heijnen, J.J.17
Kirdar, B.18
Mattila, I.19
Mensonides, F.I.C.20
Niebel, A.21
Penttilä, M.22
Pronk, J.T.23
Reuss, M.24
Salusjärvi, L.25
Sauer, U.26
Sherman, D.27
Siemann-Herzberg, M.28
Westerhoff, H.29
de Winde, J.30
Petranovic, D.31
Oliver, S.G.32
Workman, C.T.33
Zamboni, N.34
Nielsen, J.35
more..
-
8
-
-
84891710947
-
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
-
Cho S.W., Kim S., Kim Y., Kweon J., Kim H.S., Bae S., Kim J.-S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2013, 24(1):132-141. 10.1101/gr.162339.113..
-
(2013)
Genome Res.
, vol.24
, Issue.1
, pp. 132-141
-
-
Cho, S.W.1
Kim, S.2
Kim, Y.3
Kweon, J.4
Kim, H.S.5
Bae, S.6
Kim, J.-S.7
-
9
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339:819-823. 10.1126/science.1231143..
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
Zhang, F.11
-
10
-
-
29244463205
-
Nonhomologous end joining in yeast
-
Daley J.M., Palmbos P.L., Wu D., Wilson T.E. Nonhomologous end joining in yeast. Annu. Rev. Genet. 2005, 39:431-451. 10.1146/annurev.genet.39.073003.113340..
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 431-451
-
-
Daley, J.M.1
Palmbos, P.L.2
Wu, D.3
Wilson, T.E.4
-
11
-
-
0345550341
-
Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays
-
Daran-Lapujade P., Daran J.M., Kötter P., Petit T., Piper M.D.W., Pronk J.T. Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res. 2003, 4:259-269.
-
(2003)
FEMS Yeast Res.
, vol.4
, pp. 259-269
-
-
Daran-Lapujade, P.1
Daran, J.M.2
Kötter, P.3
Petit, T.4
Piper, M.D.W.5
Pronk, J.T.6
-
12
-
-
84879119602
-
Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
-
Demeke M.M., Dietz H., Li Y., Foulquie-Moreno M.R., Mutturi S., Deprez S., Den Abt T., Bonini B.M., Liden G., Dumortier F., Verplaetse A., Boles E., Thevelein J.M. Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 2013, 6:89. 10.1186/1754-6834-6-89..
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 89
-
-
Demeke, M.M.1
Dietz, H.2
Li, Y.3
Foulquie-Moreno, M.R.4
Mutturi, S.5
Deprez, S.6
Den Abt, T.7
Bonini, B.M.8
Liden, G.9
Dumortier, F.10
Verplaetse, A.11
Boles, E.12
Thevelein, J.M.13
-
13
-
-
84876575031
-
Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
-
DiCarlo J.E., Norville J.E., Mali P., Rios X., Aach J., Church G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013, 10.1093/nar/gkt135..
-
(2013)
Nucleic Acids Res.
-
-
DiCarlo, J.E.1
Norville, J.E.2
Mali, P.3
Rios, X.4
Aach, J.5
Church, G.M.6
-
14
-
-
84884904381
-
Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination
-
Dickinson D.J., Ward J.D., Reiner D.J., Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat. Methods 2013, 10:1028-1034. 10.1038/nmeth.2641..
-
(2013)
Nat. Methods
, vol.10
, pp. 1028-1034
-
-
Dickinson, D.J.1
Ward, J.D.2
Reiner, D.J.3
Goldstein, B.4
-
15
-
-
0029984511
-
Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose
-
Flikweert M.T., Van Der Zanden L., Janssen W.M., Steensma H.Y., Van Dijken J.P., Pronk J.T. Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast 1996, 12:247-257. 10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I..
-
(1996)
Yeast
, vol.12
, pp. 247-257
-
-
Flikweert, M.T.1
Van Der Zanden, L.2
Janssen, W.M.3
Steensma, H.Y.4
Van Dijken, J.P.5
Pronk, J.T.6
-
16
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013, 31:822-826. 10.1038/nbt.2623..
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 822-826
-
-
Fu, Y.1
Foden, J.A.2
Khayter, C.3
Maeder, M.L.4
Reyon, D.5
Joung, J.K.6
Sander, J.D.7
-
17
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas G., Barrangou R., Horvath P., Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 2012, 109:2579-2586. 10.1073/pnas.1208507109..
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 2579-2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
18
-
-
33644792045
-
Yeast transformation by the LiAc/SS carrier DNA/PEG method
-
Gietz R.D., Woods R.A. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol. Biol. 2006, 313:107-120. 10.1385/1-59259-958-3:107..
-
(2006)
Methods Mol. Biol.
, vol.313
, pp. 107-120
-
-
Gietz, R.D.1
Woods, R.A.2
-
19
-
-
84880088705
-
Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease
-
Gratz S.J., Cummings A.M., Nguyen J.N., Hamm D.C., Donohue L.K., Harrison M.M., Wildonger J., O'Connor-Giles K.M. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 2013, 194(4):1029-1035. 10.1534/genetics.113.152710..
-
(2013)
Genetics
, vol.194
, Issue.4
, pp. 1029-1035
-
-
Gratz, S.J.1
Cummings, A.M.2
Nguyen, J.N.3
Hamm, D.C.4
Donohue, L.K.5
Harrison, M.M.6
Wildonger, J.7
O'Connor-Giles, K.M.8
-
20
-
-
0029994841
-
A new efficient gene disruption cassette for repeated use in budding yeast
-
Guldener U., Heck S., Fielder T., Beinhauer J., Hegemann J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996, 24:2519-2524.
-
(1996)
Nucleic Acids Res.
, vol.24
, pp. 2519-2524
-
-
Guldener, U.1
Heck, S.2
Fielder, T.3
Beinhauer, J.4
Hegemann, J.H.5
-
21
-
-
74249095519
-
CRISPR/Cas, the immune system of bacteria and archaea
-
Horvath P., Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327:167-170. 10.1126/science.1179555..
-
(2010)
Science
, vol.327
, pp. 167-170
-
-
Horvath, P.1
Barrangou, R.2
-
22
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013, 31:827-832. 10.1038/nbt.2647..
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
Ran, F.A.4
Konermann, S.5
Agarwala, V.6
Li, Y.7
Fine, E.J.8
Wu, X.9
Shalem, O.10
Cradick, T.J.11
Marraffini, L.A.12
Bao, G.13
Zhang, F.14
-
23
-
-
33646771845
-
The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on l-lactic acid production
-
Ishida N., Saitoh S., Onishi T., Tokuhiro K., Nagamori E., Kitamoto K., Takahashi H. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on l-lactic acid production. Biosci. Biotechnol. Biochem. 2006, 70:1148-1153.
-
(2006)
Biosci. Biotechnol. Biochem.
, vol.70
, pp. 1148-1153
-
-
Ishida, N.1
Saitoh, S.2
Onishi, T.3
Tokuhiro, K.4
Nagamori, E.5
Kitamoto, K.6
Takahashi, H.7
-
24
-
-
84923021733
-
Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae
-
Jakočiunas T., Bonde I., Herrgård M., Harrison S.J., Kristensen M., Pedersen L.E., Jensen M.K., Keasling J.D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015, 28:213-222. 10.1016/j.ymben.2015.01.008..
-
(2015)
Metab. Eng.
, vol.28
, pp. 213-222
-
-
Jakočiunas, T.1
Bonde, I.2
Herrgård, M.3
Harrison, S.J.4
Kristensen, M.5
Pedersen, L.E.6
Jensen, M.K.7
Keasling, J.D.8
-
25
-
-
84896122676
-
EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae
-
Jensen N.B., Strucko T., Kildegaard K.R., David F., Maury J., Mortensen U.H., Forster J., Nielsen J., Borodina I. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res. 2014, 14:238-248. 10.1111/1567-1364.12118..
-
(2014)
FEMS Yeast Res.
, vol.14
, pp. 238-248
-
-
Jensen, N.B.1
Strucko, T.2
Kildegaard, K.R.3
David, F.4
Maury, J.5
Mortensen, U.H.6
Forster, J.7
Nielsen, J.8
Borodina, I.9
-
26
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337:816-821. 10.1126/science.1225829..
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
27
-
-
84855963972
-
Genetic engineering of industrial strains of Saccharomyces cerevisiae
-
Le Borgne S. Genetic engineering of industrial strains of Saccharomyces cerevisiae. Methods Mol. Biol. 2012, 824:451-465. 10.1007/978-1-61779-433-9_24..
-
(2012)
Methods Mol. Biol.
, vol.824
, pp. 451-465
-
-
Le Borgne, S.1
-
28
-
-
84927933565
-
Application of synthetic biology for production of chemicals in yeast S. cerevisiae
-
Li M., Borodina I. Application of synthetic biology for production of chemicals in yeast S. cerevisiae. FEMS Yeast Res. 2015, 15:1-12. 10.1111/1567-1364.12213..
-
(2015)
FEMS Yeast Res.
, vol.15
, pp. 1-12
-
-
Li, M.1
Borodina, I.2
-
29
-
-
79960034141
-
Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes
-
Li T., Huang S., Zhao X., Wright D.A., Carpenter S., Spalding M.H., Weeks D.P., Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011, 39:6315-6325. 10.1093/nar/gkr188..
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 6315-6325
-
-
Li, T.1
Huang, S.2
Zhao, X.3
Wright, D.A.4
Carpenter, S.5
Spalding, M.H.6
Weeks, D.P.7
Yang, B.8
-
30
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339:823-826. 10.1126/science.1232033..
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
31
-
-
77950603940
-
A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering
-
Nørholm M.H. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 2010, 10:21. 10.1186/1472-6750-10-21..
-
(2010)
BMC Biotechnol.
, vol.10
, pp. 21
-
-
Nørholm, M.H.1
-
32
-
-
77956941760
-
USER cloning and USER fusion: the ideal cloning techniques for small and big laboratories
-
Nour-Eldin H.H., Geu-Flores F., Halkier B.A. USER cloning and USER fusion: the ideal cloning techniques for small and big laboratories. Methods Mol. Biol. 2010, 643:185-200. 10.1007/978-1-60761-723-5_13..
-
(2010)
Methods Mol. Biol.
, vol.643
, pp. 185-200
-
-
Nour-Eldin, H.H.1
Geu-Flores, F.2
Halkier, B.A.3
-
33
-
-
0029294111
-
Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid
-
Porro D., Brambilla L., Ranzi B.M., Martegani E., Alberghina L. Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol. Prog. 1995, 11:294-298. 10.1021/bp00033a009..
-
(1995)
Biotechnol. Prog.
, vol.11
, pp. 294-298
-
-
Porro, D.1
Brambilla, L.2
Ranzi, B.M.3
Martegani, E.4
Alberghina, L.5
-
34
-
-
0030448870
-
Pyruvate metabolism in Saccharomyces cerevisiae
-
Pronk J.T., Yde Steensma H., Van Dijken J.P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996, 12:1607-1633. 10.1002/(SICI)1097-0061(199612)12:163.0.CO;2-4..
-
(1996)
Yeast
, vol.12
, pp. 1607-1633
-
-
Pronk, J.T.1
Yde Steensma, H.2
Van Dijken, J.P.3
-
35
-
-
0037087284
-
Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers
-
Reid R.J.D., Sunjevaric I., Keddache M., Rothstein R., Kedacche M. Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers. Yeast 2002, 19:319-328. 10.1002/yea.817..
-
(2002)
Yeast
, vol.19
, pp. 319-328
-
-
Reid, R.J.D.1
Sunjevaric, I.2
Keddache, M.3
Rothstein, R.4
Kedacche, M.5
-
36
-
-
84903118288
-
Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool
-
Ronda C., Pedersen L.E., Hansen H.G., Kallehauge T.B., Betenbaugh M.J., Nielsen A.T., Kildegaard H.F. Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnol. Bioeng. 2014, 111:1604-1616. 10.1002/bit.25233..
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 1604-1616
-
-
Ronda, C.1
Pedersen, L.E.2
Hansen, H.G.3
Kallehauge, T.B.4
Betenbaugh, M.J.5
Nielsen, A.T.6
Kildegaard, H.F.7
-
37
-
-
84911871184
-
Selection of chromosomal DNA libraries using a multiplex CRISPR system
-
Ryan O.W., Skerker J.M., Maurer M.J., Li X., Tsai J.C., Poddar S., Lee M.E., DeLoache W., Dueber J.E., Arkin A.P., Cate J.H. Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife 2014, 3. 10.7554/eLife.03703..
-
(2014)
eLife
, vol.3
-
-
Ryan, O.W.1
Skerker, J.M.2
Maurer, M.J.3
Li, X.4
Tsai, J.C.5
Poddar, S.6
Lee, M.E.7
DeLoache, W.8
Dueber, J.E.9
Arkin, A.P.10
Cate, J.H.11
-
38
-
-
84872424364
-
AmdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae
-
Solis-Escalante D., Kuijpers N.G.A., Bongaerts N., Bolat I., Bosman L., Pronk J.T., Daran J.-M., Daran-Lapujade P. amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res. 2013, 13:126-139. 10.1111/1567-1364.12024..
-
(2013)
FEMS Yeast Res.
, vol.13
, pp. 126-139
-
-
Solis-Escalante, D.1
Kuijpers, N.G.A.2
Bongaerts, N.3
Bolat, I.4
Bosman, L.5
Pronk, J.T.6
Daran, J.-M.7
Daran-Lapujade, P.8
-
39
-
-
84866610451
-
Application of split-green fluorescent protein for topology mapping membrane proteins in Escherichia coli
-
Toddo S., Söderström B., Palombo I., von Heijne G., Nørholm M.H.H., Daley D.O. Application of split-green fluorescent protein for topology mapping membrane proteins in Escherichia coli. Protein Sci. 2012, 21:1571-1576. 10.1002/pro.2131..
-
(2012)
Protein Sci.
, vol.21
, pp. 1571-1576
-
-
Toddo, S.1
Söderström, B.2
Palombo, I.3
von Heijne, G.4
Nørholm, M.H.H.5
Daley, D.O.6
-
40
-
-
0030479854
-
The red/white colony color assay in the yeast Saccharomyces cerevisiae: epistatic growth advantage of white ade8-18, ade2 cells over red ade2 cells
-
Ugolini S., Bruschi C.V. The red/white colony color assay in the yeast Saccharomyces cerevisiae: epistatic growth advantage of white ade8-18, ade2 cells over red ade2 cells. Curr. Genet. 1996, 30:485-492.
-
(1996)
Curr. Genet.
, vol.30
, pp. 485-492
-
-
Ugolini, S.1
Bruschi, C.V.2
-
41
-
-
77955867185
-
Genome editing with engineered zinc finger nucleases
-
Urnov F.D., Rebar E.J., Holmes M.C., Zhang H.S., Gregory P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11:636-646. 10.1038/nrg2842..
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 636-646
-
-
Urnov, F.D.1
Rebar, E.J.2
Holmes, M.C.3
Zhang, H.S.4
Gregory, P.D.5
-
43
-
-
2442640659
-
Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export
-
Van Maris A.J.A., Winkler A.A., Porro D., Dijken J.P., Pronk J.T. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl. Environ. Microbiol. 2004, 70:2898-2905. 10.1128/AEM.70.5.2898-2905.2004..
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 2898-2905
-
-
Van Maris, A.J.A.1
Winkler, A.A.2
Porro, D.3
Dijken, J.P.4
Pronk, J.T.5
-
44
-
-
0028676232
-
New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae
-
Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 1994, 10:1793-1808.
-
(1994)
Yeast
, vol.10
, pp. 1793-1808
-
-
Wach, A.1
Brachat, A.2
Pöhlmann, R.3
Philippsen, P.4
-
45
-
-
0024368864
-
Precise gene fusion by PCR
-
Yon J., Fried M. Precise gene fusion by PCR. Nucleic Acids Res. 1989, 17:4895. 10.1093/nar/17.12.4895.
-
(1989)
Nucleic Acids Res.
, vol.17
, pp. 4895
-
-
Yon, J.1
Fried, M.2
|