-
2
-
-
84865120266
-
Opportunities and challenges for a sustainable energy future
-
Chu S., Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488:294-303.
-
(2012)
Nature
, vol.488
, pp. 294-303
-
-
Chu, S.1
Majumdar, A.2
-
3
-
-
80052046252
-
Technology Roadmap, Biofuels for Transport
-
Technology Roadmap, Biofuels for Transport. International Energy Agency 2011.
-
(2011)
International Energy Agency
-
-
-
4
-
-
84864839474
-
Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels
-
de Jong B., Siewers V., Nielsen J. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol 2012, 23:624-630.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 624-630
-
-
de Jong, B.1
Siewers, V.2
Nielsen, J.3
-
5
-
-
79952123299
-
Opportunities for yeast metabolic engineering: lessons from synthetic biology
-
Krivoruchko A., Siewers V., Nielsen J. Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 2011, 6:262-276.
-
(2011)
Biotechnol J
, vol.6
, pp. 262-276
-
-
Krivoruchko, A.1
Siewers, V.2
Nielsen, J.3
-
6
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
-
Hong K.-K., Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 2012, 69:2671-2690.
-
(2012)
Cell Mol Life Sci
, vol.69
, pp. 2671-2690
-
-
Hong, K.-K.1
Nielsen, J.2
-
7
-
-
84859737812
-
Methods and applications for assembling large DNA constructs
-
Merryman C., Gibson D.G. Methods and applications for assembling large DNA constructs. Metab Eng 2012, 14:196-204.
-
(2012)
Metab Eng
, vol.14
, pp. 196-204
-
-
Merryman, C.1
Gibson, D.G.2
-
8
-
-
0030908893
-
The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
-
Ansell R., Granath K., Hohmann S., Thevelein J.M., Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 1997, 16:2179-2187.
-
(1997)
EMBO J
, vol.16
, pp. 2179-2187
-
-
Ansell, R.1
Granath, K.2
Hohmann, S.3
Thevelein, J.M.4
Adler, L.5
-
9
-
-
0031770286
-
Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae
-
Valadi H., Larsson C., Gustafsson L. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1998, 50:434-439.
-
(1998)
Appl Microbiol Biotechnol
, vol.50
, pp. 434-439
-
-
Valadi, H.1
Larsson, C.2
Gustafsson, L.3
-
10
-
-
0033929520
-
Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
-
Nissen T.L., Kielland-Brandt M.C., Nielsen J., Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2000, 2:69-77.
-
(2000)
Metab Eng
, vol.2
, pp. 69-77
-
-
Nissen, T.L.1
Kielland-Brandt, M.C.2
Nielsen, J.3
Villadsen, J.4
-
11
-
-
80555149396
-
Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield
-
Basso T.O., de Kok S., Dario M., do Espirito-Santo J.C.A., Müller G., Schlölg P.S., Silva C.P., Tonso A., Daran J.-M., Gombert A.K., et al. Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab Eng 2011, 13:694-703.
-
(2011)
Metab Eng
, vol.13
, pp. 694-703
-
-
Basso, T.O.1
de Kok, S.2
Dario, M.3
do Espirito-Santo, J.C.A.4
Müller, G.5
Schlölg, P.S.6
Silva, C.P.7
Tonso, A.8
Daran, J.-M.9
Gombert, A.K.10
-
12
-
-
33644832381
-
In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
-
Bro C., Regenberg B., Förster J., Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 2006, 8:102-111.
-
(2006)
Metab Eng
, vol.8
, pp. 102-111
-
-
Bro, C.1
Regenberg, B.2
Förster, J.3
Nielsen, J.4
-
13
-
-
78650548180
-
Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance
-
Guo Z., Zhang L., Ding Z., Shi G. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng 2011, 13:49-59.
-
(2011)
Metab Eng
, vol.13
, pp. 49-59
-
-
Guo, Z.1
Zhang, L.2
Ding, Z.3
Shi, G.4
-
14
-
-
84857239031
-
The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae
-
Wang P.-M., Zheng D.-Q., Liu T.-Z., Tao X.-L., Feng M.-G., Min H., Jiang X.-H., Wu X.-C. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Bioresour Technol 2012, 108:203-210.
-
(2012)
Bioresour Technol
, vol.108
, pp. 203-210
-
-
Wang, P.-M.1
Zheng, D.-Q.2
Liu, T.-Z.3
Tao, X.-L.4
Feng, M.-G.5
Min, H.6
Jiang, X.-H.7
Wu, X.-C.8
-
15
-
-
79958769394
-
Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae
-
Zhang L., Tang Y., Guo Z., Ding Z., Shi G. Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Biotechnol Lett 2011, 33:1375-1380.
-
(2011)
Biotechnol Lett
, vol.33
, pp. 1375-1380
-
-
Zhang, L.1
Tang, Y.2
Guo, Z.3
Ding, Z.4
Shi, G.5
-
16
-
-
75749134466
-
Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
-
Guadalupe Medina V., Almering M.J.H., van Maris A.J.A., Pronk J.T. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 2010, 76:190-195.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 190-195
-
-
Guadalupe Medina, V.1
Almering, M.J.H.2
van Maris, A.J.A.3
Pronk, J.T.4
-
17
-
-
80052473597
-
Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae
-
Jain V.K., Divol B., Prior B.A., Bauer F.F. Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2011, 38:1427-1435.
-
(2011)
J Ind Microbiol Biotechnol
, vol.38
, pp. 1427-1435
-
-
Jain, V.K.1
Divol, B.2
Prior, B.A.3
Bauer, F.F.4
-
18
-
-
0036282743
-
Osmotic stress signaling and osmoadaptation in yeasts
-
Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 2002, 66:300-372.
-
(2002)
Microbiol Mol Biol Rev
, vol.66
, pp. 300-372
-
-
Hohmann, S.1
-
19
-
-
77949306818
-
Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae
-
Hou L. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010, 160:1084-1093.
-
(2010)
Appl Microbiol Biotechnol
, vol.160
, pp. 1084-1093
-
-
Hou, L.1
-
20
-
-
84857148362
-
A novel strategy to construct yeast Saccharomyces cerevisiae for very high gravity fermentation
-
Tao X., Zheng D., Liu T., Wang P., Zhao W., Zhu M., Jiang X., Zhao Y., Wu X. A novel strategy to construct yeast Saccharomyces cerevisiae for very high gravity fermentation. PLoS One 2012, 7:e31235.
-
(2012)
PLoS One
, vol.7
-
-
Tao, X.1
Zheng, D.2
Liu, T.3
Wang, P.4
Zhao, W.5
Zhu, M.6
Jiang, X.7
Zhao, Y.8
Wu, X.9
-
21
-
-
84855810623
-
CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae
-
Benjaphokee S., Koedrith P., Auesukaree C., Asvarak T., Sugiyama M., Kaneko Y., Boonchird C., Harashima S. CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae. New Biotechnol 2012, 29:166-176.
-
(2012)
New Biotechnol
, vol.29
, pp. 166-176
-
-
Benjaphokee, S.1
Koedrith, P.2
Auesukaree, C.3
Asvarak, T.4
Sugiyama, M.5
Kaneko, Y.6
Boonchird, C.7
Harashima, S.8
-
22
-
-
79958768729
-
Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase
-
An M.-Z., Tang Y.-Q., Mitsumasu K., Liu Z.-S., Shigeru M., Kenji K. Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol Lett 2011, 33:1367-1374.
-
(2011)
Biotechnol Lett
, vol.33
, pp. 1367-1374
-
-
An, M.-Z.1
Tang, Y.-Q.2
Mitsumasu, K.3
Liu, Z.-S.4
Shigeru, M.5
Kenji, K.6
-
23
-
-
84867728469
-
Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase
-
Shahsavarani H., Sugiyama M., Kaneko Y., Chuenchit B., Harashima S. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol Adv 2012, 30:1289-1300.
-
(2012)
Biotechnol Adv
, vol.30
, pp. 1289-1300
-
-
Shahsavarani, H.1
Sugiyama, M.2
Kaneko, Y.3
Chuenchit, B.4
Harashima, S.5
-
24
-
-
80053902438
-
Improving l-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of l-arabinose transporting sugar transporters
-
Subtil T., Boles E. Improving l-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of l-arabinose transporting sugar transporters. Biotechnol Biofuels 2011, 4:38.
-
(2011)
Biotechnol Biofuels
, vol.4
, pp. 38
-
-
Subtil, T.1
Boles, E.2
-
25
-
-
78049451371
-
Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae
-
Wisselink W.H., Cipollina C., Oud B., Crimi B., Heijnen J.J., Pronk J.T., van Maris A.J.A. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 2010, 12:537-551.
-
(2010)
Metab Eng
, vol.12
, pp. 537-551
-
-
Wisselink, W.H.1
Cipollina, C.2
Oud, B.3
Crimi, B.4
Heijnen, J.J.5
Pronk, J.T.6
van Maris, A.J.A.7
-
26
-
-
34548728610
-
Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component
-
van Maris A.J.A., Winkler A.A., Kuyper M., de Laat W.T.A.M., van Dijken J.P., Pronk J.T. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 2007, 108:179-204.
-
(2007)
Adv Biochem Eng Biotechnol
, vol.108
, pp. 179-204
-
-
van Maris, A.J.A.1
Winkler, A.A.2
Kuyper, M.3
de Laat, W.T.A.M.4
van Dijken, J.P.5
Pronk, J.T.6
-
27
-
-
34548818136
-
The missing link in the fungal d-galacturonate pathway: identification of the l-threo-3-deoxy-hexulosonate aldolase
-
Hilditch S., Berghäll S., Kalkkinen N., Penttilä M., Richard P. The missing link in the fungal d-galacturonate pathway: identification of the l-threo-3-deoxy-hexulosonate aldolase. J Biol Chem 2007, 282:26195-26201.
-
(2007)
J Biol Chem
, vol.282
, pp. 26195-26201
-
-
Hilditch, S.1
Berghäll, S.2
Kalkkinen, N.3
Penttilä, M.4
Richard, P.5
-
28
-
-
84868488951
-
Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for d-galacturonate metabolism
-
Huisjes E.H., Luttik M.A.H., Almering M.J.H., Bisschops M.M.M., Dang D.H.N., Kleerebezem M., Siezen R., van Maris A.J.A., Pronk J.T. Toward pectin fermentation by Saccharomyces cerevisiae: expression of the first two steps of a bacterial pathway for d-galacturonate metabolism. J Biotechnol 2012, 62:303-310.
-
(2012)
J Biotechnol
, vol.62
, pp. 303-310
-
-
Huisjes, E.H.1
Luttik, M.A.H.2
Almering, M.J.H.3
Bisschops, M.M.M.4
Dang, D.H.N.5
Kleerebezem, M.6
Siezen, R.7
van Maris, A.J.A.8
Pronk, J.T.9
-
29
-
-
84869043924
-
Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
-
Zhou H., Cheng J.-S., Wang B., Fink G.R., Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012, 14:611-622.
-
(2012)
Metab Eng
, vol.14
, pp. 611-622
-
-
Zhou, H.1
Cheng, J.-S.2
Wang, B.3
Fink, G.R.4
Stephanopoulos, G.5
-
30
-
-
79954422577
-
Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae
-
Wright J., Bellissimi E., de Hulster E., Wagner A., Pronk J.T., van Maris A.J.A. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 2011, 11:299-306.
-
(2011)
FEMS Yeast Res
, vol.11
, pp. 299-306
-
-
Wright, J.1
Bellissimi, E.2
de Hulster, E.3
Wagner, A.4
Pronk, J.T.5
van Maris, A.J.A.6
-
31
-
-
59949093124
-
Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
-
Wisselink H.W., Toirkens M.J., Wu Q., Pronk J.T., van Maris A.J.A. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 2009, 75:907-914.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 907-914
-
-
Wisselink, H.W.1
Toirkens, M.J.2
Wu, Q.3
Pronk, J.T.4
van Maris, A.J.A.5
-
32
-
-
84858262547
-
Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
-
Subtil T., Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2012, 5:14.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 14
-
-
Subtil, T.1
Boles, E.2
-
33
-
-
64549126134
-
Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
-
Bellissimi E., van Dijken J.P., Pronk J.T., van Maris A.J.A. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 2009, 9:358-364.
-
(2009)
FEMS Yeast Res
, vol.9
, pp. 358-364
-
-
Bellissimi, E.1
van Dijken, J.P.2
Pronk, J.T.3
van Maris, A.J.A.4
-
34
-
-
84862812426
-
Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol
-
Kim S.R., Ha S.-J., Wei N., Oh E.J., Jin Y.-S. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 2012, 30:274-282.
-
(2012)
Trends Biotechnol
, vol.30
, pp. 274-282
-
-
Kim, S.R.1
Ha, S.-J.2
Wei, N.3
Oh, E.J.4
Jin, Y.-S.5
-
35
-
-
79955521875
-
The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw
-
Fonseca C., Olofsson K., Ferreira C., Runquist D., Fonseca L.L., Hahn-Hägerdal B., Lidén G. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Enzyme Microb Technol 2011, 48:518-525.
-
(2011)
Enzyme Microb Technol
, vol.48
, pp. 518-525
-
-
Fonseca, C.1
Olofsson, K.2
Ferreira, C.3
Runquist, D.4
Fonseca, L.L.5
Hahn-Hägerdal, B.6
Lidén, G.7
-
36
-
-
84868139340
-
Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis
-
Haitani Y., Tanaka K., Yamamoto M., Nakamura T., Ando A., Ogawa J., Shima J. Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. J Biosci Bioeng 2012, 114:648-651.
-
(2012)
J Biosci Bioeng
, vol.114
, pp. 648-651
-
-
Haitani, Y.1
Tanaka, K.2
Yamamoto, M.3
Nakamura, T.4
Ando, A.5
Ogawa, J.6
Shima, J.7
-
37
-
-
84868611282
-
Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
-
Tanaka K., Ishii Y., Ogawa J., Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 2012, 78:8161-8163.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 8161-8163
-
-
Tanaka, K.1
Ishii, Y.2
Ogawa, J.3
Shima, J.4
-
38
-
-
84861982164
-
Recent progress in consolidated bioprocessing
-
Olson D.G., McBride J.E., Shaw A.J., Lynd L.R. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012, 23:396-405.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 396-405
-
-
Olson, D.G.1
McBride, J.E.2
Shaw, A.J.3
Lynd, L.R.4
-
39
-
-
84867712304
-
Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
-
Hasunuma T., Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 2012, 30:1207-1218.
-
(2012)
Biotechnol Adv
, vol.30
, pp. 1207-1218
-
-
Hasunuma, T.1
Kondo, A.2
-
40
-
-
80052569487
-
High level secretion of cellobiohydrolases by Saccharomyces cerevisiae
-
Ilmén M., den Haan R., Brevnova E., McBride J., Wiswall E., Froehlich A., Koivula A., Voutilainen S.P., Siika-Aho M., la Grange D.C., et al. High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 2011, 4:30.
-
(2011)
Biotechnol Biofuels
, vol.4
, pp. 30
-
-
Ilmén, M.1
den Haan, R.2
Brevnova, E.3
McBride, J.4
Wiswall, E.5
Froehlich, A.6
Koivula, A.7
Voutilainen, S.P.8
Siika-Aho, M.9
la Grange, D.C.10
-
41
-
-
77955553357
-
Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2
-
Saitoh S., Hasunuma T., Tanaka T., Kondo A. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Appl Microbiol Biotechnol 2010, 87:1975-1982.
-
(2010)
Appl Microbiol Biotechnol
, vol.87
, pp. 1975-1982
-
-
Saitoh, S.1
Hasunuma, T.2
Tanaka, T.3
Kondo, A.4
-
42
-
-
79955553841
-
Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae
-
Sadie C.J., Rose S.H., den Haan R., van Zyl W.H. Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2011, 90:1373-1380.
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 1373-1380
-
-
Sadie, C.J.1
Rose, S.H.2
den Haan, R.3
van Zyl, W.H.4
-
43
-
-
79551670374
-
Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation
-
Ha S.-J., Galazka J.M., Kim S.R., Choi J.-H., Yang X., Seo J.-H., Glass N.L., Cate J.H.D., Jin Y.-S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci U S A 2011, 108:504-509.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 504-509
-
-
Ha, S.-J.1
Galazka, J.M.2
Kim, S.R.3
Choi, J.-H.4
Yang, X.5
Seo, J.-H.6
Glass, N.L.7
Cate, J.H.D.8
Jin, Y.-S.9
-
44
-
-
84866007726
-
The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture
-
van Rensburg E., den Haan R., Smith J., van Zyl W.H., Görgens J.F. The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl Microbiol Biotechnol 2012, 96:197-209.
-
(2012)
Appl Microbiol Biotechnol
, vol.96
, pp. 197-209
-
-
van Rensburg, E.1
den Haan, R.2
Smith, J.3
van Zyl, W.H.4
Görgens, J.F.5
-
45
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts B.B., Bellerose R.J., Chang M.C.Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011, 7:222-227.
-
(2011)
Nat Chem Biol
, vol.7
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.Y.3
-
46
-
-
75749125061
-
Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
-
Steen E.J., Kang Y., Bokinsky G., Hu Z., Schirmer A., McClure A., Del Cardayre S.B., Keasling J.D. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010, 463:559-562.
-
(2010)
Nature
, vol.463
, pp. 559-562
-
-
Steen, E.J.1
Kang, Y.2
Bokinsky, G.3
Hu, Z.4
Schirmer, A.5
McClure, A.6
Del Cardayre, S.B.7
Keasling, J.D.8
-
47
-
-
77955118014
-
Microbial biosynthesis of alkanes
-
Schirmer A., Rude M.A., Li X., Popova E., del Cardayre S.B. Microbial biosynthesis of alkanes. Science 2010, 329:559-562.
-
(2010)
Science
, vol.329
, pp. 559-562
-
-
Schirmer, A.1
Rude, M.A.2
Li, X.3
Popova, E.4
del Cardayre, S.B.5
-
48
-
-
58249098522
-
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
-
Steen E.J., Chan R., Prasad N., Myers S., Petzold C.J., Redding A., Ouellet M., Keasling J.D. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 2008, 7:36.
-
(2008)
Microb Cell Fact
, vol.7
, pp. 36
-
-
Steen, E.J.1
Chan, R.2
Prasad, N.3
Myers, S.4
Petzold, C.J.5
Redding, A.6
Ouellet, M.7
Keasling, J.D.8
-
49
-
-
84865777627
-
Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae
-
Brat D., Weber C., Lorenzen W., Bode H.B., Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 2012, 5:65.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 65
-
-
Brat, D.1
Weber, C.2
Lorenzen, W.3
Bode, H.B.4
Boles, E.5
-
50
-
-
79952137531
-
Prospects for microbial biodiesel production
-
Shi S., Valle-Rodríguez J.O., Siewers V., Nielsen J. Prospects for microbial biodiesel production. Biotechnol J 2011, 6:277-285.
-
(2011)
Biotechnol J
, vol.6
, pp. 277-285
-
-
Shi, S.1
Valle-Rodríguez, J.O.2
Siewers, V.3
Nielsen, J.4
-
51
-
-
84857243863
-
Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production
-
Shi S., Valle-Rodríguez J.O., Khoomrung S., Siewers V., Nielsen J. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 2012, 5:7.
-
(2012)
Biotechnol Biofuels
, vol.5
, pp. 7
-
-
Shi, S.1
Valle-Rodríguez, J.O.2
Khoomrung, S.3
Siewers, V.4
Nielsen, J.5
-
52
-
-
33645870422
-
Production of the antimalarial drug precursor artemisinic acid in engineered yeast
-
Ro D.-K., Paradise E.M., Ouellet M., Fisher K.J., Newman K.L., Ndungu J.M., Ho K.A., Eachus R.A., Ham T.S., Kirby J., et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 2006, 440:940-943.
-
(2006)
Nature
, vol.440
, pp. 940-943
-
-
Ro, D.-K.1
Paradise, E.M.2
Ouellet, M.3
Fisher, K.J.4
Newman, K.L.5
Ndungu, J.M.6
Ho, K.A.7
Eachus, R.A.8
Ham, T.S.9
Kirby, J.10
-
53
-
-
84856389651
-
Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin
-
Westfall P.J., Pitera D.J., Lenihan J.R., Eng D., Woolard F.X., Regentin R., Horning T., Tsuruta H., Melis D.J., Owens A., et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 2012, 109:111-118.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 111-118
-
-
Westfall, P.J.1
Pitera, D.J.2
Lenihan, J.R.3
Eng, D.4
Woolard, F.X.5
Regentin, R.6
Horning, T.7
Tsuruta, H.8
Melis, D.J.9
Owens, A.10
-
54
-
-
84875279038
-
Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
-
Chen Y., Daviet L., Schalk M., Siewers V., Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 2013, 15:48-54.
-
(2013)
Metab Eng
, vol.15
, pp. 48-54
-
-
Chen, Y.1
Daviet, L.2
Schalk, M.3
Siewers, V.4
Nielsen, J.5
-
55
-
-
84866145291
-
An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
-
Oud B., Flores C.-L., Gancedo C., Zhang X., Trueheart J., Daran J.-M., Pronk J.T., van Maris A.J.A. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:131.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 131
-
-
Oud, B.1
Flores, C.-L.2
Gancedo, C.3
Zhang, X.4
Trueheart, J.5
Daran, J.-M.6
Pronk, J.T.7
van Maris, A.J.A.8
-
56
-
-
30044437327
-
Evolutionary programming as a platform for in silico metabolic engineering
-
Patil K.R., Rocha I., Förster J., Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 2005, 6:308.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 308
-
-
Patil, K.R.1
Rocha, I.2
Förster, J.3
Nielsen, J.4
-
57
-
-
43049090802
-
Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export
-
Zelle R.M., de Hulster E., van Winden W.A., de Waard P., Dijkema C., Winkler A.A., Geertman J.-M.A., van Dijken J.P., Pronk J.T., van Maris A.J.A. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 2008, 74:2766-2777.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 2766-2777
-
-
Zelle, R.M.1
de Hulster, E.2
van Winden, W.A.3
de Waard, P.4
Dijkema, C.5
Winkler, A.A.6
Geertman, J.-M.A.7
van Dijken, J.P.8
Pronk, J.T.9
van Maris, A.J.A.10
-
58
-
-
79952460925
-
Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae
-
Raab A.M., Lang C. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Bioeng Bugs 2011, 2:120-123.
-
(2011)
Bioeng Bugs
, vol.2
, pp. 120-123
-
-
Raab, A.M.1
Lang, C.2
-
59
-
-
84860258944
-
Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering
-
de Kok S., Kozak B.U., Pronk J.T., van Maris A.J.A. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Res 2012, 12:387-397.
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 387-397
-
-
de Kok, S.1
Kozak, B.U.2
Pronk, J.T.3
van Maris, A.J.A.4
-
60
-
-
84857052437
-
From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks
-
Soh K.C., Miskovic L., Hatzimanikatis V. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res 2012, 12:129-143.
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 129-143
-
-
Soh, K.C.1
Miskovic, L.2
Hatzimanikatis, V.3
-
62
-
-
84865545171
-
Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae
-
Scalcinati G., Partow S., Siewers V., Schalk M., Daviet L., Nielsen J. Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:117.
-
(2012)
Microb Cell Fact
, vol.11
, pp. 117
-
-
Scalcinati, G.1
Partow, S.2
Siewers, V.3
Schalk, M.4
Daviet, L.5
Nielsen, J.6
-
63
-
-
84864448777
-
Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae
-
Chen Y., Siewers V., Nielsen J. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One 2012, 7:e42475.
-
(2012)
PLoS One
, vol.7
-
-
Chen, Y.1
Siewers, V.2
Nielsen, J.3
-
64
-
-
84864580802
-
Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis
-
Papini M., Nookaew I., Siewers V., Nielsen J. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Appl Microbiol Biotechnol 2012, 95:1001-1010.
-
(2012)
Appl Microbiol Biotechnol
, vol.95
, pp. 1001-1010
-
-
Papini, M.1
Nookaew, I.2
Siewers, V.3
Nielsen, J.4
|