메뉴 건너뛰기




Volumn 34, Issue 8, 2016, Pages 652-664

Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications

Author keywords

13C MFA; chromosomal engineering; genome scale model; machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOINFORMATICS; BIOLOGY; BIOSYNTHESIS; CARBON; CELL ENGINEERING; CELLS; CHEMICAL ANALYSIS; CHROMOSOMES; COST BENEFIT ANALYSIS; COST ENGINEERING; COSTS; CYTOLOGY; ENGINEERING EDUCATION; GENES; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; METABOLISM; NUCLEIC ACIDS; PHYSIOLOGICAL MODELS; PHYSIOLOGY; RECOMBINANT PROTEINS; SCALES (WEIGHING INSTRUMENTS);

EID: 84961223765     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2016.02.010     Document Type: Review
Times cited : (461)

References (106)
  • 1
    • 71849085372 scopus 로고    scopus 로고
    • Building outside of the box: iGEM and the BioBricks Foundation
    • 1 Smolke, C.D., Building outside of the box: iGEM and the BioBricks Foundation. Nat. Biotechnol. 27 (2009), 1099–1102.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 1099-1102
    • Smolke, C.D.1
  • 2
    • 34547756879 scopus 로고    scopus 로고
    • The iGEM competition: building with biology
    • 2 Brown, J., The iGEM competition: building with biology. IET Synthetic Biol. 1 (2007), 3–6.
    • (2007) IET Synthetic Biol. , vol.1 , pp. 3-6
    • Brown, J.1
  • 3
    • 84884586013 scopus 로고    scopus 로고
    • Metabolic engineering: past and future
    • 3 Woolston, B.M., et al. Metabolic engineering: past and future. Annu. Rev. Chem. Biomol. Eng. 4 (2013), 259–288.
    • (2013) Annu. Rev. Chem. Biomol. Eng. , vol.4 , pp. 259-288
    • Woolston, B.M.1
  • 4
    • 84943604629 scopus 로고    scopus 로고
    • Systems strategies for developing industrial microbial strains
    • 4 Lee, S.Y., Kim, H.U., Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33 (2015), 1061–1072.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1061-1072
    • Lee, S.Y.1    Kim, H.U.2
  • 5
    • 84887622083 scopus 로고    scopus 로고
    • From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals
    • 5 Van Dien, S., From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr. Opin. Biotechnol. 24 (2013), 1061–1068.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 1061-1068
    • Van Dien, S.1
  • 6
    • 84927537676 scopus 로고    scopus 로고
    • Synthetic biology called to order: meeting launches effort to develop standards for fast-moving field
    • 6 Hayden, E.C., Synthetic biology called to order: meeting launches effort to develop standards for fast-moving field. Nature 520 (2015), 141–142.
    • (2015) Nature , vol.520 , pp. 141-142
    • Hayden, E.C.1
  • 7
    • 0028801765 scopus 로고
    • Metabolic load and heterologous gene expression
    • 7 Glick, B.R., Metabolic load and heterologous gene expression. Biotechnol. Adv. 13 (1995), 247–261.
    • (1995) Biotechnol. Adv. , vol.13 , pp. 247-261
    • Glick, B.R.1
  • 8
    • 79952604817 scopus 로고    scopus 로고
    • Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables
    • 8 Colletti, P.F., et al. Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables. Biotechnol. Bioeng. 108 (2011), 893–901.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 893-901
    • Colletti, P.F.1
  • 9
    • 84900032261 scopus 로고    scopus 로고
    • Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform
    • 9 Poust, S., et al. Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Curr. Opin. Biotechnol. 30 (2014), 32–39.
    • (2014) Curr. Opin. Biotechnol. , vol.30 , pp. 32-39
    • Poust, S.1
  • 10
    • 0022634007 scopus 로고
    • Physiological effects of plasmid DNA transformation on Azotobacter vinelandii
    • 10 Glick, B.R., et al. Physiological effects of plasmid DNA transformation on Azotobacter vinelandii. Can. J. Microbiol. 32 (1985), 145–148.
    • (1985) Can. J. Microbiol. , vol.32 , pp. 145-148
    • Glick, B.R.1
  • 11
    • 0026329335 scopus 로고
    • Biological consequences of plasmid transformation of the plant growth promoting rhizobacterium Paseudomonas putida GR12-2
    • 11 Hong, Y., et al. Biological consequences of plasmid transformation of the plant growth promoting rhizobacterium Paseudomonas putida GR12-2. Can. J. Microbiol. 37 (1991), 796–799.
    • (1991) Can. J. Microbiol. , vol.37 , pp. 796-799
    • Hong, Y.1
  • 12
    • 76049087452 scopus 로고    scopus 로고
    • A feeling for the numbers in biology
    • 12 Phillips, R., Milo, R., A feeling for the numbers in biology. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 21465–21471.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 21465-21471
    • Phillips, R.1    Milo, R.2
  • 13
    • 79959610766 scopus 로고    scopus 로고
    • Economics of membrane occupancy and respiro-fermentation
    • 13 Zhuang, K., et al. Economics of membrane occupancy and respiro-fermentation. Mol. Syst. Biol. 7 (2011), 500–508.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 500-508
    • Zhuang, K.1
  • 14
    • 78650574197 scopus 로고    scopus 로고
    • 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli
    • 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli. Metab. Eng. 13 (2011), 38–48.
    • (2011) Metab. Eng. , vol.13 , pp. 38-48
    • Chen, X.1
  • 15
    • 84928315635 scopus 로고    scopus 로고
    • An ancient Chinese wisdom for metabolic engineering: Yin–Yang
    • 15 Wu, S.G., et al. An ancient Chinese wisdom for metabolic engineering: Yin–Yang. Microb. Cell. Fact. 14 (2015), 39–47.
    • (2015) Microb. Cell. Fact. , vol.14 , pp. 39-47
    • Wu, S.G.1
  • 16
    • 0033588791 scopus 로고    scopus 로고
    • Estimation of P-to-O ratio in Bacillus subtilis and its influence on maximum ribofavin yield
    • 16 Sauer, U., Bailey, J.E., Estimation of P-to-O ratio in Bacillus subtilis and its influence on maximum ribofavin yield. Biotechnol. Bioeng. 64 (1999), 750–754.
    • (1999) Biotechnol. Bioeng. , vol.64 , pp. 750-754
    • Sauer, U.1    Bailey, J.E.2
  • 17
    • 0026416683 scopus 로고
    • Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli
    • 17 Birnbaum, S., Bailey, J.E., Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol. Bioeng. 37 (1991), 736–745.
    • (1991) Biotechnol. Bioeng. , vol.37 , pp. 736-745
    • Birnbaum, S.1    Bailey, J.E.2
  • 18
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
    • 18 Varma, A., Palsson, B.O., Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microb. 60 (1994), 3724–3731.
    • (1994) Appl. Environ. Microb. , vol.60 , pp. 3724-3731
    • Varma, A.1    Palsson, B.O.2
  • 19
    • 79959216987 scopus 로고    scopus 로고
    • Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae
    • 19 Varman, A.M., et al. Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae. Microb. Cell. Fact. 10 (2011), 45–56.
    • (2011) Microb. Cell. Fact. , vol.10 , pp. 45-56
    • Varman, A.M.1
  • 20
    • 80051474345 scopus 로고    scopus 로고
    • Quantification of metabolic limitations during recombinant protein production in Escherichia coli
    • 20 Heyland, J., et al. Quantification of metabolic limitations during recombinant protein production in Escherichia coli. J. Biotechnol. 155 (2011), 178–184.
    • (2011) J. Biotechnol. , vol.155 , pp. 178-184
    • Heyland, J.1
  • 21
    • 33846061120 scopus 로고    scopus 로고
    • 13C-based flux analysis
    • 13C-based flux analysis. Mol. Syst. Biol., 2, 2006, 62.
    • (2006) Mol. Syst. Biol. , vol.2 , pp. 62
    • Sauer, U.1
  • 22
    • 84892799105 scopus 로고    scopus 로고
    • 13C-metabolic flux analysis
    • 13C-metabolic flux analysis. Biotechnol. Bioeng. 111 (2014), 575–585.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 575-585
    • He, L.1
  • 23
    • 84923596826 scopus 로고    scopus 로고
    • 13C metabolite labeling patterns from cells
    • 13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34 (2015), 189–201.
    • (2015) Curr. Opin. Biotechnol. , vol.34 , pp. 189-201
    • Buescher, J.M.1
  • 26
    • 34547162359 scopus 로고    scopus 로고
    • Metabolic characterization of Escherichia coli strains adapted to growth on lactate
    • 26 Hua, Q., et al. Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl. Environ. Microb. 73 (2007), 4639–4647.
    • (2007) Appl. Environ. Microb. , vol.73 , pp. 4639-4647
    • Hua, Q.1
  • 27
    • 17644369246 scopus 로고    scopus 로고
    • Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli
    • 27 Perrenoud, A., Sauer, U., Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187 (2005), 3171–3179.
    • (2005) J. Bacteriol. , vol.187 , pp. 3171-3179
    • Perrenoud, A.1    Sauer, U.2
  • 28
    • 84931264120 scopus 로고    scopus 로고
    • Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli
    • 28 Kim, S.M., et al. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Metab. Eng. 30 (2015), 141–148.
    • (2015) Metab. Eng. , vol.30 , pp. 141-148
    • Kim, S.M.1
  • 29
    • 0037141602 scopus 로고    scopus 로고
    • Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon
    • 29 Smolke, C., Keasling, J., Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon. Biotechnol. Bioeng. 78 (2002), 412–424.
    • (2002) Biotechnol. Bioeng. , vol.78 , pp. 412-424
    • Smolke, C.1    Keasling, J.2
  • 30
    • 84905668376 scopus 로고    scopus 로고
    • Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
    • 30 Xu, P., et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 11299–11304.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 11299-11304
    • Xu, P.1
  • 31
    • 84859633048 scopus 로고    scopus 로고
    • Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
    • 31 Zhang, F., et al. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30 (2012), 354–359.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 354-359
    • Zhang, F.1
  • 32
    • 84868263016 scopus 로고    scopus 로고
    • ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli
    • 32 Xu, P., et al. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth. Biol. 1 (2012), 256–266.
    • (2012) ACS Synth. Biol. , vol.1 , pp. 256-266
    • Xu, P.1
  • 33
    • 84930971149 scopus 로고    scopus 로고
    • CRISPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli
    • 33 Cress, B.F., et al. CRISPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli. ACS Synth. Biol. 4 (2015), 987–1000.
    • (2015) ACS Synth. Biol. , vol.4 , pp. 987-1000
    • Cress, B.F.1
  • 34
    • 77953584054 scopus 로고    scopus 로고
    • Creation of a bacterial cell controlled by a chemically synthesized genome
    • 34 Gibson, D., et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329 (2010), 52–56.
    • (2010) Science , vol.329 , pp. 52-56
    • Gibson, D.1
  • 35
    • 33846108255 scopus 로고    scopus 로고
    • Towards synthesis of a minimal cell
    • 35 Forster, A.C., Church, G.M., Towards synthesis of a minimal cell. Mol. Syst. Biol. 2 (2006), 45–54.
    • (2006) Mol. Syst. Biol. , vol.2 , pp. 45-54
    • Forster, A.C.1    Church, G.M.2
  • 36
    • 45749137679 scopus 로고    scopus 로고
    • Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses
    • 36 Trinh, C.T., et al. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microb. 74 (2008), 3634–3643.
    • (2008) Appl. Environ. Microb. , vol.74 , pp. 3634-3643
    • Trinh, C.T.1
  • 37
    • 0347986769 scopus 로고    scopus 로고
    • Genome engineering reveals large dispensable regions in Bacillus subtilis
    • 37 Westers, H., et al. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol. Biol. Evol. 20 (2003), 2076–2090.
    • (2003) Mol. Biol. Evol. , vol.20 , pp. 2076-2090
    • Westers, H.1
  • 38
    • 84861204284 scopus 로고    scopus 로고
    • Cost-benefit tradeoffs in engineered lac operons
    • 38 Eames, M., Kortemme, T., Cost-benefit tradeoffs in engineered lac operons. Science 336 (2012), 911–915.
    • (2012) Science , vol.336 , pp. 911-915
    • Eames, M.1    Kortemme, T.2
  • 39
    • 11944257747 scopus 로고
    • Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli
    • 39 Khosla, C., et al. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Nat. Biotechnol. 8 (1990), 849–853.
    • (1990) Nat. Biotechnol. , vol.8 , pp. 849-853
    • Khosla, C.1
  • 40
    • 0038514064 scopus 로고    scopus 로고
    • Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis
    • 40 Zamboni, N., et al. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metab. Eng. 5 (2003), 49–55.
    • (2003) Metab. Eng. , vol.5 , pp. 49-55
    • Zamboni, N.1
  • 41
    • 84901202594 scopus 로고    scopus 로고
    • Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis
    • 41 Liu, Y., et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab. Eng. 24 (2014), 61–69.
    • (2014) Metab. Eng. , vol.24 , pp. 61-69
    • Liu, Y.1
  • 42
    • 33846902562 scopus 로고    scopus 로고
    • Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production
    • 42 Kabus, A., et al. Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production. Appl. Environ. Microb. 73 (2007), 861–868.
    • (2007) Appl. Environ. Microb. , vol.73 , pp. 861-868
    • Kabus, A.1
  • 43
    • 71849120497 scopus 로고    scopus 로고
    • Correlation between proton translocation and growth: genetic analysis of the respiratory chain of Corynebacterium glutamicum
    • 43 Kabashima, Y., et al. Correlation between proton translocation and growth: genetic analysis of the respiratory chain of Corynebacterium glutamicum. J. Biochem. 146 (2009), 845–855.
    • (2009) J. Biochem. , vol.146 , pp. 845-855
    • Kabashima, Y.1
  • 44
    • 84878651410 scopus 로고    scopus 로고
    • Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae
    • 44 Wijffels, R.H., et al. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24 (2013), 405–413.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 405-413
    • Wijffels, R.H.1
  • 45
    • 84961290155 scopus 로고    scopus 로고
    • Photoheterotrophic fluxome in Synechocystis sp. strain PCC 6803 and its implications for cyanobacterial bioenergetics
    • 45 You, L., et al. Photoheterotrophic fluxome in Synechocystis sp. strain PCC 6803 and its implications for cyanobacterial bioenergetics. J. Bacteriol. 197 (2015), 943–950.
    • (2015) J. Bacteriol. , vol.197 , pp. 943-950
    • You, L.1
  • 46
    • 33847770775 scopus 로고    scopus 로고
    • Light-powering Escherichia coli with proteorhodopsin
    • 46 Walter, J.M., et al. Light-powering Escherichia coli with proteorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 2408–2412.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 2408-2412
    • Walter, J.M.1
  • 47
    • 34248151050 scopus 로고    scopus 로고
    • Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host
    • 47 Martinez, A., et al. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 5590–5595.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 5590-5595
    • Martinez, A.1
  • 48
    • 79955856835 scopus 로고    scopus 로고
    • Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration
    • 48 Steindler, L., et al. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS ONE, 6, 2011, e19725.
    • (2011) PLoS ONE , vol.6 , pp. e19725
    • Steindler, L.1
  • 49
    • 43849084187 scopus 로고    scopus 로고
    • Proteorhodopsins: an array of physiological roles?
    • 49 Fuhrman, J.A., et al. Proteorhodopsins: an array of physiological roles?. Nat. Rev. Microbiol. 6 (2008), 488–494.
    • (2008) Nat. Rev. Microbiol. , vol.6 , pp. 488-494
    • Fuhrman, J.A.1
  • 50
    • 55749106942 scopus 로고    scopus 로고
    • Light-energy conversion in engineered microorganisms
    • 50 Johnson, E.T., Schmidt-Dannert, C., Light-energy conversion in engineered microorganisms. Trends Biotechnol. 26 (2008), 682–689.
    • (2008) Trends Biotechnol. , vol.26 , pp. 682-689
    • Johnson, E.T.1    Schmidt-Dannert, C.2
  • 51
    • 0020626034 scopus 로고
    • An enzyme analysis of NADPH production and consumption in Candida utilis
    • 51 Bruinenberg, P.M., et al. An enzyme analysis of NADPH production and consumption in Candida utilis. J. Gen. Appl. Microbiol. 129 (1983), 965–971.
    • (1983) J. Gen. Appl. Microbiol. , vol.129 , pp. 965-971
    • Bruinenberg, P.M.1
  • 52
    • 0021024592 scopus 로고
    • Improvement of growth yield of yeast on glucose to the maximum by using an additional energy source
    • 52 Babel, W., et al. Improvement of growth yield of yeast on glucose to the maximum by using an additional energy source. Arch. Microbial. 136 (1983), 203–208.
    • (1983) Arch. Microbial. , vol.136 , pp. 203-208
    • Babel, W.1
  • 53
    • 0020559488 scopus 로고
    • A continuous culture study of methanol and formate utilization by the yeast Piohia Pastoris
    • 53 Hazeu, W., Donker, R., A continuous culture study of methanol and formate utilization by the yeast Piohia Pastoris. Biotechnol. Lett. 5 (1983), 399–404.
    • (1983) Biotechnol. Lett. , vol.5 , pp. 399-404
    • Hazeu, W.1    Donker, R.2
  • 54
    • 84862199068 scopus 로고    scopus 로고
    • Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production
    • 54 Lian, J., et al. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresour. Technol. 118 (2012), 177–186.
    • (2012) Bioresour. Technol. , vol.118 , pp. 177-186
    • Lian, J.1
  • 55
    • 34547737880 scopus 로고    scopus 로고
    • Formate as an auxiliary substrate for glucose-limited cultivation of Penicillium chrysogenum: impact on penicillin G production and biomass yield
    • 55 Harris, D.M., et al. Formate as an auxiliary substrate for glucose-limited cultivation of Penicillium chrysogenum: impact on penicillin G production and biomass yield. Appl. Environ. Microb. 73 (2007), 5020–5025.
    • (2007) Appl. Environ. Microb. , vol.73 , pp. 5020-5025
    • Harris, D.M.1
  • 56
    • 34347397645 scopus 로고    scopus 로고
    • A fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032
    • 56 Zhi, W., et al. A fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032. Bioprocess. Biosyst. Eng. 30 (2007), 225–229.
    • (2007) Bioprocess. Biosyst. Eng. , vol.30 , pp. 225-229
    • Zhi, W.1
  • 57
    • 84859111827 scopus 로고    scopus 로고
    • 2 to higher alcohols
    • 2 to higher alcohols. Science 335 (2012), 1596–1597.
    • (2012) Science , vol.335 , pp. 1596-1597
    • Li, H.1
  • 58
    • 84861139695 scopus 로고    scopus 로고
    • Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate
    • 58 Litsanov, B., et al. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl. Environ. Microb. 78 (2012), 3325–3337.
    • (2012) Appl. Environ. Microb. , vol.78 , pp. 3325-3337
    • Litsanov, B.1
  • 59
    • 84881512097 scopus 로고    scopus 로고
    • +-dependent formate dehydrogenase
    • +-dependent formate dehydrogenase. Metab. Eng. 20 (2013), 1–8.
    • (2013) Metab. Eng. , vol.20 , pp. 1-8
    • Balzer, G.J.1
  • 60
    • 84857192122 scopus 로고    scopus 로고
    • Computational tools for the synthetic design of biochemical pathways
    • 60 Medema, M.H., et al. Computational tools for the synthetic design of biochemical pathways. Nat. Rev. Microbiol. 10 (2012), 191–202.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 191-202
    • Medema, M.H.1
  • 61
    • 63549148162 scopus 로고    scopus 로고
    • Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization
    • 61 Thiele, I., et al. Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput. Biol., 5, 2009, e1000312.
    • (2009) PLoS Comput. Biol. , vol.5 , pp. e1000312
    • Thiele, I.1
  • 62
    • 84864843180 scopus 로고    scopus 로고
    • In silico method for modelling metabolism and gene product expression at genome scale
    • 62 Lerman, J.A., et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat. Commun. 3 (2012), 929–938.
    • (2012) Nat. Commun. , vol.3 , pp. 929-938
    • Lerman, J.A.1
  • 63
    • 84866975246 scopus 로고    scopus 로고
    • Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage
    • 63 Thiele, I., et al. Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage. PLoS ONE, 7, 2012, e45635.
    • (2012) PLoS ONE , vol.7 , pp. e45635
    • Thiele, I.1
  • 64
    • 84885367114 scopus 로고    scopus 로고
    • Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction
    • 64 O'Brien, E.J., et al. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol. 9 (2013), 693–705.
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 693-705
    • O'Brien, E.J.1
  • 65
    • 84864258618 scopus 로고    scopus 로고
    • A whole-cell computational model predicts phenotype from genotype
    • 65 Karr, J.R., et al. A whole-cell computational model predicts phenotype from genotype. Cell 150 (2012), 389–401.
    • (2012) Cell , vol.150 , pp. 389-401
    • Karr, J.R.1
  • 66
    • 84876554105 scopus 로고    scopus 로고
    • WholeCellKB: model organism databases for comprehensive whole-cell models
    • 66 Karr, J.R., et al. WholeCellKB: model organism databases for comprehensive whole-cell models. Nucleic Acids Res. 41 (2013), D787–D792.
    • (2013) Nucleic Acids Res. , vol.41 , pp. D787-D792
    • Karr, J.R.1
  • 67
    • 0028926047 scopus 로고
    • Energetics of bacterial growth: balance of anabolic and catalolic reactions
    • 67 Russell, J.B., Cook, G.M., Energetics of bacterial growth: balance of anabolic and catalolic reactions. Microbiol. Rev. 59 (1995), 48–62.
    • (1995) Microbiol. Rev. , vol.59 , pp. 48-62
    • Russell, J.B.1    Cook, G.M.2
  • 68
    • 0037133671 scopus 로고    scopus 로고
    • Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis
    • 68 Akashi, H., Gojobori, T., Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 3695–3700.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 3695-3700
    • Akashi, H.1    Gojobori, T.2
  • 69
    • 8744224466 scopus 로고    scopus 로고
    • Optstrain: a computational framework for redesign of microbial production systems
    • 69 Pharkya, P., et al. Optstrain: a computational framework for redesign of microbial production systems. Genome Res. 14 (2004), 2367–2376.
    • (2004) Genome Res. , vol.14 , pp. 2367-2376
    • Pharkya, P.1
  • 70
    • 84885795974 scopus 로고    scopus 로고
    • Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation
    • 70 Biggs, M.B., Papin, J.A., Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation. PLoS ONE, 8, 2013, e78011.
    • (2013) PLoS ONE , vol.8 , pp. e78011
    • Biggs, M.B.1    Papin, J.A.2
  • 71
    • 84894054579 scopus 로고    scopus 로고
    • Advancing metabolic models with kinetic information
    • 71 Link, H., et al. Advancing metabolic models with kinetic information. Curr. Opin. Biotechnol. 29 (2014), 8–14.
    • (2014) Curr. Opin. Biotechnol. , vol.29 , pp. 8-14
    • Link, H.1
  • 72
    • 76749151341 scopus 로고    scopus 로고
    • Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    • 72 Chemler, J.A., et al. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 12 (2010), 96–104.
    • (2010) Metab. Eng. , vol.12 , pp. 96-104
    • Chemler, J.A.1
  • 73
    • 84899075590 scopus 로고    scopus 로고
    • Rescuing US biomedical research from its systemic flaws
    • 73 Alberts, B., et al. Rescuing US biomedical research from its systemic flaws. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 5773–5777.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 5773-5777
    • Alberts, B.1
  • 74
    • 55549116661 scopus 로고    scopus 로고
    • Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene
    • 74 Anthony, J.R., et al. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng. 11 (2009), 13–19.
    • (2009) Metab. Eng. , vol.11 , pp. 13-19
    • Anthony, J.R.1
  • 75
    • 33847309176 scopus 로고    scopus 로고
    • Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli
    • 75 Pitera, D.J., et al. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 9 (2007), 193–207.
    • (2007) Metab. Eng. , vol.9 , pp. 193-207
    • Pitera, D.J.1
  • 76
    • 84887422015 scopus 로고    scopus 로고
    • Engineering dynamic pathway regulation using stress-response promoters
    • 76 Dahl, R.H., et al. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol. 31 (2013), 1039–1046.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1039-1046
    • Dahl, R.H.1
  • 77
    • 84894319806 scopus 로고    scopus 로고
    • Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly
    • 77 Nowroozi, F.F., et al. Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl. Microbiol. Biotechnol. 98 (2014), 1567–1581.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 1567-1581
    • Nowroozi, F.F.1
  • 78
    • 80052030821 scopus 로고    scopus 로고
    • Harnessing yeast subcellular compartments for the production of plant terpenoids
    • 78 Farhi, M., et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab. Eng. 13 (2011), 474–481.
    • (2011) Metab. Eng. , vol.13 , pp. 474-481
    • Farhi, M.1
  • 79
    • 68449103617 scopus 로고    scopus 로고
    • Stabilized gene duplication enables long-term selection-free heterologous pathway expression
    • 79 Tyo, K.E., et al. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat. Biotechnol. 27 (2009), 760–765.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 760-765
    • Tyo, K.E.1
  • 80
    • 84925348793 scopus 로고    scopus 로고
    • Rational design of a synthetic Entner–Doudoroff pathway for improved and controllable NADPH regeneration
    • 80 Ng, C.Y., et al. Rational design of a synthetic Entner–Doudoroff pathway for improved and controllable NADPH regeneration. Metab. Eng. 29 (2015), 86–96.
    • (2015) Metab. Eng. , vol.29 , pp. 86-96
    • Ng, C.Y.1
  • 81
    • 68449088806 scopus 로고    scopus 로고
    • Synthetic protein scaffolds provide modular control over metabolic flux
    • 81 Dueber, J.E., et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27 (2009), 753–759.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 753-759
    • Dueber, J.E.1
  • 82
    • 77950863739 scopus 로고    scopus 로고
    • Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli
    • 82 Moon, T.S., et al. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 12 (2010), 298–305.
    • (2010) Metab. Eng. , vol.12 , pp. 298-305
    • Moon, T.S.1
  • 83
    • 84942525032 scopus 로고    scopus 로고
    • Improvement of glucaric acid production in via dynamic control of metabolic fluxes
    • 83 Reizman, I.M., et al. Improvement of glucaric acid production in via dynamic control of metabolic fluxes. Metab. Eng. Commun. 2 (2015), 109–116.
    • (2015) Metab. Eng. Commun. , vol.2 , pp. 109-116
    • Reizman, I.M.1
  • 84
    • 84941558348 scopus 로고    scopus 로고
    • Engineering E. coli–E. coli cocultures for production of muconic acid from glycerol
    • 84 Zhang, H., et al. Engineering E. coli–E. coli cocultures for production of muconic acid from glycerol. Microb. Cell. Fact., 14, 2015, 134.
    • (2015) Microb. Cell. Fact. , vol.14 , pp. 134
    • Zhang, H.1
  • 85
    • 84936803078 scopus 로고    scopus 로고
    • Engineering Escherichia coli coculture systems for the production of biochemical products
    • 85 Zhang, H., et al. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 8266–8271.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 8266-8271
    • Zhang, H.1
  • 86
    • 84920747663 scopus 로고    scopus 로고
    • Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites
    • 86 Brockman, I.M., Prather, K.L., Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28 (2015), 104–113.
    • (2015) Metab. Eng. , vol.28 , pp. 104-113
    • Brockman, I.M.1    Prather, K.L.2
  • 87
    • 84923925548 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of riboflavin
    • 87 Lin, Z., et al. Metabolic engineering of Escherichia coli for the production of riboflavin. Microb. Cell. Fact. 13 (2014), 104–115.
    • (2014) Microb. Cell. Fact. , vol.13 , pp. 104-115
    • Lin, Z.1
  • 88
    • 84905443683 scopus 로고    scopus 로고
    • Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes
    • 88 Herr, A., Fischer, R., Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes. Metab. Eng. 25 (2014), 131–139.
    • (2014) Metab. Eng. , vol.25 , pp. 131-139
    • Herr, A.1    Fischer, R.2
  • 89
    • 84903748219 scopus 로고    scopus 로고
    • Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae
    • 89 Latimer, L.N., et al. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab. Eng. 25 (2014), 20–29.
    • (2014) Metab. Eng. , vol.25 , pp. 20-29
    • Latimer, L.N.1
  • 90
    • 84914129027 scopus 로고    scopus 로고
    • Production of chondroitin in metabolically engineered E. coli
    • 90 He, W., et al. Production of chondroitin in metabolically engineered E. coli. Metab. Eng. 27 (2015), 92–100.
    • (2015) Metab. Eng. , vol.27 , pp. 92-100
    • He, W.1
  • 91
    • 84931292024 scopus 로고    scopus 로고
    • ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways
    • 91 Jones, J.A., et al. ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci. Rep. 5 (2015), 11301–11310.
    • (2015) Sci. Rep. , vol.5 , pp. 11301-11310
    • Jones, J.A.1
  • 92
    • 84890395226 scopus 로고    scopus 로고
    • Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay
    • 92 Lee, M.E., et al. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res. 41 (2013), 10668–10678.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 10668-10678
    • Lee, M.E.1
  • 93
    • 84920161546 scopus 로고    scopus 로고
    • Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering
    • 93 Zhao, S., et al. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab. Eng. 28 (2015), 43–53.
    • (2015) Metab. Eng. , vol.28 , pp. 43-53
    • Zhao, S.1
  • 94
    • 84886239741 scopus 로고    scopus 로고
    • Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain
    • 94 Huang, Q., et al. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol. Bioeng. 110 (2013), 3188–3196.
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 3188-3196
    • Huang, Q.1
  • 95
    • 84876676603 scopus 로고    scopus 로고
    • Engineering E. coli for caffeic acid biosynthesis from renewable sugars
    • 95 Zhang, H., Stephanopoulos, G., Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl. Microbiol. Biotechnol. 97 (2013), 3333–3341.
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 3333-3341
    • Zhang, H.1    Stephanopoulos, G.2
  • 96
    • 84883232076 scopus 로고    scopus 로고
    • Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine
    • 96 Wu, J., et al. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine. J. Biotechnol. 167 (2013), 404–411.
    • (2013) J. Biotechnol. , vol.167 , pp. 404-411
    • Wu, J.1
  • 97
    • 84926646130 scopus 로고    scopus 로고
    • Distributing a metabolic pathway among a microbial consortium enhances production of natural products
    • 97 Zhou, K., et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33 (2015), 377–383.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 377-383
    • Zhou, K.1
  • 98
    • 77957329119 scopus 로고    scopus 로고
    • Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
    • 98 Ajikumar, P.K., et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330 (2010), 70–74.
    • (2010) Science , vol.330 , pp. 70-74
    • Ajikumar, P.K.1
  • 99
    • 84877804801 scopus 로고    scopus 로고
    • Modular optimization of multi-gene pathways for fatty acids production in E. coli
    • 99 Xu, P., et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 4 (2013), 1409–1416.
    • (2013) Nat. Commun. , vol.4 , pp. 1409-1416
    • Xu, P.1
  • 100
    • 84896408319 scopus 로고    scopus 로고
    • Butyrate production in engineered Escherichia coli with synthetic scaffolds
    • 100 Baek, J-M., et al. Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol. Bioeng. 110 (2013), 2790–2794.
    • (2013) Biotechnol. Bioeng. , vol.110 , pp. 2790-2794
    • Baek, J.-M.1
  • 101
    • 84913558396 scopus 로고    scopus 로고
    • Potential production platform of n-butanol in Escherichia coli
    • 101 Saini, M., et al. Potential production platform of n-butanol in Escherichia coli. Metab. Eng. 27 (2015), 76–82.
    • (2015) Metab. Eng. , vol.27 , pp. 76-82
    • Saini, M.1
  • 102
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • 102 Avalos, J.L., et al. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31 (2013), 335–341.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 335-341
    • Avalos, J.L.1
  • 103
    • 79961084093 scopus 로고    scopus 로고
    • Redesigning Escherichia coli metabolism for anaerobic production of isobutanol
    • 103 Trinh, C.T., et al. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl. Environ. Microb. 77 (2011), 4894–4904.
    • (2011) Appl. Environ. Microb. , vol.77 , pp. 4894-4904
    • Trinh, C.T.1
  • 104
    • 67650660144 scopus 로고    scopus 로고
    • Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production
    • 104 Fowler, Z.L., et al. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microb. 75 (2009), 5831–5839.
    • (2009) Appl. Environ. Microb. , vol.75 , pp. 5831-5839
    • Fowler, Z.L.1
  • 105
    • 84879190343 scopus 로고    scopus 로고
    • Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: Proof of concept for genetic interventions predicted by OptForce computational framework
    • 105 Bhan, N., et al. Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: Proof of concept for genetic interventions predicted by OptForce computational framework. Chem. Eng. Sci. 103 (2013), 109–114.
    • (2013) Chem. Eng. Sci. , vol.103 , pp. 109-114
    • Bhan, N.1
  • 106
    • 77954590959 scopus 로고    scopus 로고
    • OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
    • 106 Ranganathan, S., et al. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol., 6, 2010, e1000744.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000744
    • Ranganathan, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.