메뉴 건너뛰기




Volumn 24, Issue 3, 2013, Pages 398-404

Metabolic engineering of yeast for production of fuels and chemicals

Author keywords

[No Author keywords available]

Indexed keywords

ADVANCED BIOFUELS; BIO-ETHANOL PRODUCTION; CELLULAR PROCESS; INDUSTRIAL CONDITIONS; PRODUCTION OF; S.CEREVISIAE; SCIENTIFIC PROGRESS; YEAST SACCHAROMYCES CEREVISIAE;

EID: 84878641167     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2013.03.023     Document Type: Review
Times cited : (248)

References (64)
  • 1
    • 84875640206 scopus 로고    scopus 로고
    • The role of biofuels in the future energy supply
    • Caspeta L., Buijs N.A.A., Nielsen J. The role of biofuels in the future energy supply. Energy Environ Sci 2013, 6:1077-1082.
    • (2013) Energy Environ Sci , vol.6 , pp. 1077-1082
    • Caspeta, L.1    Buijs, N.A.A.2    Nielsen, J.3
  • 2
    • 84865120266 scopus 로고    scopus 로고
    • Opportunities and challenges for a sustainable energy future
    • Chu S., Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488:294-303.
    • (2012) Nature , vol.488 , pp. 294-303
    • Chu, S.1    Majumdar, A.2
  • 3
    • 80052046252 scopus 로고    scopus 로고
    • Technology Roadmap, Biofuels for Transport
    • Technology Roadmap, Biofuels for Transport. International Energy Agency 2011.
    • (2011) International Energy Agency
  • 4
    • 84864839474 scopus 로고    scopus 로고
    • Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels
    • de Jong B., Siewers V., Nielsen J. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol 2012, 23:624-630.
    • (2012) Curr Opin Biotechnol , vol.23 , pp. 624-630
    • de Jong, B.1    Siewers, V.2    Nielsen, J.3
  • 5
    • 79952123299 scopus 로고    scopus 로고
    • Opportunities for yeast metabolic engineering: lessons from synthetic biology
    • Krivoruchko A., Siewers V., Nielsen J. Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 2011, 6:262-276.
    • (2011) Biotechnol J , vol.6 , pp. 262-276
    • Krivoruchko, A.1    Siewers, V.2    Nielsen, J.3
  • 6
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
    • Hong K.-K., Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 2012, 69:2671-2690.
    • (2012) Cell Mol Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.-K.1    Nielsen, J.2
  • 7
    • 84859737812 scopus 로고    scopus 로고
    • Methods and applications for assembling large DNA constructs
    • Merryman C., Gibson D.G. Methods and applications for assembling large DNA constructs. Metab Eng 2012, 14:196-204.
    • (2012) Metab Eng , vol.14 , pp. 196-204
    • Merryman, C.1    Gibson, D.G.2
  • 8
    • 0030908893 scopus 로고    scopus 로고
    • The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • Ansell R., Granath K., Hohmann S., Thevelein J.M., Adler L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 1997, 16:2179-2187.
    • (1997) EMBO J , vol.16 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adler, L.5
  • 9
    • 0031770286 scopus 로고    scopus 로고
    • Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae
    • Valadi H., Larsson C., Gustafsson L. Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1998, 50:434-439.
    • (1998) Appl Microbiol Biotechnol , vol.50 , pp. 434-439
    • Valadi, H.1    Larsson, C.2    Gustafsson, L.3
  • 10
    • 0033929520 scopus 로고    scopus 로고
    • Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
    • Nissen T.L., Kielland-Brandt M.C., Nielsen J., Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2000, 2:69-77.
    • (2000) Metab Eng , vol.2 , pp. 69-77
    • Nissen, T.L.1    Kielland-Brandt, M.C.2    Nielsen, J.3    Villadsen, J.4
  • 12
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C., Regenberg B., Förster J., Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab Eng 2006, 8:102-111.
    • (2006) Metab Eng , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Förster, J.3    Nielsen, J.4
  • 13
    • 78650548180 scopus 로고    scopus 로고
    • Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance
    • Guo Z., Zhang L., Ding Z., Shi G. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng 2011, 13:49-59.
    • (2011) Metab Eng , vol.13 , pp. 49-59
    • Guo, Z.1    Zhang, L.2    Ding, Z.3    Shi, G.4
  • 14
    • 84857239031 scopus 로고    scopus 로고
    • The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae
    • Wang P.-M., Zheng D.-Q., Liu T.-Z., Tao X.-L., Feng M.-G., Min H., Jiang X.-H., Wu X.-C. The combination of glycerol metabolic engineering and drug resistance marker-aided genome shuffling to improve very-high-gravity fermentation performances of industrial Saccharomyces cerevisiae. Bioresour Technol 2012, 108:203-210.
    • (2012) Bioresour Technol , vol.108 , pp. 203-210
    • Wang, P.-M.1    Zheng, D.-Q.2    Liu, T.-Z.3    Tao, X.-L.4    Feng, M.-G.5    Min, H.6    Jiang, X.-H.7    Wu, X.-C.8
  • 15
    • 79958769394 scopus 로고    scopus 로고
    • Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae
    • Zhang L., Tang Y., Guo Z., Ding Z., Shi G. Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Biotechnol Lett 2011, 33:1375-1380.
    • (2011) Biotechnol Lett , vol.33 , pp. 1375-1380
    • Zhang, L.1    Tang, Y.2    Guo, Z.3    Ding, Z.4    Shi, G.5
  • 16
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Guadalupe Medina V., Almering M.J.H., van Maris A.J.A., Pronk J.T. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 2010, 76:190-195.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 190-195
    • Guadalupe Medina, V.1    Almering, M.J.H.2    van Maris, A.J.A.3    Pronk, J.T.4
  • 17
    • 80052473597 scopus 로고    scopus 로고
    • Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae
    • Jain V.K., Divol B., Prior B.A., Bauer F.F. Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2011, 38:1427-1435.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , pp. 1427-1435
    • Jain, V.K.1    Divol, B.2    Prior, B.A.3    Bauer, F.F.4
  • 18
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signaling and osmoadaptation in yeasts
    • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 2002, 66:300-372.
    • (2002) Microbiol Mol Biol Rev , vol.66 , pp. 300-372
    • Hohmann, S.1
  • 19
    • 77949306818 scopus 로고    scopus 로고
    • Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae
    • Hou L. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2010, 160:1084-1093.
    • (2010) Appl Microbiol Biotechnol , vol.160 , pp. 1084-1093
    • Hou, L.1
  • 20
    • 84857148362 scopus 로고    scopus 로고
    • A novel strategy to construct yeast Saccharomyces cerevisiae for very high gravity fermentation
    • Tao X., Zheng D., Liu T., Wang P., Zhao W., Zhu M., Jiang X., Zhao Y., Wu X. A novel strategy to construct yeast Saccharomyces cerevisiae for very high gravity fermentation. PLoS One 2012, 7:e31235.
    • (2012) PLoS One , vol.7
    • Tao, X.1    Zheng, D.2    Liu, T.3    Wang, P.4    Zhao, W.5    Zhu, M.6    Jiang, X.7    Zhao, Y.8    Wu, X.9
  • 22
    • 79958768729 scopus 로고    scopus 로고
    • Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase
    • An M.-Z., Tang Y.-Q., Mitsumasu K., Liu Z.-S., Shigeru M., Kenji K. Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol Lett 2011, 33:1367-1374.
    • (2011) Biotechnol Lett , vol.33 , pp. 1367-1374
    • An, M.-Z.1    Tang, Y.-Q.2    Mitsumasu, K.3    Liu, Z.-S.4    Shigeru, M.5    Kenji, K.6
  • 23
    • 84867728469 scopus 로고    scopus 로고
    • Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase
    • Shahsavarani H., Sugiyama M., Kaneko Y., Chuenchit B., Harashima S. Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnol Adv 2012, 30:1289-1300.
    • (2012) Biotechnol Adv , vol.30 , pp. 1289-1300
    • Shahsavarani, H.1    Sugiyama, M.2    Kaneko, Y.3    Chuenchit, B.4    Harashima, S.5
  • 24
    • 80053902438 scopus 로고    scopus 로고
    • Improving l-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of l-arabinose transporting sugar transporters
    • Subtil T., Boles E. Improving l-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of l-arabinose transporting sugar transporters. Biotechnol Biofuels 2011, 4:38.
    • (2011) Biotechnol Biofuels , vol.4 , pp. 38
    • Subtil, T.1    Boles, E.2
  • 25
    • 78049451371 scopus 로고    scopus 로고
    • Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae
    • Wisselink W.H., Cipollina C., Oud B., Crimi B., Heijnen J.J., Pronk J.T., van Maris A.J.A. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 2010, 12:537-551.
    • (2010) Metab Eng , vol.12 , pp. 537-551
    • Wisselink, W.H.1    Cipollina, C.2    Oud, B.3    Crimi, B.4    Heijnen, J.J.5    Pronk, J.T.6    van Maris, A.J.A.7
  • 27
    • 34548818136 scopus 로고    scopus 로고
    • The missing link in the fungal d-galacturonate pathway: identification of the l-threo-3-deoxy-hexulosonate aldolase
    • Hilditch S., Berghäll S., Kalkkinen N., Penttilä M., Richard P. The missing link in the fungal d-galacturonate pathway: identification of the l-threo-3-deoxy-hexulosonate aldolase. J Biol Chem 2007, 282:26195-26201.
    • (2007) J Biol Chem , vol.282 , pp. 26195-26201
    • Hilditch, S.1    Berghäll, S.2    Kalkkinen, N.3    Penttilä, M.4    Richard, P.5
  • 29
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou H., Cheng J.-S., Wang B., Fink G.R., Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012, 14:611-622.
    • (2012) Metab Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.-S.2    Wang, B.3    Fink, G.R.4    Stephanopoulos, G.5
  • 30
    • 79954422577 scopus 로고    scopus 로고
    • Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae
    • Wright J., Bellissimi E., de Hulster E., Wagner A., Pronk J.T., van Maris A.J.A. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res 2011, 11:299-306.
    • (2011) FEMS Yeast Res , vol.11 , pp. 299-306
    • Wright, J.1    Bellissimi, E.2    de Hulster, E.3    Wagner, A.4    Pronk, J.T.5    van Maris, A.J.A.6
  • 31
    • 59949093124 scopus 로고    scopus 로고
    • Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
    • Wisselink H.W., Toirkens M.J., Wu Q., Pronk J.T., van Maris A.J.A. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 2009, 75:907-914.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3    Pronk, J.T.4    van Maris, A.J.A.5
  • 32
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • Subtil T., Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2012, 5:14.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 14
    • Subtil, T.1    Boles, E.2
  • 33
    • 64549126134 scopus 로고    scopus 로고
    • Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain
    • Bellissimi E., van Dijken J.P., Pronk J.T., van Maris A.J.A. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res 2009, 9:358-364.
    • (2009) FEMS Yeast Res , vol.9 , pp. 358-364
    • Bellissimi, E.1    van Dijken, J.P.2    Pronk, J.T.3    van Maris, A.J.A.4
  • 34
    • 84862812426 scopus 로고    scopus 로고
    • Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol
    • Kim S.R., Ha S.-J., Wei N., Oh E.J., Jin Y.-S. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 2012, 30:274-282.
    • (2012) Trends Biotechnol , vol.30 , pp. 274-282
    • Kim, S.R.1    Ha, S.-J.2    Wei, N.3    Oh, E.J.4    Jin, Y.-S.5
  • 35
    • 79955521875 scopus 로고    scopus 로고
    • The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw
    • Fonseca C., Olofsson K., Ferreira C., Runquist D., Fonseca L.L., Hahn-Hägerdal B., Lidén G. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Enzyme Microb Technol 2011, 48:518-525.
    • (2011) Enzyme Microb Technol , vol.48 , pp. 518-525
    • Fonseca, C.1    Olofsson, K.2    Ferreira, C.3    Runquist, D.4    Fonseca, L.L.5    Hahn-Hägerdal, B.6    Lidén, G.7
  • 36
    • 84868139340 scopus 로고    scopus 로고
    • Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis
    • Haitani Y., Tanaka K., Yamamoto M., Nakamura T., Ando A., Ogawa J., Shima J. Identification of an acetate-tolerant strain of Saccharomyces cerevisiae and characterization by gene expression analysis. J Biosci Bioeng 2012, 114:648-651.
    • (2012) J Biosci Bioeng , vol.114 , pp. 648-651
    • Haitani, Y.1    Tanaka, K.2    Yamamoto, M.3    Nakamura, T.4    Ando, A.5    Ogawa, J.6    Shima, J.7
  • 37
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
    • Tanaka K., Ishii Y., Ogawa J., Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 2012, 78:8161-8163.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3    Shima, J.4
  • 39
    • 84867712304 scopus 로고    scopus 로고
    • Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
    • Hasunuma T., Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 2012, 30:1207-1218.
    • (2012) Biotechnol Adv , vol.30 , pp. 1207-1218
    • Hasunuma, T.1    Kondo, A.2
  • 41
    • 77955553357 scopus 로고    scopus 로고
    • Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2
    • Saitoh S., Hasunuma T., Tanaka T., Kondo A. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Appl Microbiol Biotechnol 2010, 87:1975-1982.
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 1975-1982
    • Saitoh, S.1    Hasunuma, T.2    Tanaka, T.3    Kondo, A.4
  • 42
    • 79955553841 scopus 로고    scopus 로고
    • Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae
    • Sadie C.J., Rose S.H., den Haan R., van Zyl W.H. Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2011, 90:1373-1380.
    • (2011) Appl Microbiol Biotechnol , vol.90 , pp. 1373-1380
    • Sadie, C.J.1    Rose, S.H.2    den Haan, R.3    van Zyl, W.H.4
  • 44
    • 84866007726 scopus 로고    scopus 로고
    • The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture
    • van Rensburg E., den Haan R., Smith J., van Zyl W.H., Görgens J.F. The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl Microbiol Biotechnol 2012, 96:197-209.
    • (2012) Appl Microbiol Biotechnol , vol.96 , pp. 197-209
    • van Rensburg, E.1    den Haan, R.2    Smith, J.3    van Zyl, W.H.4    Görgens, J.F.5
  • 45
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts B.B., Bellerose R.J., Chang M.C.Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 2011, 7:222-227.
    • (2011) Nat Chem Biol , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.Y.3
  • 49
    • 84865777627 scopus 로고    scopus 로고
    • Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae
    • Brat D., Weber C., Lorenzen W., Bode H.B., Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 2012, 5:65.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 65
    • Brat, D.1    Weber, C.2    Lorenzen, W.3    Bode, H.B.4    Boles, E.5
  • 51
    • 84857243863 scopus 로고    scopus 로고
    • Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production
    • Shi S., Valle-Rodríguez J.O., Khoomrung S., Siewers V., Nielsen J. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 2012, 5:7.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 7
    • Shi, S.1    Valle-Rodríguez, J.O.2    Khoomrung, S.3    Siewers, V.4    Nielsen, J.5
  • 54
    • 84875279038 scopus 로고    scopus 로고
    • Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism
    • Chen Y., Daviet L., Schalk M., Siewers V., Nielsen J. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 2013, 15:48-54.
    • (2013) Metab Eng , vol.15 , pp. 48-54
    • Chen, Y.1    Daviet, L.2    Schalk, M.3    Siewers, V.4    Nielsen, J.5
  • 55
    • 84866145291 scopus 로고    scopus 로고
    • An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae
    • Oud B., Flores C.-L., Gancedo C., Zhang X., Trueheart J., Daran J.-M., Pronk J.T., van Maris A.J.A. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:131.
    • (2012) Microb Cell Fact , vol.11 , pp. 131
    • Oud, B.1    Flores, C.-L.2    Gancedo, C.3    Zhang, X.4    Trueheart, J.5    Daran, J.-M.6    Pronk, J.T.7    van Maris, A.J.A.8
  • 56
    • 30044437327 scopus 로고    scopus 로고
    • Evolutionary programming as a platform for in silico metabolic engineering
    • Patil K.R., Rocha I., Förster J., Nielsen J. Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinformatics 2005, 6:308.
    • (2005) BMC Bioinformatics , vol.6 , pp. 308
    • Patil, K.R.1    Rocha, I.2    Förster, J.3    Nielsen, J.4
  • 58
    • 79952460925 scopus 로고    scopus 로고
    • Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae
    • Raab A.M., Lang C. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Bioeng Bugs 2011, 2:120-123.
    • (2011) Bioeng Bugs , vol.2 , pp. 120-123
    • Raab, A.M.1    Lang, C.2
  • 59
    • 84860258944 scopus 로고    scopus 로고
    • Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering
    • de Kok S., Kozak B.U., Pronk J.T., van Maris A.J.A. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Res 2012, 12:387-397.
    • (2012) FEMS Yeast Res , vol.12 , pp. 387-397
    • de Kok, S.1    Kozak, B.U.2    Pronk, J.T.3    van Maris, A.J.A.4
  • 60
    • 84857052437 scopus 로고    scopus 로고
    • From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks
    • Soh K.C., Miskovic L., Hatzimanikatis V. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks. FEMS Yeast Res 2012, 12:129-143.
    • (2012) FEMS Yeast Res , vol.12 , pp. 129-143
    • Soh, K.C.1    Miskovic, L.2    Hatzimanikatis, V.3
  • 62
    • 84865545171 scopus 로고    scopus 로고
    • Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae
    • Scalcinati G., Partow S., Siewers V., Schalk M., Daviet L., Nielsen J. Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb Cell Fact 2012, 11:117.
    • (2012) Microb Cell Fact , vol.11 , pp. 117
    • Scalcinati, G.1    Partow, S.2    Siewers, V.3    Schalk, M.4    Daviet, L.5    Nielsen, J.6
  • 63
    • 84864448777 scopus 로고    scopus 로고
    • Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae
    • Chen Y., Siewers V., Nielsen J. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One 2012, 7:e42475.
    • (2012) PLoS One , vol.7
    • Chen, Y.1    Siewers, V.2    Nielsen, J.3
  • 64
    • 84864580802 scopus 로고    scopus 로고
    • Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis
    • Papini M., Nookaew I., Siewers V., Nielsen J. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Appl Microbiol Biotechnol 2012, 95:1001-1010.
    • (2012) Appl Microbiol Biotechnol , vol.95 , pp. 1001-1010
    • Papini, M.1    Nookaew, I.2    Siewers, V.3    Nielsen, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.