메뉴 건너뛰기




Volumn 7, Issue 3, 2016, Pages

Requirements for carnitine shuttle-mediated translocation of mitochondrial acetyl moieties to the yeast cytosol

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A; CARNITINE; MONOCARBOXYLATE TRANSPORTER 1; PYRUVATE DEHYDROGENASE COMPLEX; CULTURE MEDIUM; GLUCOSE;

EID: 84978976588     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.00520-16     Document Type: Article
Times cited : (19)

References (76)
  • 2
    • 33745557847 scopus 로고    scopus 로고
    • Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription
    • Takahashi H, McCaffery JM, Irizarry RA, Boeke JD. 2006. Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription. Mol Cell 23: 207-217. http://dx.doi.org/10.1016/j.molcel.2006.05.040.
    • (2006) Mol Cell , vol.23 , pp. 207-217
    • Takahashi, H.1    McCaffery, J.M.2    Irizarry, R.A.3    Boeke, J.D.4
  • 3
    • 84912019905 scopus 로고    scopus 로고
    • Protein acetylation and acetyl coenzyme A metabolism in budding yeast
    • Galdieri L, Zhang T, Rogerson D, Lleshi R, Vancura A. 2014. Protein acetylation and acetyl coenzyme A metabolism in budding yeast. Eukaryot Cell 13: 1472-1483. http://dx.doi.org/10.1128/EC.00189-14.
    • (2014) Eukaryot Cell , vol.13 , pp. 1472-1483
    • Galdieri, L.1    Zhang, T.2    Rogerson, D.3    Lleshi, R.4    Vancura, A.5
  • 4
    • 84920161779 scopus 로고    scopus 로고
    • Synthetic biology for engineering acetyl coenzyme A metabolism in yeast
    • Nielsen J. 2014. Synthetic biology for engineering acetyl coenzyme A metabolism in yeast. mBio 5: e02153-14. http://dx.doi.org/10.1128/mBio.02153-14.
    • (2014) mBio , vol.5
    • Nielsen, J.1
  • 5
    • 84878641167 scopus 로고    scopus 로고
    • Metabolic engineering of yeast for production of fuels and chemicals
    • Nielsen J, Larsson C, Van Maris AJA, Pronk JT. 2013. Metabolic engineering of yeast for production of fuels and chemicals. Curr Opin Biotechnol 24: 398-404. http://dx.doi.org/10.1016/j.copbio.2013.03.023.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 398-404
    • Nielsen, J.1    Larsson, C.2    Van Maris, A.J.A.3    Pronk, J.T.4
  • 6
    • 84905858364 scopus 로고    scopus 로고
    • Intracellular redistribution of acetyl-CoA, the pivotal point in differential susceptibility of cholinergic neurons and glial cells to neurodegenerative signals
    • Szutowicz A, Bielarczyk H, Ronowska A, Gul-Hinc S, KlimaszewskaŁata J, Dyś A, Zyśk M, Pawełczyk T. 2014. Intracellular redistribution of acetyl-CoA, the pivotal point in differential susceptibility of cholinergic neurons and glial cells to neurodegenerative signals. Biochem Soc Trans 42: 1101-1106. http://dx.doi.org/10.1042/BST20140078.
    • (2014) Biochem Soc Trans , vol.42 , pp. 1101-1106
    • Szutowicz, A.1    Bielarczyk, H.2    Ronowska, A.3    Gul-Hinc, S.4    KlimaszewskaŁata, J.5    Dyś, A.6    Zyśk, M.7    Pawełczyk, T.8
  • 7
    • 78649892486 scopus 로고    scopus 로고
    • Intracellular acetyl unit transport in fungal carbon metabolism
    • Strijbis K, Distel B. 2010. Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 9: 1809-1815. http://dx.doi.org/10.1128/EC.00172-10.
    • (2010) Eukaryot Cell , vol.9 , pp. 1809-1815
    • Strijbis, K.1    Distel, B.2
  • 9
    • 0029064219 scopus 로고
    • The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions
    • Van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF. 1995. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14: 3480-3486.
    • (1995) EMBO J , vol.14 , pp. 3480-3486
    • Van Roermund, C.W.1    Elgersma, Y.2    Singh, N.3    Wanders, R.J.4    Tabak, H.F.5
  • 10
    • 0018725358 scopus 로고
    • Yeast peroxisomes
    • Fukui S, Tanaka A. 1979. Yeast peroxisomes. Trends Biochem Sci 4: 246-249. http://dx.doi.org/10.1016/0968-0004(79)90214-7.
    • (1979) Trends Biochem Sci , vol.4 , pp. 246-249
    • Fukui, S.1    Tanaka, A.2
  • 11
    • 0023893052 scopus 로고
    • Carnitine
    • Bieber LL. 1988. Carnitine. Annu Rev Biochem 57: 261-283. http://dx.doi.org/10.1146/annurev.bi.57.070188.001401.
    • (1988) Annu Rev Biochem , vol.57 , pp. 261-283
    • Bieber, L.L.1
  • 13
    • 0036471216 scopus 로고    scopus 로고
    • Carnitine biosynthesis in mammals
    • Vaz FM, Wanders RJA. 2002. Carnitine biosynthesis in mammals. Biochem J 361: 417-429. http://dx.doi.org/10.1042/bj3610417.
    • (2002) Biochem J , vol.361 , pp. 417-429
    • Vaz, F.M.1    Wanders, R.J.A.2
  • 15
    • 0034985293 scopus 로고    scopus 로고
    • Carnitinedependent metabolic activities in Saccharomyces cerevisiae: Three carnitine acetyltransferases are essential in a carnitine-dependent strain
    • Swiegers JH, Dippenaar N, Pretorius IS, Bauer FF. 2001. Carnitinedependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18: 585-595. http://dx.doi.org/10.1002/yea.712.
    • (2001) Yeast , vol.18 , pp. 585-595
    • Swiegers, J.H.1    Dippenaar, N.2    Pretorius, I.S.3    Bauer, F.F.4
  • 16
    • 84878629644 scopus 로고    scopus 로고
    • Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level
    • Aouida M, Rubio-Texeira M, Thevelein JM, Poulin R, Ramotar D. 2013. Agp2, a member of the yeast amino acid permease family, positively regulates polyamine transport at the transcriptional level. PLoS One 8: e65717. http://dx.doi.org/10.1371/journal.pone.0065717.
    • (2013) PLoS One , vol.8
    • Aouida, M.1    Rubio-Texeira, M.2    Thevelein, J.M.3    Poulin, R.4    Ramotar, D.5
  • 17
    • 0033231013 scopus 로고    scopus 로고
    • Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p
    • Van Roermund CW, Hettema EH, Van den Berg M, Tabak HF, Wanders RJ. 1999. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J 18: 5843-5852. http://dx.doi.org/10.1093/emboj/18.21.5843.
    • (1999) EMBO J , vol.18 , pp. 5843-5852
    • Van Roermund, C.W.1    Hettema, E.H.2    Van den Berg, M.3    Tabak, H.F.4    Wanders, R.J.5
  • 18
    • 0029058992 scopus 로고
    • Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene
    • Elgersma Y, Van Roermund CW, Wanders RJ, Tabak HF. 1995. Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J 14: 3472-3479.
    • (1995) EMBO J , vol.14 , pp. 3472-3479
    • Elgersma, Y.1    Van Roermund, C.W.2    Wanders, R.J.3    Tabak, H.F.4
  • 19
    • 0027772068 scopus 로고
    • The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase
    • Schmalix W, Bandlow W. 1993. The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase. J Biol Chem 268: 27428-27439.
    • (1993) J Biol Chem , vol.268 , pp. 27428-27439
    • Schmalix, W.1    Bandlow, W.2
  • 21
    • 84930845786 scopus 로고    scopus 로고
    • CYCLoPs: A comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae
    • Koh JLY, Chong YT, Friesen H, Moses A, Boone C, Andrews BJ, Moffat J. 2015. CYCLoPs: a comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae. G3 (Bethesda) 5: 1223-1232. http://dx.doi.org/10.1534/g3.115.017830.
    • (2015) G3 (Bethesda) , vol.5 , pp. 1223-1232
    • Koh, J.L.Y.1    Chong, Y.T.2    Friesen, H.3    Moses, A.4    Boone, C.5    Andrews, B.J.6    Moffat, J.7
  • 22
    • 0017365113 scopus 로고
    • Carnitine acetyltransferase: Candidate for the transfer of acetyl groups through the mitochondrial membrane of yeast
    • Kohlhaw GB, Tan-Wilson A. 1977. Carnitine acetyltransferase: candidate for the transfer of acetyl groups through the mitochondrial membrane of yeast. J Bacteriol 129: 1159-1161.
    • (1977) J Bacteriol , vol.129 , pp. 1159-1161
    • Kohlhaw, G.B.1    Tan-Wilson, A.2
  • 23
    • 0032725771 scopus 로고    scopus 로고
    • Identification of the mitochondrial carnitine carrier in Saccharomyces cerevisiae
    • Palmieri L, Lasorsa FM, Iacobazzi V, Runswick MJ, Palmieri F, Walker JE. 1999. Identification of the mitochondrial carnitine carrier in Saccharomyces cerevisiae. FEBS Lett 462: 472-476. http://dx.doi.org/10.1016/S0014-5793(99)01555-0.
    • (1999) FEBS Lett , vol.462 , pp. 472-476
    • Palmieri, L.1    Lasorsa, F.M.2    Iacobazzi, V.3    Runswick, M.J.4    Palmieri, F.5    Walker, J.E.6
  • 24
    • 44349152327 scopus 로고    scopus 로고
    • Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: A role for carnitine in stress protection
    • Franken J, Kroppenstedt S, Swiegers JH, Bauer FF. 2008. Carnitine and carnitine acetyltransferases in the yeast Saccharomyces cerevisiae: a role for carnitine in stress protection. Curr Genet 53: 347-360. http://dx.doi.org/10.1007/s00294-008-0191-0.
    • (2008) Curr Genet , vol.53 , pp. 347-360
    • Franken, J.1    Kroppenstedt, S.2    Swiegers, J.H.3    Bauer, F.F.4
  • 25
    • 61349180122 scopus 로고    scopus 로고
    • Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae
    • Grunau S, Mindthoff S, Rottensteiner H, Sormunen RT, Hiltunen JK, Erdmann R, Antonenkov VD. 2009. Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae. FEBS J 276: 1698-1708. http://dx.doi.org/10.1111/j.1742-4658.2009.06903.x.
    • (2009) FEBS J , vol.276 , pp. 1698-1708
    • Grunau, S.1    Mindthoff, S.2    Rottensteiner, H.3    Sormunen, R.T.4    Hiltunen, J.K.5    Erdmann, R.6    Antonenkov, V.D.7
  • 26
    • 0030448870 scopus 로고    scopus 로고
    • Pyruvate metabolism in Saccharomyces cerevisiae
    • Pronk JT, Yde Steensma H, Van Dijken JP. 1996. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12: 1607-1633. http://dx.doi.org/10.1002/(SICI)1097-0061(199612)12: 16_1607:: AID-YEA703.0.CO; 2-4.
    • (1996) Yeast , vol.12 , pp. 1607-1633
    • Pronk, J.T.1    Yde Steensma, H.2    Van Dijken, J.P.3
  • 27
    • 84861429699 scopus 로고    scopus 로고
    • eQuilibrator-the biochemical thermodynamics calculator
    • Flamholz A, Noor E, Bar-Even A, Milo R. 2012. eQuilibrator-the biochemical thermodynamics calculator. Nucleic Acids Res 40: D770-D775. http://dx.doi.org/10.1093/nar/gkr874.
    • (2012) Nucleic Acids Res , vol.40
    • Flamholz, A.1    Noor, E.2    Bar-Even, A.3    Milo, R.4
  • 28
    • 0001480963 scopus 로고
    • Two ways from pyruvate to acetylcoenzyme A in yeast
    • German
    • Holzer H, Goedde HW. 1957. Two ways from pyruvate to acetylcoenzyme A in yeast. Biochem Z 329: 175-191. (In German.)
    • (1957) Biochem Z , vol.329 , pp. 175-191
    • Holzer, H.1    Goedde, H.W.2
  • 29
    • 0025738416 scopus 로고
    • Isolation and characterization of carnitine acetyltransferase from S. cerevisiae
    • Kispal G, Cseko J, Alkonyi I, Sandor A. 1991. Isolation and characterization of carnitine acetyltransferase from S. cerevisiae. Biochim Biophys Acta 1085: 217-222. http://dx.doi.org/10.1016/0005-2760(91)90097-2.
    • (1991) Biochim Biophys Acta , vol.1085 , pp. 217-222
    • Kispal, G.1    Cseko, J.2    Alkonyi, I.3    Sandor, A.4
  • 30
    • 0037394829 scopus 로고    scopus 로고
    • Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae
    • Van Maris AJA, Luttik MAH, Winkler AA, Van Dijken JP, Pronk JT. 2003. Overproduction of threonine aldolase circumvents the biosynthetic role of pyruvate decarboxylase in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 69: 2094-2099. http://dx.doi.org/10.1128/AEM.69.4.2094-2099.2003.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 2094-2099
    • Van Maris, A.J.A.1    Luttik, M.A.H.2    Winkler, A.A.3    Van Dijken, J.P.4    Pronk, J.T.5
  • 31
    • 84908409797 scopus 로고    scopus 로고
    • Engineering acetyl coenzymeAsupply: Functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae
    • Kozak BU, Van Rossum HM, Luttik MAH, Akeroyd M, Benjamin KR, Wu L, De Vries S, Daran J-M, Pronk JT, Van Maris AJA. 2014. Engineering acetyl coenzymeAsupply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. mBio 5: e01696-14. http://dx.doi.org/10.1128/mBio.01696-14.
    • (2014) mBio , vol.5
    • Kozak, B.U.1    Van Rossum, H.M.2    Luttik, M.A.H.3    Akeroyd, M.4    Benjamin, K.R.5    Wu, L.6    De Vries, S.7    Daran, J.-M.8    Pronk, J.T.9    Van Maris, A.J.A.10
  • 32
    • 60749120294 scopus 로고    scopus 로고
    • Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: A quantitative analysis of a compendium of chemostat-based transcriptome data
    • Knijnenburg TA, Daran J-MG, Van den Broek MA, Daran-Lapujade PAS, De Winde JH, Pronk JT, Reinders MJT, Wessels LFA. 2009. Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genomics 10: 53. http://dx.doi.org/10.1186/1471-2164-10-53.
    • (2009) BMC Genomics , vol.10 , pp. 53
    • Knijnenburg, T.A.1    Daran, J.-M.G.2    Van den Broek, M.A.3    Daran-Lapujade, P.A.S.4    De Winde, J.H.5    Pronk, J.T.6    Reinders, M.J.T.7    Wessels, L.F.A.8
  • 34
    • 67349179514 scopus 로고    scopus 로고
    • Re-characterisation of Saccharomyces cerevisiae Ach1p: Fungal CoA-transferases are involved in acetic acid detoxification
    • Fleck CB, BrockM. 2009. Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification. Fungal Genet Biol 46: 473-485. http://dx.doi.org/10.1016/j.fgb.2009.03.004.
    • (2009) Fungal Genet Biol , vol.46 , pp. 473-485
    • Fleck, C.B.1    Brock, M.2
  • 35
    • 0026713389 scopus 로고
    • Characterization of Saccharomyces cerevisiae mutants lacking the E1 alpha subunit of the pyruvate dehydrogenase complex
    • Wenzel TJ, Van den Berg MA, Visser W, Van den Berg JA, Steensma HY. 1992. Characterization of Saccharomyces cerevisiae mutants lacking the E1 alpha subunit of the pyruvate dehydrogenase complex. Eur J Biochem 209: 697-705. http://dx.doi.org/10.1111/j.1432-1033.1992.tb17338.x.
    • (1992) Eur J Biochem , vol.209 , pp. 697-705
    • Wenzel, T.J.1    Van den Berg, M.A.2    Visser, W.3    Van den Berg, J.A.4    Steensma, H.Y.5
  • 36
    • 0028218011 scopus 로고
    • Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae
    • Pronk JT, Wenzel TJ, Luttik MA, Klaassen CC, Scheffers WA, Steensma HY, Van Dijken JP. 1994. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae. Microbiology 140: 601-610. http://dx.doi.org/10.1099/00221287-140-3-601.
    • (1994) Microbiology , vol.140 , pp. 601-610
    • Pronk, J.T.1    Wenzel, T.J.2    Luttik, M.A.3    Klaassen, C.C.4    Scheffers, W.A.5    Steensma, H.Y.6    Van Dijken, J.P.7
  • 38
    • 0031468145 scopus 로고    scopus 로고
    • Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae
    • Schneider R, Brors B, Bürger F, Camrath S, Weiss H. 1997. Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae. Curr Genet 32: 384-388. http://dx.doi.org/10.1007/s002940050292.
    • (1997) Curr Genet , vol.32 , pp. 384-388
    • Schneider, R.1    Brors, B.2    Bürger, F.3    Camrath, S.4    Weiss, H.5
  • 39
    • 33745851905 scopus 로고    scopus 로고
    • Toward the complete yeast mitochondrial proteome: Multidimensional separation techniques for mitochondrial proteomics
    • Reinders J, Zahedi RP, Pfanner N, Meisinger C, Sickmann A. 2006. Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. J Proteome Res 5: 1543-1554. http://dx.doi.org/10.1021/pr050477f.
    • (2006) J Proteome Res , vol.5 , pp. 1543-1554
    • Reinders, J.1    Zahedi, R.P.2    Pfanner, N.3    Meisinger, C.4    Sickmann, A.5
  • 40
    • 0027524176 scopus 로고
    • RTG1 and RTG2: Two yeast genes required for a novel path of communication from mitochondria to the nucleus
    • Liao X, Butow RA. 1993. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72: 61-71. http://dx.doi.org/10.1016/0092-8674(93)90050-Z.
    • (1993) Cell , vol.72 , pp. 61-71
    • Liao, X.1    Butow, R.A.2
  • 41
  • 42
    • 2542478792 scopus 로고    scopus 로고
    • HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae
    • Hoja U, Marthol S, Hofmann J, Stegner S, Schulz R, Meier S, Greiner E, Schweizer E. 2004. HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. J Biol Chem 279: 21779-21786. http://dx.doi.org/10.1074/jbc.M401071200.
    • (2004) J Biol Chem , vol.279 , pp. 21779-21786
    • Hoja, U.1    Marthol, S.2    Hofmann, J.3    Stegner, S.4    Schulz, R.5    Meier, S.6    Greiner, E.7    Schweizer, E.8
  • 44
    • 0037310470 scopus 로고    scopus 로고
    • Characterization of a bifunctional archaeal acyl coenzyme A carboxylase
    • Chuakrut S, Arai H, Ishii M, Igarashi Y. 2003. Characterization of a bifunctional archaeal acyl coenzyme A carboxylase. J Bacteriol 185: 938-947. http://dx.doi.org/10.1128/JB.185.3.938-947.2003.
    • (2003) J Bacteriol , vol.185 , pp. 938-947
    • Chuakrut, S.1    Arai, H.2    Ishii, M.3    Igarashi, Y.4
  • 46
    • 84877125588 scopus 로고    scopus 로고
    • Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines
    • Violante S, IJlst L, Te Brinke H, Tavares De Almeida I, Wanders RJA, Ventura FV, Houten SM. 2013. Carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase are involved in the mitochondrial synthesis and export of acylcarnitines. FASEB J 27: 2039-2044. http://dx.doi.org/10.1096/fj.12-216689.
    • (2013) FASEB J , vol.27 , pp. 2039-2044
    • Violante, S.1    Ijlst, L.2    Te Brinke, H.3    Tavares De Almeida, I.4    Wanders, R.J.A.5    Ventura, F.V.6    Houten, S.M.7
  • 48
    • 0015895976 scopus 로고
    • Effect of (-)-hydroxycitrate on ethanol metabolism
    • Brunengraber H, Lowenstein JM. 1973. Effect of (-)-hydroxycitrate on ethanol metabolism. FEBS Lett 36: 130-132. http://dx.doi.org/10.1016/0014-5793(73)80353-9.
    • (1973) FEBS Lett , vol.36 , pp. 130-132
    • Brunengraber, H.1    Lowenstein, J.M.2
  • 49
    • 0019836936 scopus 로고
    • Correlation of lipid accumulation in yeasts with possession of ATP: Citrate lyase
    • Boulton CA, Ratledge C. 1981. Correlation of lipid accumulation in yeasts with possession of ATP: citrate lyase. Microbiology 127: 169-176. http://dx.doi.org/10.1099/00221287-127-1-169.
    • (1981) Microbiology , vol.127 , pp. 169-176
    • Boulton, C.A.1    Ratledge, C.2
  • 50
    • 77956795100 scopus 로고    scopus 로고
    • ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans
    • Hynes MJ, Murray SL. 2010. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot Cell 9: 1039-1048. http://dx.doi.org/10.1128/EC.00080-10.
    • (2010) Eukaryot Cell , vol.9 , pp. 1039-1048
    • Hynes, M.J.1    Murray, S.L.2
  • 52
    • 84938644338 scopus 로고    scopus 로고
    • Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase
    • Chen Y, Zhang Y, Siewers V, Nielsen J. 2015. Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase. FEMS Yeast Res 15: fov015. http://dx.doi.org/10.1093/femsyr/fov015.
    • (2015) FEMS Yeast Res , vol.15 , pp. 15
    • Chen, Y.1    Zhang, Y.2    Siewers, V.3    Nielsen, J.4
  • 53
    • 34547844121 scopus 로고    scopus 로고
    • Automatic genomewide reconstruction of phylogenetic gene trees
    • Wapinski I, Pfeffer A, Friedman N, Regev A. 2007. Automatic genomewide reconstruction of phylogenetic gene trees. Bioinformatics 23: i549-i558. http://dx.doi.org/10.1093/bioinformatics/btm193.
    • (2007) Bioinformatics , vol.23
    • Wapinski, I.1    Pfeffer, A.2    Friedman, N.3    Regev, A.4
  • 55
    • 0029134555 scopus 로고
    • ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose
    • Van den Berg MA, Steensma HY. 1995. ACS2, a Saccharomyces cerevisiae gene encoding acetyl-coenzyme A synthetase, essential for growth on glucose. Eur J Biochem 231: 704-713. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20751.x.
    • (1995) Eur J Biochem , vol.231 , pp. 704-713
    • Van den Berg, M.A.1    Steensma, H.Y.2
  • 56
    • 0030746946 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation
    • De Jong-Gubbels P, Van den Berg MA, Steensma HY, Van Dijken JP, Pronk JT. 1997. The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. FEMS Microbiol Lett 153: 75-81. http://dx.doi.org/10.1111/j.1574-6968.1997.tb10466.x.
    • (1997) FEMS Microbiol Lett , vol.153 , pp. 75-81
    • De Jong-Gubbels, P.1    Van den Berg, M.A.2    Steensma, H.Y.3    Van Dijken, J.P.4    Pronk, J.T.5
  • 57
    • 2442684544 scopus 로고    scopus 로고
    • Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae
    • Sonderegger M, Schümperli M, Sauer U. 2004. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl Environ Microbiol 70: 2892-2897. http://dx.doi.org/10.1128/AEM.70.5.2892-2897.2004.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 2892-2897
    • Sonderegger, M.1    Schümperli, M.2    Sauer, U.3
  • 58
    • 84896932547 scopus 로고    scopus 로고
    • Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis
    • Kozak BU, Van Rossum HM, Benjamin KR, Wu L, Daran J-MG, Pronk JT, Van Maris AJA. 2014. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab Eng 21: 46-59. http://dx.doi.org/10.1016/j.ymben.2013.11.005.
    • (2014) Metab Eng , vol.21 , pp. 46-59
    • Kozak, B.U.1    Van Rossum, H.M.2    Benjamin, K.R.3    Wu, L.4    Daran, J.-M.G.5    Pronk, J.T.6    Van Maris, A.J.A.7
  • 59
    • 84937640392 scopus 로고    scopus 로고
    • Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae
    • Franken J, Burger A, Swiegers JH, Bauer FF. 2015. Reconstruction of the carnitine biosynthesis pathway from Neurospora crassa in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99: 6377-6389. http://dx.doi.org/10.1007/s00253-015-6561-x.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 6377-6389
    • Franken, J.1    Burger, A.2    Swiegers, J.H.3    Bauer, F.F.4
  • 60
    • 84871661211 scopus 로고    scopus 로고
    • Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marinederived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin
    • Liu X-Y, Chi Z-M, Liu G-L, Madzak C, Chi Z-M. 2013. Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marinederived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Mar Biotechnol 15: 26-36. http://dx.doi.org/10.1007/s10126-012-9452-5.
    • (2013) Mar Biotechnol , vol.15 , pp. 26-36
    • Liu, X.-Y.1    Chi, Z.-M.2    Liu, G.-L.3    Madzak, C.4    Chi, Z.-M.5
  • 61
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
    • Verduyn C, Postma E, Scheffers WA, Van Dijken JP. 1992. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501-517. http://dx.doi.org/10.1002/yea.320080703.
    • (1992) Yeast , vol.8 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 62
    • 34247580875 scopus 로고    scopus 로고
    • Yeast genetic strain and plasmid collections
    • Entian KD, Kötter P. 2007. Yeast genetic strain and plasmid collections. Methods Microbiol 36: 629-666.
    • (2007) Methods Microbiol , vol.36 , pp. 629-666
    • Entian, K.D.1    Kötter, P.2
  • 64
    • 0026512939 scopus 로고
    • Multifunctional yeast high-copy-number shuttle vectors
    • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119-122. http://dx.doi.org/10.1016/0378-1119(92)90454-W.
    • (1992) Gene , vol.110 , pp. 119-122
    • Christianson, T.W.1    Sikorski, R.S.2    Dante, M.3    Shero, J.H.4    Hieter, P.5
  • 65
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 87-96. http://dx.doi.org/10.1016/S0076-6879(02)50957-5.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 66
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24: 2519-2524. http://dx.doi.org/10.1093/nar/24.13.2519.
    • (1996) Nucleic Acids Res , vol.24 , pp. 2519-2524
    • Güldener, U.1    Heck, S.2    Fielder, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 67
    • 79957745171 scopus 로고    scopus 로고
    • Extraction of genomic DNA from yeasts for PCR-based applications
    • Lõoke M, Kristjuhan K, Kristjuhan A. 2011. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50: 325-328. http://dx.doi.org/10.2144/000113672.
    • (2011) Biotechniques , vol.50 , pp. 325-328
    • Lõoke, M.1    Kristjuhan, K.2    Kristjuhan, A.3
  • 68
    • 0025675856 scopus 로고
    • High efficiency transformation of Escherichia coli with plasmids
    • Inoue H, Nojima H, Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28. http://dx.doi.org/10.1016/0378-1119(90)90336-P.
    • (1990) Gene , vol.96 , pp. 23-28
    • Inoue, H.1    Nojima, H.2    Okayama, H.3
  • 69
    • 84859616870 scopus 로고    scopus 로고
    • Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis
    • De Kok S, Nijkamp JF, Oud B, Roque FC, Ridder D, Daran J-M, Pronk JT, Maris AJA. 2012. Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Res 12: 359-374. http://dx.doi.org/10.1111/j.1567-1364.2011.00787.x.
    • (2012) FEMS Yeast Res , vol.12 , pp. 359-374
    • De Kok, S.1    Nijkamp, J.F.2    Oud, B.3    Roque, F.C.4    Ridder, D.5    Daran, J.-M.6    Pronk, J.T.7    Maris, A.J.A.8
  • 70
    • 67649884743 scopus 로고    scopus 로고
    • Fast and accurate short read alignment with Burrows-Wheeler transform
    • Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760. http://dx.doi.org/10.1093/bioinformatics/btp324.
    • (2009) Bioinformatics , vol.25 , pp. 1754-1760
    • Li, H.1    Durbin, R.2
  • 72
    • 84875634162 scopus 로고    scopus 로고
    • Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration
    • Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14: 178-192. http://dx.doi.org/10.1093/bib/bbs017.
    • (2013) Brief Bioinform , vol.14 , pp. 178-192
    • Thorvaldsdóttir, H.1    Robinson, J.T.2    Mesirov, J.P.3
  • 73
    • 82555165927 scopus 로고    scopus 로고
    • Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states
    • Boender LGM, Almering MJH, Dijk M, Van Maris AJA, De Winde JH, Pronk JT, Daran-Lapujade P. 2011. Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states. Biochim Biophys Acta 1813: 2133-2144. http://dx.doi.org/10.1016/j.bbamcr.2011.07.008.
    • (2011) Biochim Biophys Acta , vol.1813 , pp. 2133-2144
    • Boender, L.G.M.1    Almering, M.J.H.2    Dijk, M.3    Van Maris, A.J.A.4    De Winde, J.H.5    Pronk, J.T.6    Daran-Lapujade, P.7
  • 74
    • 0024615221 scopus 로고
    • Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae
    • Postma E, Verduyn C, Scheffers WA, Van Dijken JP. 1989. Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55: 468-477.
    • (1989) Appl Environ Microbiol , vol.55 , pp. 468-477
    • Postma, E.1    Verduyn, C.2    Scheffers, W.A.3    Van Dijken, J.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.