메뉴 건너뛰기




Volumn 7, Issue 1, 2014, Pages 44-53

Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations

Author keywords

[No Author keywords available]

Indexed keywords

ACETIC ACID; ALCOHOL; ALDEHYDE DEHYDROGENASE; GLUCOSE; GLYCEROL; GLYCEROL 3 PHOSPHATE DEHYDROGENASE; SORBITOL;

EID: 84890082751     PISSN: 17517907     EISSN: 17517915     Source Type: Journal    
DOI: 10.1111/1751-7915.12080     Document Type: Article
Times cited : (32)

References (44)
  • 1
    • 0028302033 scopus 로고
    • GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway
    • Albertyn, J., Hohmann, S., Thevelein, J.M., and Prior, B.A. (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14: 4135-4144.
    • (1994) Mol Cell Biol , vol.14 , pp. 4135-4144
    • Albertyn, J.1    Hohmann, S.2    Thevelein, J.M.3    Prior, B.A.4
  • 2
    • 0030908893 scopus 로고    scopus 로고
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    • +-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J 16: 2179-2187.
    • (1997) EMBO J , vol.16 , pp. 2179-2187
    • Ansell, R.1    Granath, K.2    Hohmann, S.3    Thevelein, J.M.4    Adler, L.5
  • 3
    • 0034614454 scopus 로고    scopus 로고
    • 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles
    • Athenstaedt, K., and Daum, G. (2000) 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles. J Biol Chem 275: 235-240.
    • (2000) J Biol Chem , vol.275 , pp. 235-240
    • Athenstaedt, K.1    Daum, G.2
  • 4
    • 78649785008 scopus 로고    scopus 로고
    • Ether-zymolyase ascospore isolation procedure: an efficient protocol for ascospores isolation in Saccharomyces cerevisiae yeast
    • Bahalul, M., Kaneti, G., and Kashi, Y. (2010) Ether-zymolyase ascospore isolation procedure: an efficient protocol for ascospores isolation in Saccharomyces cerevisiae yeast. Yeast 27: 999-1003.
    • (2010) Yeast , vol.27 , pp. 999-1003
    • Bahalul, M.1    Kaneti, G.2    Kashi, Y.3
  • 5
    • 36349013043 scopus 로고    scopus 로고
    • Ethanol fermentation technologies from sugar and starch feedstocks
    • Bai, F.W., Anderson, W.A., and Moo-Young, M. (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26: 89-105.
    • (2008) Biotechnol Adv , vol.26 , pp. 89-105
    • Bai, F.W.1    Anderson, W.A.2    Moo-Young, M.3
  • 7
    • 0029802611 scopus 로고    scopus 로고
    • The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
    • van den Berg, M.A., de Jong-Gubbels, P., Kortland, C.J., Van Dijken, J., Pronk, J.T., and Steensma, H.Y. (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271: 28953-28959.
    • (1996) J Biol Chem , vol.271 , pp. 28953-28959
    • van den Berg, M.A.1    de Jong-Gubbels, P.2    Kortland, C.J.3    Van Dijken, J.4    Pronk, J.T.5    Steensma, H.Y.6
  • 8
    • 0242475404 scopus 로고    scopus 로고
    • Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae
    • Björkqvist, S., Ansell, R., Adler, L., and Lidén, G. (1997) Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Appl Environ Microbiol 63: 128-132.
    • (1997) Appl Environ Microbiol , vol.63 , pp. 128-132
    • Björkqvist, S.1    Ansell, R.2    Adler, L.3    Lidén, G.4
  • 9
    • 0024614329 scopus 로고
    • +) in acquired osmotolerance of Saccharomyces cerevisiae
    • +) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171: 1087-1092.
    • (1989) J Bacteriol , vol.171 , pp. 1087-1092
    • Blomberg, A.1    Adler, L.2
  • 11
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugars by yeasts
    • van Dijken, J., and Scheffers, W.A. (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32: 199-224.
    • (1986) FEMS Microbiol Rev , vol.32 , pp. 199-224
    • van Dijken, J.1    Scheffers, W.A.2
  • 12
    • 0034214335 scopus 로고    scopus 로고
    • An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
    • van Dijken, J., Bauer, J., Brambilla, L., Duboc, P., Francois, J.M., Gancedo, C., etal. (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26: 706-714.
    • (2000) Enzyme Microb Technol , vol.26 , pp. 706-714
    • van Dijken, J.1    Bauer, J.2    Brambilla, L.3    Duboc, P.4    Francois, J.M.5    Gancedo, C.6
  • 14
    • 75749134466 scopus 로고    scopus 로고
    • Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor
    • Guadalupe Medina, V., Almering, M.J.H., van Maris, A.J.A., and Pronk, J.T. (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76: 190-195.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 190-195
    • Guadalupe Medina, V.1    Almering, M.J.H.2    van Maris, A.J.A.3    Pronk, J.T.4
  • 15
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Güldener, U., Heck, S., Fiedler, T., Beinhauer, J., and Hegemann, J.H. (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24: 2519-2524.
    • (1996) Nucleic Acids Res , vol.24 , pp. 2519-2524
    • Güldener, U.1    Heck, S.2    Fiedler, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 16
    • 0025963054 scopus 로고
    • Putting the HO gene to work: practical uses for mating-type switching
    • Guthrie, C., and Fink, G.R. (eds). Amsterdam: Academic Press
    • Herskowitz, I., and Jensen, R.E. (1991) Putting the HO gene to work: practical uses for mating-type switching. In Methods in Enzymology: Guide to Yeast Genetics and Molecular Biology. Guthrie, C., and Fink, G.R. (eds). Amsterdam: Academic Press, pp. 132-146.
    • (1991) Methods in Enzymology: Guide to Yeast Genetics and Molecular Biology , pp. 132-146
    • Herskowitz, I.1    Jensen, R.E.2
  • 17
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signaling and osmoadaptation in yeasts
    • Hohmann, S. (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66: 300-372.
    • (2002) Microbiol Mol Biol Rev , vol.66 , pp. 300-372
    • Hohmann, S.1
  • 18
    • 0031883515 scopus 로고    scopus 로고
    • Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress
    • Hounsa, C.G., Brandt, E.V., Thevelein, J., Hohmann, S., and Prior, B.A. (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144: 671-680.
    • (1998) Microbiology , vol.144 , pp. 671-680
    • Hounsa, C.G.1    Brandt, E.V.2    Thevelein, J.3    Hohmann, S.4    Prior, B.A.5
  • 19
    • 80052705391 scopus 로고    scopus 로고
    • Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae
    • Hubmann, G., Guillouet, S., and Nevoigt, E. (2011) Gpd1 and Gpd2 fine-tuning for sustainable reduction of glycerol formation in Saccharomyces cerevisiae. Appl Environ Microbiol 77: 5857-5867.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 5857-5867
    • Hubmann, G.1    Guillouet, S.2    Nevoigt, E.3
  • 20
    • 80052473597 scopus 로고    scopus 로고
    • Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae
    • Jain, V., Divol, B., Prior, B., and Bauer, F. (2011) Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 38: 1427-1435.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , pp. 1427-1435
    • Jain, V.1    Divol, B.2    Prior, B.3    Bauer, F.4
  • 21
    • 0342847362 scopus 로고
    • Ethanolic fermentation of blackstrap molasses and sugar cane juice using very high gravity technology
    • Jones, A.M., Thomas, K.C., and Ingledew, W.M. (1994) Ethanolic fermentation of blackstrap molasses and sugar cane juice using very high gravity technology. J Agric Food Chem 42: 1242-1246.
    • (1994) J Agric Food Chem , vol.42 , pp. 1242-1246
    • Jones, A.M.1    Thomas, K.C.2    Ingledew, W.M.3
  • 22
    • 0003170326 scopus 로고
    • Current aspects of fuel ethanol production in Brazil
    • Laluce, C. (1991) Current aspects of fuel ethanol production in Brazil. Crit Rev Biotechnol 11: 149-161.
    • (1991) Crit Rev Biotechnol , vol.11 , pp. 149-161
    • Laluce, C.1
  • 23
    • 60749123628 scopus 로고    scopus 로고
    • Effect of trehalose accumulation on response to saline stress in Saccharomyces cerevisiae
    • Mahmud, S.A., Nagahisa, K., Hirasawa, T., Yoshikawa, K., Ashitani, K., and Shimizu, H. (2009) Effect of trehalose accumulation on response to saline stress in Saccharomyces cerevisiae. Yeast 26:17-30.
    • (2009) Yeast , vol.26 , pp. 17-30
    • Mahmud, S.A.1    Nagahisa, K.2    Hirasawa, T.3    Yoshikawa, K.4    Ashitani, K.5    Shimizu, H.6
  • 24
    • 33750621979 scopus 로고    scopus 로고
    • Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status
    • van Maris, A., Abbott, D., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M., etal. (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90: 391-418.
    • (2006) Antonie Van Leeuwenhoek , vol.90 , pp. 391-418
    • van Maris, A.1    Abbott, D.2    Bellissimi, E.3    van den Brink, J.4    Kuyper, M.5    Luttik, M.6
  • 25
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt, E. (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72: 379-412.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 26
    • 0031474318 scopus 로고    scopus 로고
    • Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae
    • Nevoigt, E., and Stahl, U. (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21: 231-241.
    • (1997) FEMS Microbiol Rev , vol.21 , pp. 231-241
    • Nevoigt, E.1    Stahl, U.2
  • 27
    • 84858729135 scopus 로고    scopus 로고
    • De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology
    • Nijkamp, J., van den Broek, M., Datema, E., de Kok, S., Bosman, L., Luttik, M., etal. (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11: 36.
    • (2012) Microb Cell Fact , vol.11 , pp. 36
    • Nijkamp, J.1    van den Broek, M.2    Datema, E.3    de Kok, S.4    Bosman, L.5    Luttik, M.6
  • 28
    • 0033929520 scopus 로고    scopus 로고
    • Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation
    • Nissen, T.L., Kielland-Brandt, M.C., Nielsen, J., and Villadsen, J. (2000) Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Metab Eng 2: 69-77.
    • (2000) Metab Eng , vol.2 , pp. 69-77
    • Nissen, T.L.1    Kielland-Brandt, M.C.2    Nielsen, J.3    Villadsen, J.4
  • 29
    • 84857061668 scopus 로고    scopus 로고
    • Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast
    • Oud, B., van Maris, A.J.A., Daran, J.M., and Pronk, J.T. (2012) Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast. FEMS Yeast Res 12: 183-196.
    • (2012) FEMS Yeast Res , vol.12 , pp. 183-196
    • Oud, B.1    van Maris, A.J.A.2    Daran, J.M.3    Pronk, J.T.4
  • 30
    • 77952459000 scopus 로고    scopus 로고
    • Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process
    • Pagliardini, J., Hubmann, G., Bideaux, C., Alfenore, S., Nevoigt, E., and Guillouet, S. (2010) Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process. Microb Cell Fact 9: 36.
    • (2010) Microb Cell Fact , vol.9 , pp. 36
    • Pagliardini, J.1    Hubmann, G.2    Bideaux, C.3    Alfenore, S.4    Nevoigt, E.5    Guillouet, S.6
  • 31
    • 0343183325 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification
    • Palmqvist, E., and Hahn-Hägerdal, B. (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74: 17-24.
    • (2000) Bioresour Technol , vol.74 , pp. 17-24
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 32
    • 0036249933 scopus 로고    scopus 로고
    • Auxotrophic yeast strains in fundamental and applied research
    • Pronk, J.T. (2002) Auxotrophic yeast strains in fundamental and applied research. Appl Environ Microbiol 68: 2095-2100.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 2095-2100
    • Pronk, J.T.1
  • 33
    • 0026796052 scopus 로고
    • The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae
    • Racenis, P.V., Lai, J.L., Das, A.K., Mullick, P.C., Hajra, A.K., and Greenberg, M.L. (1992) The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae. J Bacteriol 174: 5702-5710.
    • (1992) J Bacteriol , vol.174 , pp. 5702-5710
    • Racenis, P.V.1    Lai, J.L.2    Das, A.K.3    Mullick, P.C.4    Hajra, A.K.5    Greenberg, M.L.6
  • 34
    • 84890036110 scopus 로고    scopus 로고
    • Renewable Fuels Association World fuel Ethanol production [WWW document]. URL
    • Renewable Fuels Association (2012) World fuel Ethanol production [WWW document]. URL http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production.
    • (2012)
  • 35
    • 18944392490 scopus 로고    scopus 로고
    • A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce
    • Rudolf, A., Alkasrawi, M., Zacchi, G., and Lidén, G. (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 37: 195-204.
    • (2005) Enzyme Microb Technol , vol.37 , pp. 195-204
    • Rudolf, A.1    Alkasrawi, M.2    Zacchi, G.3    Lidén, G.4
  • 36
    • 0035232377 scopus 로고    scopus 로고
    • Evolutionary engineering of industrially important microbial phenotypes
    • Sauer, U. (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73: 129-169.
    • (2001) Adv Biochem Eng Biotechnol , vol.73 , pp. 129-169
    • Sauer, U.1
  • 37
    • 0014031580 scopus 로고
    • Stimulation of fermentation in yeasts by acetoin and oxygen
    • Scheffers, W.A. (1966) Stimulation of fermentation in yeasts by acetoin and oxygen. Nature 210: 533-534.
    • (1966) Nature , vol.210 , pp. 533-534
    • Scheffers, W.A.1
  • 38
    • 0033199922 scopus 로고    scopus 로고
    • Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast
    • Shen, B., Hohmann, S., Jensen, R.G., and Bohnert, H. (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121: 45-52.
    • (1999) Plant Physiol , vol.121 , pp. 45-52
    • Shen, B.1    Hohmann, S.2    Jensen, R.G.3    Bohnert, H.4
  • 39
    • 84868578003 scopus 로고    scopus 로고
    • Monitoring DNA recombination initiated by HO Endonuclease
    • Bjergbæk, L. (ed.). New York, NY, USA: Humana Press
    • Sugawara, N., and Haber, J. (2012) Monitoring DNA recombination initiated by HO Endonuclease. In DNA Repair Protocols. Bjergbæk, L. (ed.). New York, NY, USA: Humana Press, pp. 349-370.
    • (2012) DNA Repair Protocols , pp. 349-370
    • Sugawara, N.1    Haber, J.2
  • 40
    • 84857050299 scopus 로고    scopus 로고
    • Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae
    • Swinnen, S., Thevelein, J.M., and Nevoigt, E. (2012) Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 12: 215-227.
    • (2012) FEMS Yeast Res , vol.12 , pp. 215-227
    • Swinnen, S.1    Thevelein, J.M.2    Nevoigt, E.3
  • 41
    • 0034807097 scopus 로고    scopus 로고
    • Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae
    • Taherzadeh, M., Millati, R., and Niklasson, C. (2001) Continuous cultivation of dilute-acid hydrolysates to ethanol by immobilized Saccharomyces cerevisiae. Appl Biochem Biotechnol 95: 45-57.
    • (2001) Appl Biochem Biotechnol , vol.95 , pp. 45-57
    • Taherzadeh, M.1    Millati, R.2    Niklasson, C.3
  • 42
    • 55649090079 scopus 로고    scopus 로고
    • Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications
    • Takagi, H. (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81: 211-223.
    • (2008) Appl Microbiol Biotechnol , vol.81 , pp. 211-223
    • Takagi, H.1
  • 43
    • 0025318231 scopus 로고
    • Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures
    • Verduyn, C., Postma, E., Scheffers, W.A., and van Dijken, J.P. (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136: 395-403.
    • (1990) J Gen Microbiol , vol.136 , pp. 395-403
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    van Dijken, J.P.4
  • 44
    • 59949093124 scopus 로고    scopus 로고
    • Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains
    • Wisselink, H.W., Toirkens, M.J., Wu, Q., Pronk, J.T., and van Maris, A.J.A. (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75: 907-914.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 907-914
    • Wisselink, H.W.1    Toirkens, M.J.2    Wu, Q.3    Pronk, J.T.4    van Maris, A.J.A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.