-
1
-
-
71849085372
-
Building outside of the box: iGEM and the BioBricks Foundation
-
1 Smolke, C.D., Building outside of the box: iGEM and the BioBricks Foundation. Nat. Biotechnol. 27 (2009), 1099–1102.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 1099-1102
-
-
Smolke, C.D.1
-
2
-
-
34547756879
-
The iGEM competition: building with biology
-
2 Brown, J., The iGEM competition: building with biology. IET Synthetic Biol. 1 (2007), 3–6.
-
(2007)
IET Synthetic Biol.
, vol.1
, pp. 3-6
-
-
Brown, J.1
-
3
-
-
84884586013
-
Metabolic engineering: past and future
-
3 Woolston, B.M., et al. Metabolic engineering: past and future. Annu. Rev. Chem. Biomol. Eng. 4 (2013), 259–288.
-
(2013)
Annu. Rev. Chem. Biomol. Eng.
, vol.4
, pp. 259-288
-
-
Woolston, B.M.1
-
4
-
-
84943604629
-
Systems strategies for developing industrial microbial strains
-
4 Lee, S.Y., Kim, H.U., Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33 (2015), 1061–1072.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1061-1072
-
-
Lee, S.Y.1
Kim, H.U.2
-
5
-
-
84887622083
-
From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals
-
5 Van Dien, S., From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr. Opin. Biotechnol. 24 (2013), 1061–1068.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 1061-1068
-
-
Van Dien, S.1
-
6
-
-
84927537676
-
Synthetic biology called to order: meeting launches effort to develop standards for fast-moving field
-
6 Hayden, E.C., Synthetic biology called to order: meeting launches effort to develop standards for fast-moving field. Nature 520 (2015), 141–142.
-
(2015)
Nature
, vol.520
, pp. 141-142
-
-
Hayden, E.C.1
-
7
-
-
0028801765
-
Metabolic load and heterologous gene expression
-
7 Glick, B.R., Metabolic load and heterologous gene expression. Biotechnol. Adv. 13 (1995), 247–261.
-
(1995)
Biotechnol. Adv.
, vol.13
, pp. 247-261
-
-
Glick, B.R.1
-
8
-
-
79952604817
-
Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables
-
8 Colletti, P.F., et al. Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables. Biotechnol. Bioeng. 108 (2011), 893–901.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 893-901
-
-
Colletti, P.F.1
-
9
-
-
84900032261
-
Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform
-
9 Poust, S., et al. Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Curr. Opin. Biotechnol. 30 (2014), 32–39.
-
(2014)
Curr. Opin. Biotechnol.
, vol.30
, pp. 32-39
-
-
Poust, S.1
-
10
-
-
0022634007
-
Physiological effects of plasmid DNA transformation on Azotobacter vinelandii
-
10 Glick, B.R., et al. Physiological effects of plasmid DNA transformation on Azotobacter vinelandii. Can. J. Microbiol. 32 (1985), 145–148.
-
(1985)
Can. J. Microbiol.
, vol.32
, pp. 145-148
-
-
Glick, B.R.1
-
11
-
-
0026329335
-
Biological consequences of plasmid transformation of the plant growth promoting rhizobacterium Paseudomonas putida GR12-2
-
11 Hong, Y., et al. Biological consequences of plasmid transformation of the plant growth promoting rhizobacterium Paseudomonas putida GR12-2. Can. J. Microbiol. 37 (1991), 796–799.
-
(1991)
Can. J. Microbiol.
, vol.37
, pp. 796-799
-
-
Hong, Y.1
-
12
-
-
76049087452
-
A feeling for the numbers in biology
-
12 Phillips, R., Milo, R., A feeling for the numbers in biology. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 21465–21471.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21465-21471
-
-
Phillips, R.1
Milo, R.2
-
13
-
-
79959610766
-
Economics of membrane occupancy and respiro-fermentation
-
13 Zhuang, K., et al. Economics of membrane occupancy and respiro-fermentation. Mol. Syst. Biol. 7 (2011), 500–508.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 500-508
-
-
Zhuang, K.1
-
14
-
-
78650574197
-
13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli
-
13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli. Metab. Eng. 13 (2011), 38–48.
-
(2011)
Metab. Eng.
, vol.13
, pp. 38-48
-
-
Chen, X.1
-
15
-
-
84928315635
-
An ancient Chinese wisdom for metabolic engineering: Yin–Yang
-
15 Wu, S.G., et al. An ancient Chinese wisdom for metabolic engineering: Yin–Yang. Microb. Cell. Fact. 14 (2015), 39–47.
-
(2015)
Microb. Cell. Fact.
, vol.14
, pp. 39-47
-
-
Wu, S.G.1
-
16
-
-
0033588791
-
Estimation of P-to-O ratio in Bacillus subtilis and its influence on maximum ribofavin yield
-
16 Sauer, U., Bailey, J.E., Estimation of P-to-O ratio in Bacillus subtilis and its influence on maximum ribofavin yield. Biotechnol. Bioeng. 64 (1999), 750–754.
-
(1999)
Biotechnol. Bioeng.
, vol.64
, pp. 750-754
-
-
Sauer, U.1
Bailey, J.E.2
-
17
-
-
0026416683
-
Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli
-
17 Birnbaum, S., Bailey, J.E., Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol. Bioeng. 37 (1991), 736–745.
-
(1991)
Biotechnol. Bioeng.
, vol.37
, pp. 736-745
-
-
Birnbaum, S.1
Bailey, J.E.2
-
18
-
-
0028146781
-
Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
-
18 Varma, A., Palsson, B.O., Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microb. 60 (1994), 3724–3731.
-
(1994)
Appl. Environ. Microb.
, vol.60
, pp. 3724-3731
-
-
Varma, A.1
Palsson, B.O.2
-
19
-
-
79959216987
-
Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae
-
19 Varman, A.M., et al. Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae. Microb. Cell. Fact. 10 (2011), 45–56.
-
(2011)
Microb. Cell. Fact.
, vol.10
, pp. 45-56
-
-
Varman, A.M.1
-
20
-
-
80051474345
-
Quantification of metabolic limitations during recombinant protein production in Escherichia coli
-
20 Heyland, J., et al. Quantification of metabolic limitations during recombinant protein production in Escherichia coli. J. Biotechnol. 155 (2011), 178–184.
-
(2011)
J. Biotechnol.
, vol.155
, pp. 178-184
-
-
Heyland, J.1
-
21
-
-
33846061120
-
13C-based flux analysis
-
13C-based flux analysis. Mol. Syst. Biol., 2, 2006, 62.
-
(2006)
Mol. Syst. Biol.
, vol.2
, pp. 62
-
-
Sauer, U.1
-
22
-
-
84892799105
-
13C-metabolic flux analysis
-
13C-metabolic flux analysis. Biotechnol. Bioeng. 111 (2014), 575–585.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 575-585
-
-
He, L.1
-
23
-
-
84923596826
-
13C metabolite labeling patterns from cells
-
13C metabolite labeling patterns from cells. Curr. Opin. Biotechnol. 34 (2015), 189–201.
-
(2015)
Curr. Opin. Biotechnol.
, vol.34
, pp. 189-201
-
-
Buescher, J.M.1
-
26
-
-
34547162359
-
Metabolic characterization of Escherichia coli strains adapted to growth on lactate
-
26 Hua, Q., et al. Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl. Environ. Microb. 73 (2007), 4639–4647.
-
(2007)
Appl. Environ. Microb.
, vol.73
, pp. 4639-4647
-
-
Hua, Q.1
-
27
-
-
17644369246
-
Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli
-
27 Perrenoud, A., Sauer, U., Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187 (2005), 3171–3179.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 3171-3179
-
-
Perrenoud, A.1
Sauer, U.2
-
28
-
-
84931264120
-
Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli
-
28 Kim, S.M., et al. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Metab. Eng. 30 (2015), 141–148.
-
(2015)
Metab. Eng.
, vol.30
, pp. 141-148
-
-
Kim, S.M.1
-
29
-
-
0037141602
-
Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon
-
29 Smolke, C., Keasling, J., Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon. Biotechnol. Bioeng. 78 (2002), 412–424.
-
(2002)
Biotechnol. Bioeng.
, vol.78
, pp. 412-424
-
-
Smolke, C.1
Keasling, J.2
-
30
-
-
84905668376
-
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
-
30 Xu, P., et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 11299–11304.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 11299-11304
-
-
Xu, P.1
-
31
-
-
84859633048
-
Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
-
31 Zhang, F., et al. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30 (2012), 354–359.
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 354-359
-
-
Zhang, F.1
-
32
-
-
84868263016
-
ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli
-
32 Xu, P., et al. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth. Biol. 1 (2012), 256–266.
-
(2012)
ACS Synth. Biol.
, vol.1
, pp. 256-266
-
-
Xu, P.1
-
33
-
-
84930971149
-
CRISPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli
-
33 Cress, B.F., et al. CRISPathBrick: modular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional repression in E. coli. ACS Synth. Biol. 4 (2015), 987–1000.
-
(2015)
ACS Synth. Biol.
, vol.4
, pp. 987-1000
-
-
Cress, B.F.1
-
34
-
-
77953584054
-
Creation of a bacterial cell controlled by a chemically synthesized genome
-
34 Gibson, D., et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329 (2010), 52–56.
-
(2010)
Science
, vol.329
, pp. 52-56
-
-
Gibson, D.1
-
35
-
-
33846108255
-
Towards synthesis of a minimal cell
-
35 Forster, A.C., Church, G.M., Towards synthesis of a minimal cell. Mol. Syst. Biol. 2 (2006), 45–54.
-
(2006)
Mol. Syst. Biol.
, vol.2
, pp. 45-54
-
-
Forster, A.C.1
Church, G.M.2
-
36
-
-
45749137679
-
Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses
-
36 Trinh, C.T., et al. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microb. 74 (2008), 3634–3643.
-
(2008)
Appl. Environ. Microb.
, vol.74
, pp. 3634-3643
-
-
Trinh, C.T.1
-
37
-
-
0347986769
-
Genome engineering reveals large dispensable regions in Bacillus subtilis
-
37 Westers, H., et al. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol. Biol. Evol. 20 (2003), 2076–2090.
-
(2003)
Mol. Biol. Evol.
, vol.20
, pp. 2076-2090
-
-
Westers, H.1
-
38
-
-
84861204284
-
Cost-benefit tradeoffs in engineered lac operons
-
38 Eames, M., Kortemme, T., Cost-benefit tradeoffs in engineered lac operons. Science 336 (2012), 911–915.
-
(2012)
Science
, vol.336
, pp. 911-915
-
-
Eames, M.1
Kortemme, T.2
-
39
-
-
11944257747
-
Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli
-
39 Khosla, C., et al. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Nat. Biotechnol. 8 (1990), 849–853.
-
(1990)
Nat. Biotechnol.
, vol.8
, pp. 849-853
-
-
Khosla, C.1
-
40
-
-
0038514064
-
Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis
-
40 Zamboni, N., et al. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metab. Eng. 5 (2003), 49–55.
-
(2003)
Metab. Eng.
, vol.5
, pp. 49-55
-
-
Zamboni, N.1
-
41
-
-
84901202594
-
Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis
-
41 Liu, Y., et al. Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metab. Eng. 24 (2014), 61–69.
-
(2014)
Metab. Eng.
, vol.24
, pp. 61-69
-
-
Liu, Y.1
-
42
-
-
33846902562
-
Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production
-
42 Kabus, A., et al. Role of cytochrome bd oxidase from Corynebacterium glutamicum in growth and lysine production. Appl. Environ. Microb. 73 (2007), 861–868.
-
(2007)
Appl. Environ. Microb.
, vol.73
, pp. 861-868
-
-
Kabus, A.1
-
43
-
-
71849120497
-
Correlation between proton translocation and growth: genetic analysis of the respiratory chain of Corynebacterium glutamicum
-
43 Kabashima, Y., et al. Correlation between proton translocation and growth: genetic analysis of the respiratory chain of Corynebacterium glutamicum. J. Biochem. 146 (2009), 845–855.
-
(2009)
J. Biochem.
, vol.146
, pp. 845-855
-
-
Kabashima, Y.1
-
44
-
-
84878651410
-
Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae
-
44 Wijffels, R.H., et al. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24 (2013), 405–413.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 405-413
-
-
Wijffels, R.H.1
-
45
-
-
84961290155
-
Photoheterotrophic fluxome in Synechocystis sp. strain PCC 6803 and its implications for cyanobacterial bioenergetics
-
45 You, L., et al. Photoheterotrophic fluxome in Synechocystis sp. strain PCC 6803 and its implications for cyanobacterial bioenergetics. J. Bacteriol. 197 (2015), 943–950.
-
(2015)
J. Bacteriol.
, vol.197
, pp. 943-950
-
-
You, L.1
-
46
-
-
33847770775
-
Light-powering Escherichia coli with proteorhodopsin
-
46 Walter, J.M., et al. Light-powering Escherichia coli with proteorhodopsin. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 2408–2412.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 2408-2412
-
-
Walter, J.M.1
-
47
-
-
34248151050
-
Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host
-
47 Martinez, A., et al. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc. Natl. Acad. Sci. U.S.A. 104 (2007), 5590–5595.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 5590-5595
-
-
Martinez, A.1
-
48
-
-
79955856835
-
Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration
-
48 Steindler, L., et al. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS ONE, 6, 2011, e19725.
-
(2011)
PLoS ONE
, vol.6
, pp. e19725
-
-
Steindler, L.1
-
49
-
-
43849084187
-
Proteorhodopsins: an array of physiological roles?
-
49 Fuhrman, J.A., et al. Proteorhodopsins: an array of physiological roles?. Nat. Rev. Microbiol. 6 (2008), 488–494.
-
(2008)
Nat. Rev. Microbiol.
, vol.6
, pp. 488-494
-
-
Fuhrman, J.A.1
-
50
-
-
55749106942
-
Light-energy conversion in engineered microorganisms
-
50 Johnson, E.T., Schmidt-Dannert, C., Light-energy conversion in engineered microorganisms. Trends Biotechnol. 26 (2008), 682–689.
-
(2008)
Trends Biotechnol.
, vol.26
, pp. 682-689
-
-
Johnson, E.T.1
Schmidt-Dannert, C.2
-
51
-
-
0020626034
-
An enzyme analysis of NADPH production and consumption in Candida utilis
-
51 Bruinenberg, P.M., et al. An enzyme analysis of NADPH production and consumption in Candida utilis. J. Gen. Appl. Microbiol. 129 (1983), 965–971.
-
(1983)
J. Gen. Appl. Microbiol.
, vol.129
, pp. 965-971
-
-
Bruinenberg, P.M.1
-
52
-
-
0021024592
-
Improvement of growth yield of yeast on glucose to the maximum by using an additional energy source
-
52 Babel, W., et al. Improvement of growth yield of yeast on glucose to the maximum by using an additional energy source. Arch. Microbial. 136 (1983), 203–208.
-
(1983)
Arch. Microbial.
, vol.136
, pp. 203-208
-
-
Babel, W.1
-
53
-
-
0020559488
-
A continuous culture study of methanol and formate utilization by the yeast Piohia Pastoris
-
53 Hazeu, W., Donker, R., A continuous culture study of methanol and formate utilization by the yeast Piohia Pastoris. Biotechnol. Lett. 5 (1983), 399–404.
-
(1983)
Biotechnol. Lett.
, vol.5
, pp. 399-404
-
-
Hazeu, W.1
Donker, R.2
-
54
-
-
84862199068
-
Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production
-
54 Lian, J., et al. Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresour. Technol. 118 (2012), 177–186.
-
(2012)
Bioresour. Technol.
, vol.118
, pp. 177-186
-
-
Lian, J.1
-
55
-
-
34547737880
-
Formate as an auxiliary substrate for glucose-limited cultivation of Penicillium chrysogenum: impact on penicillin G production and biomass yield
-
55 Harris, D.M., et al. Formate as an auxiliary substrate for glucose-limited cultivation of Penicillium chrysogenum: impact on penicillin G production and biomass yield. Appl. Environ. Microb. 73 (2007), 5020–5025.
-
(2007)
Appl. Environ. Microb.
, vol.73
, pp. 5020-5025
-
-
Harris, D.M.1
-
56
-
-
34347397645
-
A fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032
-
56 Zhi, W., et al. A fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032. Bioprocess. Biosyst. Eng. 30 (2007), 225–229.
-
(2007)
Bioprocess. Biosyst. Eng.
, vol.30
, pp. 225-229
-
-
Zhi, W.1
-
57
-
-
84859111827
-
2 to higher alcohols
-
2 to higher alcohols. Science 335 (2012), 1596–1597.
-
(2012)
Science
, vol.335
, pp. 1596-1597
-
-
Li, H.1
-
58
-
-
84861139695
-
Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate
-
58 Litsanov, B., et al. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl. Environ. Microb. 78 (2012), 3325–3337.
-
(2012)
Appl. Environ. Microb.
, vol.78
, pp. 3325-3337
-
-
Litsanov, B.1
-
59
-
-
84881512097
-
+-dependent formate dehydrogenase
-
+-dependent formate dehydrogenase. Metab. Eng. 20 (2013), 1–8.
-
(2013)
Metab. Eng.
, vol.20
, pp. 1-8
-
-
Balzer, G.J.1
-
60
-
-
84857192122
-
Computational tools for the synthetic design of biochemical pathways
-
60 Medema, M.H., et al. Computational tools for the synthetic design of biochemical pathways. Nat. Rev. Microbiol. 10 (2012), 191–202.
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 191-202
-
-
Medema, M.H.1
-
61
-
-
63549148162
-
Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization
-
61 Thiele, I., et al. Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization. PLoS Comput. Biol., 5, 2009, e1000312.
-
(2009)
PLoS Comput. Biol.
, vol.5
, pp. e1000312
-
-
Thiele, I.1
-
62
-
-
84864843180
-
In silico method for modelling metabolism and gene product expression at genome scale
-
62 Lerman, J.A., et al. In silico method for modelling metabolism and gene product expression at genome scale. Nat. Commun. 3 (2012), 929–938.
-
(2012)
Nat. Commun.
, vol.3
, pp. 929-938
-
-
Lerman, J.A.1
-
63
-
-
84866975246
-
Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage
-
63 Thiele, I., et al. Multiscale modeling of metabolism and macromolecular synthesis in E. coli and its application to the evolution of codon usage. PLoS ONE, 7, 2012, e45635.
-
(2012)
PLoS ONE
, vol.7
, pp. e45635
-
-
Thiele, I.1
-
64
-
-
84885367114
-
Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction
-
64 O'Brien, E.J., et al. Genome-scale models of metabolism and gene expression extend and refine growth phenotype prediction. Mol. Syst. Biol. 9 (2013), 693–705.
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 693-705
-
-
O'Brien, E.J.1
-
65
-
-
84864258618
-
A whole-cell computational model predicts phenotype from genotype
-
65 Karr, J.R., et al. A whole-cell computational model predicts phenotype from genotype. Cell 150 (2012), 389–401.
-
(2012)
Cell
, vol.150
, pp. 389-401
-
-
Karr, J.R.1
-
66
-
-
84876554105
-
WholeCellKB: model organism databases for comprehensive whole-cell models
-
66 Karr, J.R., et al. WholeCellKB: model organism databases for comprehensive whole-cell models. Nucleic Acids Res. 41 (2013), D787–D792.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. D787-D792
-
-
Karr, J.R.1
-
67
-
-
0028926047
-
Energetics of bacterial growth: balance of anabolic and catalolic reactions
-
67 Russell, J.B., Cook, G.M., Energetics of bacterial growth: balance of anabolic and catalolic reactions. Microbiol. Rev. 59 (1995), 48–62.
-
(1995)
Microbiol. Rev.
, vol.59
, pp. 48-62
-
-
Russell, J.B.1
Cook, G.M.2
-
68
-
-
0037133671
-
Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis
-
68 Akashi, H., Gojobori, T., Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 3695–3700.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 3695-3700
-
-
Akashi, H.1
Gojobori, T.2
-
69
-
-
8744224466
-
Optstrain: a computational framework for redesign of microbial production systems
-
69 Pharkya, P., et al. Optstrain: a computational framework for redesign of microbial production systems. Genome Res. 14 (2004), 2367–2376.
-
(2004)
Genome Res.
, vol.14
, pp. 2367-2376
-
-
Pharkya, P.1
-
70
-
-
84885795974
-
Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation
-
70 Biggs, M.B., Papin, J.A., Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation. PLoS ONE, 8, 2013, e78011.
-
(2013)
PLoS ONE
, vol.8
, pp. e78011
-
-
Biggs, M.B.1
Papin, J.A.2
-
71
-
-
84894054579
-
Advancing metabolic models with kinetic information
-
71 Link, H., et al. Advancing metabolic models with kinetic information. Curr. Opin. Biotechnol. 29 (2014), 8–14.
-
(2014)
Curr. Opin. Biotechnol.
, vol.29
, pp. 8-14
-
-
Link, H.1
-
72
-
-
76749151341
-
Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
-
72 Chemler, J.A., et al. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng. 12 (2010), 96–104.
-
(2010)
Metab. Eng.
, vol.12
, pp. 96-104
-
-
Chemler, J.A.1
-
73
-
-
84899075590
-
Rescuing US biomedical research from its systemic flaws
-
73 Alberts, B., et al. Rescuing US biomedical research from its systemic flaws. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 5773–5777.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 5773-5777
-
-
Alberts, B.1
-
74
-
-
55549116661
-
Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene
-
74 Anthony, J.R., et al. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng. 11 (2009), 13–19.
-
(2009)
Metab. Eng.
, vol.11
, pp. 13-19
-
-
Anthony, J.R.1
-
75
-
-
33847309176
-
Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli
-
75 Pitera, D.J., et al. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 9 (2007), 193–207.
-
(2007)
Metab. Eng.
, vol.9
, pp. 193-207
-
-
Pitera, D.J.1
-
76
-
-
84887422015
-
Engineering dynamic pathway regulation using stress-response promoters
-
76 Dahl, R.H., et al. Engineering dynamic pathway regulation using stress-response promoters. Nat. Biotechnol. 31 (2013), 1039–1046.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 1039-1046
-
-
Dahl, R.H.1
-
77
-
-
84894319806
-
Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly
-
77 Nowroozi, F.F., et al. Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl. Microbiol. Biotechnol. 98 (2014), 1567–1581.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 1567-1581
-
-
Nowroozi, F.F.1
-
78
-
-
80052030821
-
Harnessing yeast subcellular compartments for the production of plant terpenoids
-
78 Farhi, M., et al. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab. Eng. 13 (2011), 474–481.
-
(2011)
Metab. Eng.
, vol.13
, pp. 474-481
-
-
Farhi, M.1
-
79
-
-
68449103617
-
Stabilized gene duplication enables long-term selection-free heterologous pathway expression
-
79 Tyo, K.E., et al. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat. Biotechnol. 27 (2009), 760–765.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 760-765
-
-
Tyo, K.E.1
-
80
-
-
84925348793
-
Rational design of a synthetic Entner–Doudoroff pathway for improved and controllable NADPH regeneration
-
80 Ng, C.Y., et al. Rational design of a synthetic Entner–Doudoroff pathway for improved and controllable NADPH regeneration. Metab. Eng. 29 (2015), 86–96.
-
(2015)
Metab. Eng.
, vol.29
, pp. 86-96
-
-
Ng, C.Y.1
-
81
-
-
68449088806
-
Synthetic protein scaffolds provide modular control over metabolic flux
-
81 Dueber, J.E., et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27 (2009), 753–759.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 753-759
-
-
Dueber, J.E.1
-
82
-
-
77950863739
-
Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli
-
82 Moon, T.S., et al. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 12 (2010), 298–305.
-
(2010)
Metab. Eng.
, vol.12
, pp. 298-305
-
-
Moon, T.S.1
-
83
-
-
84942525032
-
Improvement of glucaric acid production in via dynamic control of metabolic fluxes
-
83 Reizman, I.M., et al. Improvement of glucaric acid production in via dynamic control of metabolic fluxes. Metab. Eng. Commun. 2 (2015), 109–116.
-
(2015)
Metab. Eng. Commun.
, vol.2
, pp. 109-116
-
-
Reizman, I.M.1
-
84
-
-
84941558348
-
Engineering E. coli–E. coli cocultures for production of muconic acid from glycerol
-
84 Zhang, H., et al. Engineering E. coli–E. coli cocultures for production of muconic acid from glycerol. Microb. Cell. Fact., 14, 2015, 134.
-
(2015)
Microb. Cell. Fact.
, vol.14
, pp. 134
-
-
Zhang, H.1
-
85
-
-
84936803078
-
Engineering Escherichia coli coculture systems for the production of biochemical products
-
85 Zhang, H., et al. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 8266–8271.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 8266-8271
-
-
Zhang, H.1
-
86
-
-
84920747663
-
Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites
-
86 Brockman, I.M., Prather, K.L., Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28 (2015), 104–113.
-
(2015)
Metab. Eng.
, vol.28
, pp. 104-113
-
-
Brockman, I.M.1
Prather, K.L.2
-
87
-
-
84923925548
-
Metabolic engineering of Escherichia coli for the production of riboflavin
-
87 Lin, Z., et al. Metabolic engineering of Escherichia coli for the production of riboflavin. Microb. Cell. Fact. 13 (2014), 104–115.
-
(2014)
Microb. Cell. Fact.
, vol.13
, pp. 104-115
-
-
Lin, Z.1
-
88
-
-
84905443683
-
Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes
-
88 Herr, A., Fischer, R., Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes. Metab. Eng. 25 (2014), 131–139.
-
(2014)
Metab. Eng.
, vol.25
, pp. 131-139
-
-
Herr, A.1
Fischer, R.2
-
89
-
-
84903748219
-
Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae
-
89 Latimer, L.N., et al. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab. Eng. 25 (2014), 20–29.
-
(2014)
Metab. Eng.
, vol.25
, pp. 20-29
-
-
Latimer, L.N.1
-
90
-
-
84914129027
-
Production of chondroitin in metabolically engineered E. coli
-
90 He, W., et al. Production of chondroitin in metabolically engineered E. coli. Metab. Eng. 27 (2015), 92–100.
-
(2015)
Metab. Eng.
, vol.27
, pp. 92-100
-
-
He, W.1
-
91
-
-
84931292024
-
ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways
-
91 Jones, J.A., et al. ePathOptimize: a combinatorial approach for transcriptional balancing of metabolic pathways. Sci. Rep. 5 (2015), 11301–11310.
-
(2015)
Sci. Rep.
, vol.5
, pp. 11301-11310
-
-
Jones, J.A.1
-
92
-
-
84890395226
-
Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay
-
92 Lee, M.E., et al. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res. 41 (2013), 10668–10678.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 10668-10678
-
-
Lee, M.E.1
-
93
-
-
84920161546
-
Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering
-
93 Zhao, S., et al. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab. Eng. 28 (2015), 43–53.
-
(2015)
Metab. Eng.
, vol.28
, pp. 43-53
-
-
Zhao, S.1
-
94
-
-
84886239741
-
Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain
-
94 Huang, Q., et al. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol. Bioeng. 110 (2013), 3188–3196.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 3188-3196
-
-
Huang, Q.1
-
95
-
-
84876676603
-
Engineering E. coli for caffeic acid biosynthesis from renewable sugars
-
95 Zhang, H., Stephanopoulos, G., Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl. Microbiol. Biotechnol. 97 (2013), 3333–3341.
-
(2013)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 3333-3341
-
-
Zhang, H.1
Stephanopoulos, G.2
-
96
-
-
84883232076
-
Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine
-
96 Wu, J., et al. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine. J. Biotechnol. 167 (2013), 404–411.
-
(2013)
J. Biotechnol.
, vol.167
, pp. 404-411
-
-
Wu, J.1
-
97
-
-
84926646130
-
Distributing a metabolic pathway among a microbial consortium enhances production of natural products
-
97 Zhou, K., et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33 (2015), 377–383.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 377-383
-
-
Zhou, K.1
-
98
-
-
77957329119
-
Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
-
98 Ajikumar, P.K., et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330 (2010), 70–74.
-
(2010)
Science
, vol.330
, pp. 70-74
-
-
Ajikumar, P.K.1
-
99
-
-
84877804801
-
Modular optimization of multi-gene pathways for fatty acids production in E. coli
-
99 Xu, P., et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 4 (2013), 1409–1416.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1409-1416
-
-
Xu, P.1
-
100
-
-
84896408319
-
Butyrate production in engineered Escherichia coli with synthetic scaffolds
-
100 Baek, J-M., et al. Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol. Bioeng. 110 (2013), 2790–2794.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 2790-2794
-
-
Baek, J.-M.1
-
101
-
-
84913558396
-
Potential production platform of n-butanol in Escherichia coli
-
101 Saini, M., et al. Potential production platform of n-butanol in Escherichia coli. Metab. Eng. 27 (2015), 76–82.
-
(2015)
Metab. Eng.
, vol.27
, pp. 76-82
-
-
Saini, M.1
-
102
-
-
84877256074
-
Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
-
102 Avalos, J.L., et al. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31 (2013), 335–341.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 335-341
-
-
Avalos, J.L.1
-
103
-
-
79961084093
-
Redesigning Escherichia coli metabolism for anaerobic production of isobutanol
-
103 Trinh, C.T., et al. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl. Environ. Microb. 77 (2011), 4894–4904.
-
(2011)
Appl. Environ. Microb.
, vol.77
, pp. 4894-4904
-
-
Trinh, C.T.1
-
104
-
-
67650660144
-
Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production
-
104 Fowler, Z.L., et al. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microb. 75 (2009), 5831–5839.
-
(2009)
Appl. Environ. Microb.
, vol.75
, pp. 5831-5839
-
-
Fowler, Z.L.1
-
105
-
-
84879190343
-
Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: Proof of concept for genetic interventions predicted by OptForce computational framework
-
105 Bhan, N., et al. Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: Proof of concept for genetic interventions predicted by OptForce computational framework. Chem. Eng. Sci. 103 (2013), 109–114.
-
(2013)
Chem. Eng. Sci.
, vol.103
, pp. 109-114
-
-
Bhan, N.1
-
106
-
-
77954590959
-
OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions
-
106 Ranganathan, S., et al. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol., 6, 2010, e1000744.
-
(2010)
PLoS Comput. Biol.
, vol.6
, pp. e1000744
-
-
Ranganathan, S.1
|