메뉴 건너뛰기




Volumn 42, Issue 11, 2017, Pages 873-886

The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy

Author keywords

autophagy lysosome system; protein quality control; proteolysis; ubiquitin linkages; ubiquitination

Indexed keywords

ADENOSINE TRIPHOSPHATASE; BRCA1 PROTEIN; CYCLIN B1; HISTONE DEACETYLASE 6; I KAPPA B KINASE GAMMA; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; MITOCHONDRIAL PROTEIN; OPTINEURIN; PARKIN; POLYUBIQUITIN; PROTEASOME; PROTEIN DEGLYCASE DJ-1; SEQUESTOSOME 1; SERINE; SUMO PROTEIN; THREONINE; TRANSCRIPTION FACTOR PAX3; UBIQUITIN; UBIQUITIN PROTEIN LIGASE E3; UBIQUITIN TRANSFERRING ENZYME 2; UNCLASSIFIED DRUG;

EID: 85029755786     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2017.09.002     Document Type: Review
Times cited : (571)

References (110)
  • 1
    • 84929086199 scopus 로고    scopus 로고
    • The unravelling of the ubiquitin system
    • Ciechanover, A., The unravelling of the ubiquitin system. Nat. Rev. Mol. Cell Biol. 16 (2015), 322–324.
    • (2015) Nat. Rev. Mol. Cell Biol. , vol.16 , pp. 322-324
    • Ciechanover, A.1
  • 2
    • 84989284335 scopus 로고    scopus 로고
    • Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies
    • Ciechanover, A., Kwon, Y.T., Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med., 47, 2015, e147.
    • (2015) Exp. Mol. Med. , vol.47 , pp. e147
    • Ciechanover, A.1    Kwon, Y.T.2
  • 3
    • 85018401049 scopus 로고    scopus 로고
    • Protein quality control by molecular chaperones in neurodegeneration
    • Ciechanover, A., Kwon, Y.T., Protein quality control by molecular chaperones in neurodegeneration. Front. Neurosci., 11, 2017, 185.
    • (2017) Front. Neurosci. , vol.11 , pp. 185
    • Ciechanover, A.1    Kwon, Y.T.2
  • 4
    • 84934298725 scopus 로고    scopus 로고
    • Amino-terminal arginylation targets endoplasmic reticulum chaperone bip for autophagy through p62 binding
    • Cha-Molstad, H., et al. Amino-terminal arginylation targets endoplasmic reticulum chaperone bip for autophagy through p62 binding. Nat. Cell Biol. 17 (2015), 917–929.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 917-929
    • Cha-Molstad, H.1
  • 6
    • 0027980319 scopus 로고
    • Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules
    • Rock, K.L., et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78 (1994), 761–771.
    • (1994) Cell , vol.78 , pp. 761-771
    • Rock, K.L.1
  • 7
    • 84965013771 scopus 로고    scopus 로고
    • The recognition of ubiquitinated proteins by the proteasome
    • Grice, G.L., Nathan, J.A., The recognition of ubiquitinated proteins by the proteasome. Cell. Mol. Life Sci. 73 (2016), 3497–3506.
    • (2016) Cell. Mol. Life Sci. , vol.73 , pp. 3497-3506
    • Grice, G.L.1    Nathan, J.A.2
  • 8
    • 84924565538 scopus 로고    scopus 로고
    • Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes
    • Scott, D., et al. Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 15 (2015), 844–861.
    • (2015) Proteomics , vol.15 , pp. 844-861
    • Scott, D.1
  • 9
    • 85011296348 scopus 로고    scopus 로고
    • Autophagy receptors and neurodegenerative diseases
    • Deng, Z., et al. Autophagy receptors and neurodegenerative diseases. Trends Cell. Biol. 27 (2017), 491–504.
    • (2017) Trends Cell. Biol. , vol.27 , pp. 491-504
    • Deng, Z.1
  • 10
    • 84878231850 scopus 로고    scopus 로고
    • Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting
    • Ciechanover, A., Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Bioorg. Med. Chem. 21 (2013), 3400–3410.
    • (2013) Bioorg. Med. Chem. , vol.21 , pp. 3400-3410
    • Ciechanover, A.1
  • 11
    • 83255185097 scopus 로고    scopus 로고
    • Ubiquitination of substrates by esterification
    • Wang, X., et al. Ubiquitination of substrates by esterification. Traffic 13 (2012), 19–24.
    • (2012) Traffic , vol.13 , pp. 19-24
    • Wang, X.1
  • 12
    • 85001889664 scopus 로고    scopus 로고
    • Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination
    • Bhogaraju, S., et al. Phosphoribosylation of ubiquitin promotes serine ubiquitination and impairs conventional ubiquitination. Cell 167 (2016), 1636–1649.
    • (2016) Cell , vol.167 , pp. 1636-1649
    • Bhogaraju, S.1
  • 13
    • 84943775216 scopus 로고    scopus 로고
    • Export-deficient monoubiquitinated pex5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts
    • Nordgren, M., et al. Export-deficient monoubiquitinated pex5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 11 (2015), 1326–1340.
    • (2015) Autophagy , vol.11 , pp. 1326-1340
    • Nordgren, M.1
  • 14
    • 85015837513 scopus 로고    scopus 로고
    • The emerging complexity of ubiquitin architecture
    • Ohtake, F., Tsuchiya, H., The emerging complexity of ubiquitin architecture. J. Biochem. 161 (2017), 125–133.
    • (2017) J. Biochem. , vol.161 , pp. 125-133
    • Ohtake, F.1    Tsuchiya, H.2
  • 15
    • 84961743030 scopus 로고    scopus 로고
    • Ubiquitin modifications
    • Swatek, K.N., Komander, D., Ubiquitin modifications. Cell Res. 26 (2016), 399–422.
    • (2016) Cell Res. , vol.26 , pp. 399-422
    • Swatek, K.N.1    Komander, D.2
  • 16
    • 84971236561 scopus 로고    scopus 로고
    • The increasing complexity of the ubiquitin code
    • Yau, R., Rape, M., The increasing complexity of the ubiquitin code. Nat. Cell Biol. 18 (2016), 579–586.
    • (2016) Nat. Cell Biol. , vol.18 , pp. 579-586
    • Yau, R.1    Rape, M.2
  • 17
    • 82455179484 scopus 로고    scopus 로고
    • Systematic and quantitative assessment of the ubiquitin-modified proteome
    • Kim, W., et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44 (2011), 325–340.
    • (2011) Mol. Cell , vol.44 , pp. 325-340
    • Kim, W.1
  • 18
    • 85018916890 scopus 로고    scopus 로고
    • Monoubiquitination joins polyubiquitination as an esteemed proteasomal targeting signal
    • Published online May 11, 2017
    • Livneh, I., et al. Monoubiquitination joins polyubiquitination as an esteemed proteasomal targeting signal. Bioessays, 39, 2017, 10.1002/bies.201700027 Published online May 11, 2017.
    • (2017) Bioessays , vol.39
    • Livneh, I.1
  • 19
    • 84982921570 scopus 로고    scopus 로고
    • Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination
    • Braten, O., et al. Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), E4639–E4647.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. E4639-E4647
    • Braten, O.1
  • 20
    • 85014629729 scopus 로고    scopus 로고
    • The emerging role of non-traditional ubiquitination in oncogenic pathways
    • Dwane, L., et al. The emerging role of non-traditional ubiquitination in oncogenic pathways. J. Biol. Chem. 292 (2017), 3543–3551.
    • (2017) J. Biol. Chem. , vol.292 , pp. 3543-3551
    • Dwane, L.1
  • 21
    • 84960324799 scopus 로고    scopus 로고
    • Ubiquitin chain diversity at a glance
    • Akutsu, M., et al. Ubiquitin chain diversity at a glance. J. Cell Sci. 129 (2016), 875–880.
    • (2016) J. Cell Sci. , vol.129 , pp. 875-880
    • Akutsu, M.1
  • 22
    • 8844237615 scopus 로고    scopus 로고
    • Polyubiquitin chains: polymeric protein signals
    • Pickart, C.M., Fushman, D., Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8 (2004), 610–616.
    • (2004) Curr. Opin. Chem. Biol. , vol.8 , pp. 610-616
    • Pickart, C.M.1    Fushman, D.2
  • 23
    • 69549116880 scopus 로고    scopus 로고
    • The E3 ligase traf6 regulates akt ubiquitination and activation
    • Yang, W.L., et al. The E3 ligase traf6 regulates akt ubiquitination and activation. Science 325 (2009), 1134–1138.
    • (2009) Science , vol.325 , pp. 1134-1138
    • Yang, W.L.1
  • 24
    • 84923239496 scopus 로고    scopus 로고
    • Neuronal aggregates: formation, clearance, and spreading
    • Lim, J., Yue, Z., Neuronal aggregates: formation, clearance, and spreading. Dev. Cell 32 (2015), 491–501.
    • (2015) Dev. Cell , vol.32 , pp. 491-501
    • Lim, J.1    Yue, Z.2
  • 25
    • 85020535413 scopus 로고    scopus 로고
    • Mechanisms of regulation and diversification of deubiquitylating enzyme function
    • Leznicki, P., Kulathu, Y., Mechanisms of regulation and diversification of deubiquitylating enzyme function. J. Cell Sci. 130 (2017), 1997–2006.
    • (2017) J. Cell Sci. , vol.130 , pp. 1997-2006
    • Leznicki, P.1    Kulathu, Y.2
  • 26
    • 0031038169 scopus 로고    scopus 로고
    • Editing of ubiquitin conjugates by an isopeptidase in the 26s proteasome
    • Lam, Y.A., et al. Editing of ubiquitin conjugates by an isopeptidase in the 26s proteasome. Nature 385 (1997), 737–740.
    • (1997) Nature , vol.385 , pp. 737-740
    • Lam, Y.A.1
  • 27
    • 84952639230 scopus 로고    scopus 로고
    • Gates, channels, and switches: elements of the proteasome machine
    • Finley, D., et al. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41 (2016), 77–93.
    • (2016) Trends Biochem. Sci. , vol.41 , pp. 77-93
    • Finley, D.1
  • 28
    • 84979306721 scopus 로고    scopus 로고
    • The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death
    • Livneh, I., et al. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 26 (2016), 869–885.
    • (2016) Cell Res. , vol.26 , pp. 869-885
    • Livneh, I.1
  • 29
    • 85019705982 scopus 로고    scopus 로고
    • SUMO in the DNA double-stranded break response: similarities, differences, and cooperation with ubiquitin
    • Published online May 17, 2017
    • Morris, J.R., Garvin, A.J., SUMO in the DNA double-stranded break response: similarities, differences, and cooperation with ubiquitin. J. Mol. Biol., 2017, 10.1016/j.jmb.2017.05.012 Published online May 17, 2017.
    • (2017) J. Mol. Biol.
    • Morris, J.R.1    Garvin, A.J.2
  • 30
    • 85010966343 scopus 로고    scopus 로고
    • Sumo and the robustness of cancer
    • Seeler, J.S., Dejean, A., Sumo and the robustness of cancer. Nat. Rev. Cancer 17 (2017), 184–197.
    • (2017) Nat. Rev. Cancer , vol.17 , pp. 184-197
    • Seeler, J.S.1    Dejean, A.2
  • 31
    • 85024923297 scopus 로고    scopus 로고
    • Ubiquitin-like modifications in the DNA damage response
    • Wang, Z., et al. Ubiquitin-like modifications in the DNA damage response. Mutat. Res., 2017.
    • (2017) Mutat. Res.
    • Wang, Z.1
  • 32
    • 84925775745 scopus 로고    scopus 로고
    • Uncovering global sumoylation signaling networks in a site-specific manner
    • Hendriks, I.A., et al. Uncovering global sumoylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 21 (2014), 927–936.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 927-936
    • Hendriks, I.A.1
  • 34
  • 35
    • 85015602887 scopus 로고    scopus 로고
    • Sumo conjugation – a mechanistic view
    • Pichler, A., et al. Sumo conjugation – a mechanistic view. Biomol. Concepts 8 (2017), 13–36.
    • (2017) Biomol. Concepts , vol.8 , pp. 13-36
    • Pichler, A.1
  • 36
    • 84959481890 scopus 로고    scopus 로고
    • The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation
    • Yamano, K., et al. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep. 17 (2016), 300–316.
    • (2016) EMBO Rep. , vol.17 , pp. 300-316
    • Yamano, K.1
  • 37
    • 84922434418 scopus 로고    scopus 로고
    • Quantitative proteomics reveal a feedforward mechanism for mitochondrial parkin translocation and ubiquitin chain synthesis
    • Ordureau, A., et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial parkin translocation and ubiquitin chain synthesis. Mol. Cell 56 (2014), 360–375.
    • (2014) Mol. Cell , vol.56 , pp. 360-375
    • Ordureau, A.1
  • 38
    • 84940792247 scopus 로고    scopus 로고
    • Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover
    • Swaney, D.L., et al. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep. 16 (2015), 1131–1144.
    • (2015) EMBO Rep. , vol.16 , pp. 1131-1144
    • Swaney, D.L.1
  • 39
    • 84901751574 scopus 로고    scopus 로고
    • Ubiquitin is phosphorylated by pink1 to activate parkin
    • Koyano, F., et al. Ubiquitin is phosphorylated by pink1 to activate parkin. Nature 510 (2014), 162–166.
    • (2014) Nature , vol.510 , pp. 162-166
    • Koyano, F.1
  • 40
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase pink1 recruits autophagy receptors to induce mitophagy
    • Lazarou, M., et al. The ubiquitin kinase pink1 recruits autophagy receptors to induce mitophagy. Nature 524 (2015), 309–314.
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1
  • 41
    • 84929691103 scopus 로고    scopus 로고
    • Defining roles of parkin and ubiquitin phosphorylation by pink1 in mitochondrial quality control using a ubiquitin replacement strategy
    • Ordureau, A., et al. Defining roles of parkin and ubiquitin phosphorylation by pink1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 6637–6642.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 6637-6642
    • Ordureau, A.1
  • 42
    • 84951930787 scopus 로고    scopus 로고
    • The pink1–parkin mitochondrial ubiquitylation pathway drives a program of optn/ndp52 recruitment and tbk1 activation to promote mitophagy
    • Heo, J.M., et al. The pink1–parkin mitochondrial ubiquitylation pathway drives a program of optn/ndp52 recruitment and tbk1 activation to promote mitophagy. Mol. Cell 60 (2015), 7–20.
    • (2015) Mol. Cell , vol.60 , pp. 7-20
    • Heo, J.M.1
  • 43
    • 84922241634 scopus 로고    scopus 로고
    • Ubiquitin acetylation inhibits polyubiquitin chain elongation
    • Ohtake, F., et al. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep. 16 (2015), 192–201.
    • (2015) EMBO Rep. , vol.16 , pp. 192-201
    • Ohtake, F.1
  • 44
    • 85019572011 scopus 로고    scopus 로고
    • Ubiquitin modification by the E3 ligase/ADP-ribosyltransferase dtx3l/parp9
    • Yang, C.S., et al. Ubiquitin modification by the E3 ligase/ADP-ribosyltransferase dtx3l/parp9. Mol. Cell 66 (2017), 503–516.
    • (2017) Mol. Cell , vol.66 , pp. 503-516
    • Yang, C.S.1
  • 45
    • 85026783128 scopus 로고    scopus 로고
    • Ube2o remodels the proteome during terminal erythroid differentiation
    • Nguyen, A.T., et al. Ube2o remodels the proteome during terminal erythroid differentiation. Science, 357, 2017, eaan0218.
    • (2017) Science , vol.357 , pp. eaan0218
    • Nguyen, A.T.1
  • 46
    • 84942982653 scopus 로고    scopus 로고
    • Atm functions at the peroxisome to induce pexophagy in response to ros
    • Zhang, J., et al. Atm functions at the peroxisome to induce pexophagy in response to ros. Nat. Cell Biol. 17 (2015), 1259–1269.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1259-1269
    • Zhang, J.1
  • 47
    • 85019546678 scopus 로고    scopus 로고
    • The logic of the 26S proteasome
    • Collins, G.A., Goldberg, A.L., The logic of the 26S proteasome. Cell 169 (2017), 792–806.
    • (2017) Cell , vol.169 , pp. 792-806
    • Collins, G.A.1    Goldberg, A.L.2
  • 48
    • 63049125531 scopus 로고    scopus 로고
    • Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
    • Xu, P., et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137 (2009), 133–145.
    • (2009) Cell , vol.137 , pp. 133-145
    • Xu, P.1
  • 49
    • 79955780837 scopus 로고    scopus 로고
    • A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis
    • M111 009753
    • Ziv, I., et al. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol. Cell. Proteomics, 10, 2011 M111 009753.
    • (2011) Mol. Cell. Proteomics , vol.10
    • Ziv, I.1
  • 50
    • 85019621359 scopus 로고    scopus 로고
    • In vivo ubiquitin linkage-type analysis reveals that the cdc48–rad23/dsk2 axis contributes to K48-linked chain specificity of the proteasome
    • Tsuchiya, H., et al. In vivo ubiquitin linkage-type analysis reveals that the cdc48–rad23/dsk2 axis contributes to K48-linked chain specificity of the proteasome. Mol. Cell 66 (2017), 488–502.
    • (2017) Mol. Cell , vol.66 , pp. 488-502
    • Tsuchiya, H.1
  • 51
    • 84971517462 scopus 로고    scopus 로고
    • Dual ring E3 architectures regulate multiubiquitination and ubiquitin chain elongation by apc/c
    • Brown, N.G., et al. Dual ring E3 architectures regulate multiubiquitination and ubiquitin chain elongation by apc/c. Cell 165 (2016), 1440–1453.
    • (2016) Cell , vol.165 , pp. 1440-1453
    • Brown, N.G.1
  • 52
    • 84927555890 scopus 로고    scopus 로고
    • Specificity of the anaphase-promoting complex: a single-molecule study
    • 1248737
    • Lu, Y., et al. Specificity of the anaphase-promoting complex: a single-molecule study. Science, 348, 2015 1248737.
    • (2015) Science , vol.348
    • Lu, Y.1
  • 53
    • 84900337781 scopus 로고    scopus 로고
    • Enhanced protein degradation by branched ubiquitin chains
    • Meyer, H.J., Rape, M., Enhanced protein degradation by branched ubiquitin chains. Cell 157 (2014), 910–921.
    • (2014) Cell , vol.157 , pp. 910-921
    • Meyer, H.J.1    Rape, M.2
  • 54
    • 84878832998 scopus 로고    scopus 로고
    • Otu deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis
    • Mevissen, T.E., et al. Otu deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154 (2013), 169–184.
    • (2013) Cell , vol.154 , pp. 169-184
    • Mevissen, T.E.1
  • 55
    • 85021679701 scopus 로고    scopus 로고
    • Mechanism of ubiquitin chain synthesis employed by a hect ubiquitin ligase
    • French, M.E., et al. Mechanism of ubiquitin chain synthesis employed by a hect ubiquitin ligase. J. Biol. Chem. 292 (2017), 10398–10413.
    • (2017) J. Biol. Chem. , vol.292 , pp. 10398-10413
    • French, M.E.1
  • 56
    • 84896125472 scopus 로고    scopus 로고
    • Lys11- and lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulum-associated degradation
    • Locke, M., et al. Lys11- and lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulum-associated degradation. Biochem. J. 459 (2014), 205–216.
    • (2014) Biochem. J. , vol.459 , pp. 205-216
    • Locke, M.1
  • 57
    • 84915791560 scopus 로고    scopus 로고
    • Cezanne (otud7b) regulates HIF-1alpha homeostasis in a proteasome-independent manner
    • Bremm, A., et al. Cezanne (otud7b) regulates HIF-1alpha homeostasis in a proteasome-independent manner. EMBO Rep. 15 (2014), 1268–1277.
    • (2014) EMBO Rep. , vol.15 , pp. 1268-1277
    • Bremm, A.1
  • 58
    • 84907587749 scopus 로고    scopus 로고
    • Rnf26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms
    • Qin, Y., et al. Rnf26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog., 10, 2014, e1004358.
    • (2014) PLoS Pathog. , vol.10 , pp. e1004358
    • Qin, Y.1
  • 59
    • 84947045877 scopus 로고    scopus 로고
    • The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains
    • Grice, G.L., et al. The proteasome distinguishes between heterotypic and homotypic lysine-11-linked polyubiquitin chains. Cell Rep. 12 (2015), 545–553.
    • (2015) Cell Rep. , vol.12 , pp. 545-553
    • Grice, G.L.1
  • 60
    • 84962467507 scopus 로고    scopus 로고
    • A rapid and versatile method for generating proteins with defined ubiquitin chains
    • Martinez-Fonts, K., Matouschek, A., A rapid and versatile method for generating proteins with defined ubiquitin chains. Biochemistry 55 (2016), 1898–1908.
    • (2016) Biochemistry , vol.55 , pp. 1898-1908
    • Martinez-Fonts, K.1    Matouschek, A.2
  • 61
    • 84934971997 scopus 로고    scopus 로고
    • Assembly and structure of lys33-linked polyubiquitin reveals distinct conformations
    • Kristariyanto, Y.A., et al. Assembly and structure of lys33-linked polyubiquitin reveals distinct conformations. Biochem. J. 467 (2015), 345–352.
    • (2015) Biochem. J. , vol.467 , pp. 345-352
    • Kristariyanto, Y.A.1
  • 62
    • 84949989892 scopus 로고    scopus 로고
    • Assembly and specific recognition of K29- and K33-linked polyubiquitin
    • Michel, M.A., et al. Assembly and specific recognition of K29- and K33-linked polyubiquitin. Mol. Cell 58 (2015), 95–109.
    • (2015) Mol. Cell , vol.58 , pp. 95-109
    • Michel, M.A.1
  • 63
    • 84971524680 scopus 로고    scopus 로고
    • Lys29-linkage of ask1 by skp1–cullin 1–fbxo21 ubiquitin ligase complex is required for antiviral innate response
    • Yu, Z., et al. Lys29-linkage of ask1 by skp1–cullin 1–fbxo21 ubiquitin ligase complex is required for antiviral innate response. Elife, 5, 2016, e14087.
    • (2016) Elife , vol.5 , pp. e14087
    • Yu, Z.1
  • 64
    • 0029119522 scopus 로고
    • A proteolytic pathway that recognizes ubiquitin as a degradation signal
    • Johnson, E.S., et al. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270 (1995), 17442–17456.
    • (1995) J. Biol. Chem. , vol.270 , pp. 17442-17456
    • Johnson, E.S.1
  • 65
    • 0033525589 scopus 로고    scopus 로고
    • A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly
    • Koegl, M., et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96 (1999), 635–644.
    • (1999) Cell , vol.96 , pp. 635-644
    • Koegl, M.1
  • 66
    • 85011659378 scopus 로고    scopus 로고
    • Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains
    • Liu, C., et al. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat. Commun., 8, 2017, 14274.
    • (2017) Nat. Commun. , vol.8 , pp. 14274
    • Liu, C.1
  • 67
    • 11844263929 scopus 로고    scopus 로고
    • A series of ubiquitin binding factors connects cdc48/p97 to substrate multiubiquitylation and proteasomal targeting
    • Richly, H., et al. A series of ubiquitin binding factors connects cdc48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120 (2005), 73–84.
    • (2005) Cell , vol.120 , pp. 73-84
    • Richly, H.1
  • 68
    • 78649894111 scopus 로고    scopus 로고
    • The N-end rule pathway is mediated by a complex of the ring-type ubr1 and hect-type ufd4 ubiquitin ligases
    • Hwang, C.S., et al. The N-end rule pathway is mediated by a complex of the ring-type ubr1 and hect-type ufd4 ubiquitin ligases. Nat. Cell Biol. 12 (2010), 1177–1185.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 1177-1185
    • Hwang, C.S.1
  • 69
    • 0034602845 scopus 로고    scopus 로고
    • Recognition of the polyubiquitin proteolytic signal
    • Thrower, J.S., et al. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19 (2000), 94–102.
    • (2000) EMBO J. , vol.19 , pp. 94-102
    • Thrower, J.S.1
  • 70
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • Lander, G.C., et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482 (2012), 186–191.
    • (2012) Nature , vol.482 , pp. 186-191
    • Lander, G.C.1
  • 71
    • 84863115607 scopus 로고    scopus 로고
    • Localization of the proteasomal ubiquitin receptors rpn10 and rpn13 by electron cryomicroscopy
    • Sakata, E., et al. Localization of the proteasomal ubiquitin receptors rpn10 and rpn13 by electron cryomicroscopy. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 1479–1484.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 1479-1484
    • Sakata, E.1
  • 72
    • 84857134729 scopus 로고    scopus 로고
    • Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach
    • Lasker, K., et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 1380–1387.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 1380-1387
    • Lasker, K.1
  • 73
    • 84862776836 scopus 로고    scopus 로고
    • Apc/c-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin b1
    • Dimova, N.V., et al. Apc/c-mediated multiple monoubiquitylation provides an alternative degradation signal for cyclin b1. Nat. Cell Biol. 14 (2012), 168–176.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 168-176
    • Dimova, N.V.1
  • 74
    • 84927535922 scopus 로고    scopus 로고
    • Substrate degradation by the proteasome: a single-molecule kinetic analysis
    • 1250834
    • Lu, Y., et al. Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science, 348, 2015 1250834.
    • (2015) Science , vol.348
    • Lu, Y.1
  • 75
    • 84880867507 scopus 로고    scopus 로고
    • The N-end rule proteolytic system in autophagy
    • Kim, S.T., et al. The N-end rule proteolytic system in autophagy. Autophagy 9 (2013), 1100–1103.
    • (2013) Autophagy , vol.9 , pp. 1100-1103
    • Kim, S.T.1
  • 76
    • 84856071893 scopus 로고    scopus 로고
    • Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini
    • Ouyang, H., et al. Protein aggregates are recruited to aggresome by histone deacetylase 6 via unanchored ubiquitin C termini. J. Biol. Chem. 287 (2012), 2317–2327.
    • (2012) J. Biol. Chem. , vol.287 , pp. 2317-2327
    • Ouyang, H.1
  • 77
    • 34548851476 scopus 로고    scopus 로고
    • Parkin-mediated K63-linked polyubiquitination targets misfolded dj-1 to aggresomes via binding to hdac6
    • Olzmann, J.A., et al. Parkin-mediated K63-linked polyubiquitination targets misfolded dj-1 to aggresomes via binding to hdac6. J. Cell Biol. 178 (2007), 1025–1038.
    • (2007) J. Cell Biol. , vol.178 , pp. 1025-1038
    • Olzmann, J.A.1
  • 78
    • 79957949190 scopus 로고    scopus 로고
    • Ubch7 reactivity profile reveals parkin and hhari to be ring/hect hybrids
    • Wenzel, D.M., et al. Ubch7 reactivity profile reveals parkin and hhari to be ring/hect hybrids. Nature 474 (2011), 105–108.
    • (2011) Nature , vol.474 , pp. 105-108
    • Wenzel, D.M.1
  • 79
    • 82455172117 scopus 로고    scopus 로고
    • Serine 403 phosphorylation of p62/sqstm1 regulates selective autophagic clearance of ubiquitinated proteins
    • Matsumoto, G., et al. Serine 403 phosphorylation of p62/sqstm1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44 (2011), 279–289.
    • (2011) Mol. Cell , vol.44 , pp. 279-289
    • Matsumoto, G.1
  • 80
    • 20044386298 scopus 로고    scopus 로고
    • Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for lewy body formation
    • Lim, K.L., et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for lewy body formation. J. Neurosci. 25 (2005), 2002–2009.
    • (2005) J. Neurosci. , vol.25 , pp. 2002-2009
    • Lim, K.L.1
  • 81
    • 84991648582 scopus 로고    scopus 로고
    • Vcp/p97 cooperates with yod1, ubxd1 and plaa to drive clearance of ruptured lysosomes by autophagy
    • Papadopoulos, C., et al. Vcp/p97 cooperates with yod1, ubxd1 and plaa to drive clearance of ruptured lysosomes by autophagy. EMBO J. 36 (2017), 135–150.
    • (2017) EMBO J. , vol.36 , pp. 135-150
    • Papadopoulos, C.1
  • 82
    • 84875231510 scopus 로고    scopus 로고
    • Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?
    • Nathan, J.A., et al. Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?. EMBO J. 32 (2013), 552–565.
    • (2013) EMBO J. , vol.32 , pp. 552-565
    • Nathan, J.A.1
  • 83
    • 85020304536 scopus 로고    scopus 로고
    • Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation
    • Lu, K., et al. Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation. Nat. Cell Biol. 19 (2017), 732–739.
    • (2017) Nat. Cell Biol. , vol.19 , pp. 732-739
    • Lu, K.1
  • 84
    • 80054958053 scopus 로고    scopus 로고
    • The N-end rule pathway: emerging functions and molecular principles of substrate recognition
    • Sriram, S.M., et al. The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12 (2011), 735–747.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 735-747
    • Sriram, S.M.1
  • 85
    • 84861210856 scopus 로고    scopus 로고
    • The N-end rule pathway
    • Tasaki, T., et al. The N-end rule pathway. Annu. Rev. Biochem. 81 (2012), 261–289.
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 261-289
    • Tasaki, T.1
  • 86
    • 85025816140 scopus 로고    scopus 로고
    • P62/sqstm1/sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis
    • Cha-Molstad, H., et al. P62/sqstm1/sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat. Commun., 8, 2017, 102.
    • (2017) Nat. Commun. , vol.8 , pp. 102
    • Cha-Molstad, H.1
  • 87
    • 84964483788 scopus 로고    scopus 로고
    • Modulation of sqstm1/p62 activity by N-terminal arginylation of the endoplasmic reticulum chaperone hspa5/grp78/bip
    • Cha-Molstad, H., et al. Modulation of sqstm1/p62 activity by N-terminal arginylation of the endoplasmic reticulum chaperone hspa5/grp78/bip. Autophagy 12 (2016), 426–428.
    • (2016) Autophagy , vol.12 , pp. 426-428
    • Cha-Molstad, H.1
  • 88
    • 84920892842 scopus 로고    scopus 로고
    • Usp8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin
    • Durcan, T.M., et al. Usp8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. EMBO J. 33 (2014), 2473–2491.
    • (2014) EMBO J. , vol.33 , pp. 2473-2491
    • Durcan, T.M.1
  • 89
    • 84923167247 scopus 로고    scopus 로고
    • Usp30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria
    • Cunningham, C.N., et al. Usp30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol. 17 (2015), 160–169.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 160-169
    • Cunningham, C.N.1
  • 90
    • 84899539731 scopus 로고    scopus 로고
    • Pink1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity
    • Kane, L.A., et al. Pink1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity. J. Cell Biol. 205 (2014), 143–153.
    • (2014) J. Cell Biol. , vol.205 , pp. 143-153
    • Kane, L.A.1
  • 91
    • 84899421556 scopus 로고    scopus 로고
    • Parkin is activated by pink1-dependent phosphorylation of ubiquitin at ser65
    • Kazlauskaite, A., et al. Parkin is activated by pink1-dependent phosphorylation of ubiquitin at ser65. Biochem. J. 460 (2014), 127–139.
    • (2014) Biochem. J. , vol.460 , pp. 127-139
    • Kazlauskaite, A.1
  • 92
    • 84963566230 scopus 로고    scopus 로고
    • Phosphorylation of optn by tbk1 enhances its binding to ub chains and promotes selective autophagy of damaged mitochondria
    • Richter, B., et al. Phosphorylation of optn by tbk1 enhances its binding to ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 4039–4044.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 4039-4044
    • Richter, B.1
  • 93
    • 84898624312 scopus 로고    scopus 로고
    • Self and nonself: how autophagy targets mitochondria and bacteria
    • Randow, F., Youle, R.J., Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 15 (2014), 403–411.
    • (2014) Cell Host Microbe , vol.15 , pp. 403-411
    • Randow, F.1    Youle, R.J.2
  • 94
    • 84903179483 scopus 로고    scopus 로고
    • The mitochondrial deubiquitinase usp30 opposes parkin-mediated mitophagy
    • Bingol, B., et al. The mitochondrial deubiquitinase usp30 opposes parkin-mediated mitophagy. Nature 510 (2014), 370–375.
    • (2014) Nature , vol.510 , pp. 370-375
    • Bingol, B.1
  • 95
    • 84928924502 scopus 로고    scopus 로고
    • Usp30 deubiquitylates mitochondrial parkin substrates and restricts apoptotic cell death
    • Liang, J.R., et al. Usp30 deubiquitylates mitochondrial parkin substrates and restricts apoptotic cell death. EMBO Rep. 16 (2015), 618–627.
    • (2015) EMBO Rep. , vol.16 , pp. 618-627
    • Liang, J.R.1
  • 97
    • 84864222562 scopus 로고    scopus 로고
    • Atypical ubiquitylation – the unexplored world of polyubiquitin beyond lys48 and lys63 linkages
    • Kulathu, Y., Komander, D., Atypical ubiquitylation – the unexplored world of polyubiquitin beyond lys48 and lys63 linkages. Nat. Rev. Mol. Cell Biol. 13 (2012), 508–523.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 508-523
    • Kulathu, Y.1    Komander, D.2
  • 98
    • 84920936909 scopus 로고    scopus 로고
    • Rnf168 promotes noncanonical K27 ubiquitination to signal DNA damage
    • Gatti, M., et al. Rnf168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep. 10 (2015), 226–238.
    • (2015) Cell Rep. , vol.10 , pp. 226-238
    • Gatti, M.1
  • 99
    • 84862761186 scopus 로고    scopus 로고
    • Diverse ubiquitin signaling in NF-kappaB activation
    • Iwai, K., Diverse ubiquitin signaling in NF-kappaB activation. Trends Cell Biol. 22 (2012), 355–364.
    • (2012) Trends Cell Biol. , vol.22 , pp. 355-364
    • Iwai, K.1
  • 100
    • 84904256742 scopus 로고    scopus 로고
    • Ubiquitylation of autophagy receptor optineurin by hace1 activates selective autophagy for tumor suppression
    • Liu, Z., et al. Ubiquitylation of autophagy receptor optineurin by hace1 activates selective autophagy for tumor suppression. Cancer Cell 26 (2014), 106–120.
    • (2014) Cancer Cell , vol.26 , pp. 106-120
    • Liu, Z.1
  • 101
    • 84918565372 scopus 로고    scopus 로고
    • The e3 ubiquitin ligase amfr and insig1 bridge the activation of tbk1 kinase by modifying the adaptor sting
    • Wang, Q., et al. The e3 ubiquitin ligase amfr and insig1 bridge the activation of tbk1 kinase by modifying the adaptor sting. Immunity 41 (2014), 919–933.
    • (2014) Immunity , vol.41 , pp. 919-933
    • Wang, Q.1
  • 102
    • 84900862275 scopus 로고    scopus 로고
    • Autoubiquitination of the 26S proteasome on rpn13 regulates breakdown of ubiquitin conjugates
    • Besche, H.C., et al. Autoubiquitination of the 26S proteasome on rpn13 regulates breakdown of ubiquitin conjugates. EMBO J. 33 (2014), 1159–1176.
    • (2014) EMBO J. , vol.33 , pp. 1159-1176
    • Besche, H.C.1
  • 103
    • 84955614434 scopus 로고    scopus 로고
    • Epigenetic regulation of the expression of IL12 and IL23 and autoimmune inflammation by the deubiquitinase trabid
    • Jin, J., et al. Epigenetic regulation of the expression of IL12 and IL23 and autoimmune inflammation by the deubiquitinase trabid. Nat. Immunol. 17 (2016), 259–268.
    • (2016) Nat. Immunol. , vol.17 , pp. 259-268
    • Jin, J.1
  • 104
    • 84886921317 scopus 로고    scopus 로고
    • Smurf1-mediated lys29-linked nonproteolytic polyubiquitination of axin negatively regulates wnt/beta-catenin signaling
    • Fei, C., et al. Smurf1-mediated lys29-linked nonproteolytic polyubiquitination of axin negatively regulates wnt/beta-catenin signaling. Mol. Cell. Biol. 33 (2013), 4095–4105.
    • (2013) Mol. Cell. Biol. , vol.33 , pp. 4095-4105
    • Fei, C.1
  • 105
    • 84876944067 scopus 로고    scopus 로고
    • Identification of a novel anti-apoptotic E3 ubiquitin ligase that ubiquitinates antagonists of inhibitor of apoptosis proteins smac, htra2, and arts
    • Kim, J.B., et al. Identification of a novel anti-apoptotic E3 ubiquitin ligase that ubiquitinates antagonists of inhibitor of apoptosis proteins smac, htra2, and arts. J. Biol. Chem. 288 (2013), 12014–12021.
    • (2013) J. Biol. Chem. , vol.288 , pp. 12014-12021
    • Kim, J.B.1
  • 106
    • 84901004245 scopus 로고    scopus 로고
    • K33-linked polyubiquitination of coronin 7 by cul3-klhl20 ubiquitin E3 ligase regulates protein trafficking
    • Yuan, W.C., et al. K33-linked polyubiquitination of coronin 7 by cul3-klhl20 ubiquitin E3 ligase regulates protein trafficking. Mol. Cell 54 (2014), 586–600.
    • (2014) Mol. Cell , vol.54 , pp. 586-600
    • Yuan, W.C.1
  • 107
    • 77954953473 scopus 로고    scopus 로고
    • K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling
    • Huang, H., et al. K33-linked polyubiquitination of T cell receptor-zeta regulates proteolysis-independent T cell signaling. Immunity 33 (2010), 60–70.
    • (2010) Immunity , vol.33 , pp. 60-70
    • Huang, H.1
  • 108
    • 84931031608 scopus 로고    scopus 로고
    • Roles of linear ubiquitinylation, a crucial regulator of NF-kappaB and cell death, in the immune system
    • Sasaki, K., Iwai, K., Roles of linear ubiquitinylation, a crucial regulator of NF-kappaB and cell death, in the immune system. Immunol. Rev. 266 (2015), 175–189.
    • (2015) Immunol. Rev. , vol.266 , pp. 175-189
    • Sasaki, K.1    Iwai, K.2
  • 109
    • 84905036773 scopus 로고    scopus 로고
    • Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond
    • Iwai, K., et al. Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond. Nat. Rev. Mol. Cell Biol. 15 (2014), 503–508.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 503-508
    • Iwai, K.1
  • 110
    • 84884345970 scopus 로고    scopus 로고
    • Activation of the canonical ikk complex by K63/M1-linked hybrid ubiquitin chains
    • Emmerich, C.H., et al. Activation of the canonical ikk complex by K63/M1-linked hybrid ubiquitin chains. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 15247–15252.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 15247-15252
    • Emmerich, C.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.