메뉴 건너뛰기




Volumn 8, Issue 1, 2015, Pages

Quantitative analysis of an engineered CO2-fixing Escherichia coli reveals great potential of heterotrophic CO2 fixation

Author keywords

Carbon fixation; Carbonic anhydrase; CO2 fixation rate; Heterotrophic microbe; Rubisco

Indexed keywords

ALGAE; BACTERIA; CARBONIC ANHYDRASE; ESCHERICHIA COLI; METABOLISM; MICROORGANISMS; PHOTOSYNTHESIS;

EID: 85028211141     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-015-0268-1     Document Type: Article
Times cited : (72)

References (59)
  • 1
    • 74549131120 scopus 로고    scopus 로고
    • The teraton challenge. A review of fixation and transformation of carbon dioxide
    • 1:CAS:528:DC%2BC3cXnvVaitbk%3D 10.1039/B912904A
    • Mikkelsen MJM, Krebs FC. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci. 2010;3:43-81.
    • (2010) Energy Environ Sci , vol.3 , pp. 43-81
    • Mikkelsen, M.J.M.1    Krebs, F.C.2
  • 2
    • 70349296964 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for ethanol production
    • 1:CAS:528:DC%2BC3cXjsFajsb0%3D 10.1039/b811937f
    • Dexter J, Fu PC. Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci. 2009;2:857-64.
    • (2009) Energy Environ Sci , vol.2 , pp. 857-864
    • Dexter, J.1    Fu, P.C.2
  • 3
    • 0032976323 scopus 로고    scopus 로고
    • Ethanol synthesis by genetic engineering in cyanobacteria
    • 1:STN:280:DC%2BD2critVKgsA%3D%3D
    • Deng MD, Coleman JR. Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol. 1999;65:523-8.
    • (1999) Appl Environ Microbiol , vol.65 , pp. 523-528
    • Deng, M.D.1    Coleman, J.R.2
  • 4
    • 78449253609 scopus 로고    scopus 로고
    • Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae
    • 1:CAS:528:DC%2BC3cXhtlansLrM 10.1021/es1007577
    • Luo DX, Hu ZS, Choi DG, Thomas VM, Realff MJ, Chance RR. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae. Environ Sci Technol. 2010;44:8670-7.
    • (2010) Environ Sci Technol , vol.44 , pp. 8670-8677
    • Luo, D.X.1    Hu, Z.S.2    Choi, D.G.3    Thomas, V.M.4    Realff, M.J.5    Chance, R.R.6
  • 5
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • 1:CAS:528:DC%2BC38Xmt12mt7k%3D 10.1073/pnas.1200074109
    • Lan EI, Liao JC. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA. 2012;109:6018-23.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 6
    • 79958747820 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
    • 1:CAS:528:DC%2BC3MXnsVOqur8%3D 10.1016/j.ymben.2011.04.004
    • Lan EI, Liao JC. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng. 2011;13:353-63.
    • (2011) Metab Eng , vol.13 , pp. 353-363
    • Lan, E.I.1    Liao, J.C.2
  • 7
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • 1:CAS:528:DC%2BD1MXhsVWlsbrF 10.1038/nbt.1586
    • Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol. 2009;27:1177-80.
    • (2009) Nat Biotechnol , vol.27 , pp. 1177-1180
    • Atsumi, S.1    Higashide, W.2    Liao, J.C.3
  • 9
    • 84862197287 scopus 로고    scopus 로고
    • Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide
    • 1:CAS:528:DC%2BC38Xlt1Klsr4%3D 10.1016/j.ymben.2012.03.005
    • Zhou J, Zhang HF, Zhang YP, Li Y, Ma YH. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng. 2012;14:394-400.
    • (2012) Metab Eng , vol.14 , pp. 394-400
    • Zhou, J.1    Zhang, H.F.2    Zhang, Y.P.3    Li, Y.4    Ma, Y.H.5
  • 11
    • 84868334617 scopus 로고    scopus 로고
    • Engineering a cyanobacterial cell factory for production of lactic acid
    • 1:CAS:528:DC%2BC38XhsVSls7bP 10.1128/AEM.01587-12
    • Angermayr SA, Paszota M, Hellingwerf KJ. Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol. 2012;78:7098-106.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 7098-7106
    • Angermayr, S.A.1    Paszota, M.2    Hellingwerf, K.J.3
  • 12
    • 84878692910 scopus 로고    scopus 로고
    • Utilization of lactic acid bacterial genes in Synechocystis sp PCC 6803 in the production of lactic acid
    • 1:CAS:528:DC%2BC3sXovVelu7s%3D 10.1271/bbb.120921
    • Joseph A, Aikawa S, Sasaki K, Tsuge Y, Matsuda F, Tanaka T, et al. Utilization of lactic acid bacterial genes in Synechocystis sp PCC 6803 in the production of lactic acid. Biosci Biotechnol Biochem. 2013;77:966-70.
    • (2013) Biosci Biotechnol Biochem , vol.77 , pp. 966-970
    • Joseph, A.1    Aikawa, S.2    Sasaki, K.3    Tsuge, Y.4    Matsuda, F.5    Tanaka, T.6
  • 13
    • 81455141383 scopus 로고    scopus 로고
    • Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms
    • 1:CAS:528:DC%2BC3MXhsVOisb3F 10.1002/bit.23298
    • Bentley FK, Melis A. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms. Biotechnol Bioeng. 2012;109:100-9.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 100-109
    • Bentley, F.K.1    Melis, A.2
  • 14
    • 84872450790 scopus 로고    scopus 로고
    • 2 to 1,2-propanediol
    • 1:CAS:528:DC%2BC3sXis1aksL0%3D 10.1186/1475-2859-12-4
    • 2 to 1,2-propanediol. Microb Cell Fact. 2013;12:4.
    • (2013) Microb Cell Fact , vol.12 , pp. 4
    • Li, H.1    Liao, J.C.2
  • 15
    • 84865561048 scopus 로고    scopus 로고
    • Methane production from glycolate excreting algae as a new concept in the production of biofuels
    • 10.1016/j.biortech.2012.06.120
    • Gunther A, Jakob T, Goss R, Konig S, Spindler D, Rabiger N, et al. Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresour Technol. 2012;121:454-7.
    • (2012) Bioresour Technol , vol.121 , pp. 454-457
    • Gunther, A.1    Jakob, T.2    Goss, R.3    Konig, S.4    Spindler, D.5    Rabiger, N.6
  • 16
    • 79957981802 scopus 로고    scopus 로고
    • Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel
    • 1:CAS:528:DC%2BC3MXntF2isr8%3D 10.1016/j.apenergy.2010.09.013
    • Tang HY, Abunasser N, Garcia MED, Chen M, Ng KYS, Salley SO. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy. 2011;88:3324-30.
    • (2011) Appl Energy , vol.88 , pp. 3324-3330
    • Tang, H.Y.1    Abunasser, N.2    Garcia, M.E.D.3    Chen, M.4    Ng, K.Y.S.5    Salley, S.O.6
  • 17
    • 77956516357 scopus 로고    scopus 로고
    • Microalgae: A promising feedstock for biodiesel
    • 1:CAS:528:DC%2BC3cXht1egsbo%3D
    • Deng XD, Li YJ, Fei XW. Microalgae: a promising feedstock for biodiesel. Afr J Microbiol Res. 2009;3:1008-14.
    • (2009) Afr J Microbiol Res , vol.3 , pp. 1008-1014
    • Deng, X.D.1    Li, Y.J.2    Fei, X.W.3
  • 18
    • 79952103573 scopus 로고    scopus 로고
    • Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation
    • 1:CAS:528:DC%2BC3MXjsFaksrk%3D 10.1016/j.ymben.2011.01.005
    • Boyle NR, Morgan JA. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metab Eng. 2011;13:150-8.
    • (2011) Metab Eng , vol.13 , pp. 150-158
    • Boyle, N.R.1    Morgan, J.A.2
  • 19
    • 84886685546 scopus 로고    scopus 로고
    • Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling
    • 1:CAS:528:DC%2BC3sXhvFWktr7N 10.1016/j.biortech.2013.09.116
    • Zhuang ZY, Li SY. Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresour Technol. 2013;150:79-88.
    • (2013) Bioresour Technol , vol.150 , pp. 79-88
    • Zhuang, Z.Y.1    Li, S.Y.2
  • 22
    • 0023471551 scopus 로고
    • 12C isotope ratios and climatic change
    • 1:CAS:528:DyaL2sXkvFemt7o%3D 10.1038/328058a0
    • 12C isotope ratios and climatic change. Nature. 1987;328:58-60.
    • (1987) Nature , vol.328 , pp. 58-60
    • Stuiver, M.1    Braziunas, T.F.2
  • 24
    • 84904190583 scopus 로고    scopus 로고
    • Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco
    • 1:CAS:528:DC%2BC2cXoslCrsbg%3D 10.1007/s13238-014-0072-x
    • Cai Z, Liu G, Zhang J, Li Y. Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell. 2014;5:552-62.
    • (2014) Protein Cell , vol.5 , pp. 552-562
    • Cai, Z.1    Liu, G.2    Zhang, J.3    Li, Y.4
  • 25
    • 0000672797 scopus 로고    scopus 로고
    • Mechanism of Rubisco: The carbamate as general base
    • 1:CAS:528:DyaK1cXhs1Grtrw%3D 10.1021/cr970010r
    • Cleland WWAT, Gutteridge S, Hartman FC, Lorimer GH. Mechanism of Rubisco: the carbamate as general base. Chem Rev. 1998;98:549-62.
    • (1998) Chem Rev , vol.98 , pp. 549-562
    • Cleland, W.1    Gutteridge, S.2    Hartman, F.C.3    Lorimer, G.H.4
  • 26
    • 0022534951 scopus 로고
    • A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria
    • 1:CAS:528:DyaL28XlvVKhsL4%3D 10.1038/323448a0
    • Higgins CF, Hiles ID, Salmond GP, Gill DR, Downie JA, Evans IJ, et al. A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature. 1986;323:448-50.
    • (1986) Nature , vol.323 , pp. 448-450
    • Higgins, C.F.1    Hiles, I.D.2    Salmond, G.P.3    Gill, D.R.4    Downie, J.A.5    Evans, I.J.6
  • 27
    • 33644980943 scopus 로고    scopus 로고
    • Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. Coli
    • 1:CAS:528:DC%2BD28XhvVelt7o%3D 10.1093/protein/gzj010
    • Parikh MR, Greene DN, Woods KK, Matsumura I. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli. Protein Eng Des Sel. 2006;19:113-9.
    • (2006) Protein Eng des Sel , vol.19 , pp. 113-119
    • Parikh, M.R.1    Greene, D.N.2    Woods, K.K.3    Matsumura, I.4
  • 28
    • 28044454726 scopus 로고    scopus 로고
    • Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco
    • 10.1073/pnas.0500972102
    • Robert J, Spreitzer SRP, Satagopan S. Phylogenetic engineering at an interface between large and small subunits imparts land-plant kinetic properties to algal Rubisco. Proc Natl Acad Sci USA. 2005;102:17225-30.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 17225-17230
    • Robert, J.1    Spreitzer, S.R.P.2    Satagopan, S.3
  • 29
    • 0037725392 scopus 로고    scopus 로고
    • Manipulation of Rubisco: The amount, activity, function and regulation
    • 1:CAS:528:DC%2BD3sXjt1Ogs7s%3D 10.1093/jxb/erg141
    • Parry MA, Andralojc PJ, Mitchell RA, Madgwick PJ, Keys AJ. Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot. 2003;54:1321-33.
    • (2003) J Exp Bot , vol.54 , pp. 1321-1333
    • Parry, M.A.1    Andralojc, P.J.2    Mitchell, R.A.3    Madgwick, P.J.4    Keys, A.J.5
  • 30
    • 84875723302 scopus 로고    scopus 로고
    • Cyanobacterial-based approaches to improving photosynthesis in plants
    • 1:CAS:528:DC%2BC3sXhsFChtLY%3D 10.1093/jxb/ers294
    • Zarzycki J, Axen SD, Kinney JN, Kerfeld CA. Cyanobacterial-based approaches to improving photosynthesis in plants. J Exp Bot. 2013;64:787-98.
    • (2013) J Exp Bot , vol.64 , pp. 787-798
    • Zarzycki, J.1    Axen, S.D.2    Kinney, J.N.3    Kerfeld, C.A.4
  • 31
    • 11144237308 scopus 로고    scopus 로고
    • Identification of a SulP-type bicarbonate transporter in marine cyanobacteria
    • 1:CAS:528:DC%2BD2MXjsl2ktQ%3D%3D 10.1073/pnas.0405211101
    • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L. Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA. 2004;101:18228-33.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 18228-18233
    • Price, G.D.1    Woodger, F.J.2    Badger, M.R.3    Howitt, S.M.4    Tucker, L.5
  • 33
    • 24644515752 scopus 로고    scopus 로고
    • Tuning genetic control through promoter engineering
    • 1:CAS:528:DC%2BD2MXhtVWktLnI 10.1073/pnas.0504604102
    • Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA. 2005;102:12678-83.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 12678-12683
    • Alper, H.1    Fischer, C.2    Nevoigt, E.3    Stephanopoulos, G.4
  • 34
    • 1642538406 scopus 로고    scopus 로고
    • High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived C-13 constraints
    • 1:CAS:528:DC%2BD2cXmvFKqtw%3D%3D 10.1016/j.ab.2003.10.036
    • Fischer E, Zamboni N, Sauer U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived C-13 constraints. Anal Biochem. 2004;325:308-16.
    • (2004) Anal Biochem , vol.325 , pp. 308-316
    • Fischer, E.1    Zamboni, N.2    Sauer, U.3
  • 35
    • 78650574197 scopus 로고    scopus 로고
    • Synergy between (13)C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. Coli
    • 10.1016/j.ymben.2010.11.004
    • Chen X, Alonso AP, Allen DK, Reed JL, Shachar-Hill Y. Synergy between (13)C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli. Metab Eng. 2011;13:38-48.
    • (2011) Metab Eng , vol.13 , pp. 38-48
    • Chen, X.1    Alonso, A.P.2    Allen, D.K.3    Reed, J.L.4    Shachar-Hill, Y.5
  • 36
    • 0000640710 scopus 로고    scopus 로고
    • Modulation of chemical composition and other parameters of the cell by growth rate
    • Bremer H, Dennis PP. Modulation of chemical composition and other parameters of the cell by growth rate. E Coli Salmonella Cell Mol Biol. 1996;2:1553-69.
    • (1996) E Coli Salmonella Cell Mol Biol , vol.2 , pp. 1553-1569
    • Bremer, H.1    Dennis, P.P.2
  • 37
    • 0026025891 scopus 로고
    • Molecular genetic analysis of fission yeast Schizosaccharomyces pombe
    • 1:CAS:528:DyaK3MXit1ahs7w%3D
    • Moreno S, Klar A, Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795-823.
    • (1991) Methods Enzymol , vol.194 , pp. 795-823
    • Moreno, S.1    Klar, A.2    Nurse, P.3
  • 38
    • 28844474830 scopus 로고    scopus 로고
    • Flux balance analysis of photoautotrophic metabolism
    • 1:CAS:528:DC%2BD2MXhtFKhtbjJ 10.1021/bp050246d
    • Shastri AA, Morgan JA. Flux balance analysis of photoautotrophic metabolism. Biotechnol Prog. 2005;21:1617-26.
    • (2005) Biotechnol Prog , vol.21 , pp. 1617-1626
    • Shastri, A.A.1    Morgan, J.A.2
  • 39
    • 70350353205 scopus 로고    scopus 로고
    • Lipid productivity as a key characteristic for choosing algal species for biodiesel production
    • 1:CAS:528:DC%2BD1MXhtF2hsLrP 10.1007/s10811-008-9392-7
    • Griffiths MJ, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol. 2009;21:493-507.
    • (2009) J Appl Phycol , vol.21 , pp. 493-507
    • Griffiths, M.J.1    Harrison, S.T.L.2
  • 41
    • 67651115666 scopus 로고    scopus 로고
    • Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency
    • 1:CAS:528:DC%2BD1MXpt1KgsrY%3D 10.1016/j.plantsci.2009.06.005
    • Melis A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci. 2009;177:272-80.
    • (2009) Plant Sci , vol.177 , pp. 272-280
    • Melis, A.1
  • 42
    • 81155134017 scopus 로고    scopus 로고
    • Improving photosynthesis for algal biofuels: Toward a green revolution
    • 1:CAS:528:DC%2BC3MXhsV2ls7%2FK 10.1016/j.tibtech.2011.06.005
    • Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS. Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol. 2011;29:615-23.
    • (2011) Trends Biotechnol , vol.29 , pp. 615-623
    • Stephenson, P.G.1    Moore, C.M.2    Terry, M.J.3    Zubkov, M.V.4    Bibby, T.S.5
  • 43
    • 34249664967 scopus 로고    scopus 로고
    • Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana
    • 1:CAS:528:DC%2BD2sXkvFWnsrc%3D 10.1038/nbt1299
    • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol. 2007;25:593-9.
    • (2007) Nat Biotechnol , vol.25 , pp. 593-599
    • Kebeish, R.1    Niessen, M.2    Thiruveedhi, K.3    Bari, R.4    Hirsch, H.J.5    Rosenkranz, R.6
  • 44
    • 84880976200 scopus 로고    scopus 로고
    • Improving photosynthesis
    • 1:CAS:528:DC%2BC3sXhtlWlt7zE 10.1104/pp.113.219006
    • Evans JR. Improving photosynthesis. Plant Physiol. 2013;162:1780-93.
    • (2013) Plant Physiol , vol.162 , pp. 1780-1793
    • Evans, J.R.1
  • 45
  • 46
    • 2442670648 scopus 로고    scopus 로고
    • Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii
    • 1:CAS:528:DC%2BD2cXkt12ntbk%3D 10.1104/pp.103.037283
    • Mitra M, Lato SM, Ynalvez RA, Xiao Y, Moroney JV. Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol. 2004;135:173-82.
    • (2004) Plant Physiol , vol.135 , pp. 173-182
    • Mitra, M.1    Lato, S.M.2    Ynalvez, R.A.3    Xiao, Y.4    Moroney, J.V.5
  • 48
    • 74449089057 scopus 로고    scopus 로고
    • Carboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation
    • 1:CAS:528:DC%2BC3cXhtVamurY%3D 10.1016/j.bbapap.2009.09.026
    • Cannon GC, Heinhorst S, Kerfeld CA. Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim Biophys Acta. 2010;1804:382-92.
    • (2010) Biochim Biophys Acta , vol.1804 , pp. 382-392
    • Cannon, G.C.1    Heinhorst, S.2    Kerfeld, C.A.3
  • 50
    • 33947503169 scopus 로고    scopus 로고
    • Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry
    • 1:CAS:528:DC%2BD2sXjslGrt7o%3D 10.1016/j.chroma.2007.02.034
    • Luo B, Groenke K, Takors R, Wandrey C, Oldiges M. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A. 2007;1147:153-64.
    • (2007) J Chromatogr A , vol.1147 , pp. 153-164
    • Luo, B.1    Groenke, K.2    Takors, R.3    Wandrey, C.4    Oldiges, M.5
  • 51
    • 84861398967 scopus 로고    scopus 로고
    • Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants
    • 1:CAS:528:DC%2BC38Xnt1emu7w%3D 10.1093/jxb/ers004
    • Uematsu K, Suzuki N, Iwamae T, Inui M, Yukawa H. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot. 2012;63:3001-9.
    • (2012) J Exp Bot , vol.63 , pp. 3001-3009
    • Uematsu, K.1    Suzuki, N.2    Iwamae, T.3    Inui, M.4    Yukawa, H.5
  • 52
    • 78650823721 scopus 로고    scopus 로고
    • 2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels
    • 1:CAS:528:DC%2BC3MXks1ertA%3D%3D 10.1016/j.biortech.2010.10.047
    • 2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol. 2011;102:3071-6.
    • (2011) Bioresour Technol , vol.102 , pp. 3071-3076
    • Tang, D.1    Han, W.2    Li, P.3    Miao, X.4    Zhong, J.5
  • 53
    • 77951092046 scopus 로고    scopus 로고
    • Potential carbon dioxide fixation by industrially important microalgae
    • 1:CAS:528:DC%2BC3cXlt1SitLw%3D 10.1016/j.biortech.2010.02.088
    • Sydney EB, Sturm W, Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, et al. Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol. 2010;101:5892-6.
    • (2010) Bioresour Technol , vol.101 , pp. 5892-5896
    • Sydney, E.B.1    Sturm, W.2    Carvalho, J.C.3    Thomaz-Soccol, V.4    Larroche, C.5    Pandey, A.6
  • 54
    • 33751178578 scopus 로고    scopus 로고
    • Influence of nitrate feeding on carbon dioxide fixation by microalgae. Journal of environmental science and health
    • 1:CAS:528:DC%2BD28Xht1yksbbM 10.1080/10934520600967928
    • Jin H-F, Lim B-R, Lee K. Influence of nitrate feeding on carbon dioxide fixation by microalgae. Journal of environmental science and health. J Environ Sci Heal A. 2006;41:2813-24.
    • (2006) J Environ Sci Heal A , vol.41 , pp. 2813-2824
    • Jin, H.-F.1    Lim, B.-R.2    Lee, K.3
  • 55
    • 84873627364 scopus 로고    scopus 로고
    • 2 bio-mitigation and biodiesel production
    • 1:CAS:528:DC%2BC3sXjslKku7Y%3D 10.1016/j.ijggc.2013.01.016
    • 2 bio-mitigation and biodiesel production. Int J Greenhouse Gas Control. 2013;14:169-76.
    • (2013) Int J Greenhouse Gas Control , vol.14 , pp. 169-176
    • Lam, M.1
  • 56
    • 34547631235 scopus 로고    scopus 로고
    • Carbon dioxide fixation by Chlorella kessleri, C. Vulgaris, Scenedesmus obliquus and Spirulina sp. Cultivated in flasks and vertical tubular photobioreactors
    • 1:CAS:528:DC%2BD2sXosVSisLk%3D 10.1007/s10529-007-9394-6
    • Morais MG, Costa JA. Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett. 2007;29:1349-52.
    • (2007) Biotechnol Lett , vol.29 , pp. 1349-1352
    • Morais, M.G.1    Costa, J.A.2
  • 58
    • 42749091827 scopus 로고    scopus 로고
    • CFLL, Franco TT. Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor
    • 1:CAS:528:DC%2BD1cXls12qsL0%3D 10.1016/j.bej.2007.11.013
    • Jacob-Lopes E. CFLL, Franco TT. Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochem Eng J. 2008;40:27-34.
    • (2008) Biochem Eng J , vol.40 , pp. 27-34
    • Jacob-Lopes, E.1
  • 59
    • 0034135408 scopus 로고    scopus 로고
    • Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors
    • 1:STN:280:DC%2BD3c%2FovVKrsQ%3D%3D 10.1002/(SICI)1097-0290(20000220)67:4<465: AID-BIT10>3.0.CO;2-9
    • Mazzuca Sobczuk T, Garcia Camacho F, Camacho Rubio F, Acien Fernandez FG, Molina GE. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng. 2000;67:465-75.
    • (2000) Biotechnol Bioeng , vol.67 , pp. 465-475
    • Mazzuca Sobczuk, T.1    Garcia Camacho, F.2    Camacho Rubio, F.3    Acien Fernandez, F.G.4    Molina, G.E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.