-
1
-
-
0023003380
-
In vivo half-life of a protein is a function of its aminoterminal residue
-
Bachmair A, Finley D, Varshavsky A. 1986. In vivo half-life of a protein is a function of its aminoterminal residue. Science 234:179-86
-
(1986)
Science
, vol.234
, pp. 179-186
-
-
Bachmair, A.1
Finley, D.2
Varshavsky, A.3
-
2
-
-
0025050840
-
The recognition component of the N-end rule pathway
-
Bartel B, Wunning I, Varshavsky A. 1990. The recognition component of the N-end rule pathway. EMBO J. 9:3179-89
-
(1990)
EMBO J.
, vol.9
, pp. 3179-3189
-
-
Bartel, B.1
Wunning, I.2
Varshavsky, A.3
-
3
-
-
0029861143
-
The N-end rule: Functions, mysteries, uses
-
Varshavsky A. 1996. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93:12142-49
-
(1996)
Proc. Natl. Acad. Sci. USA
, vol.93
, pp. 12142-12149
-
-
Varshavsky, A.1
-
4
-
-
35548974677
-
The mammalian N-end rule pathway: New insights into its components and physiological roles
-
Tasaki T, Kwon YT. 2007. The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem. Sci. 32:520-28
-
(2007)
Trends Biochem. Sci.
, vol.32
, pp. 520-528
-
-
Tasaki, T.1
Kwon, Y.T.2
-
5
-
-
77149120798
-
N-terminal acetylation of cellular proteins creates specific degradation signals
-
Hwang CS, Shemorry A, Varshavsky A. 2010. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973-77
-
(2010)
Science
, vol.327
, pp. 973-977
-
-
Hwang, C.S.1
Shemorry, A.2
Varshavsky, A.3
-
6
-
-
80054958053
-
The N-end rule pathway: Emerging functions and molecular principles of substrate recognition
-
Sriram SM, Kim BY, Kwon YT. 2011. The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12:735-47
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 735-747
-
-
Sriram, S.M.1
Kim, B.Y.2
Kwon, Y.T.3
-
7
-
-
77957768979
-
The molecular principles of N-end rule recognition
-
Sriram SM, Kwon YT. 2010. The molecular principles of N-end rule recognition. Nat. Struct. Mol. Biol. 17:1164-65
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1164-1165
-
-
Sriram, S.M.1
Kwon, Y.T.2
-
8
-
-
79960683356
-
The N-end rule pathway and regulation by proteolysis
-
Varshavsky A. 2011. The N-end rule pathway and regulation by proteolysis. Protein Sci. 20:1298-345
-
(2011)
Protein Sci.
, vol.20
, pp. 1298-1345
-
-
Varshavsky, A.1
-
9
-
-
0024474145
-
Universality and structure of the N-end rule
-
Gonda DK, Bachmair A, Wunning I, Tobias JW, Lane WS, Varshavsky A. 1989. Universality and structure of the N-end rule. J. Biol. Chem. 264:16700-12
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 16700-16712
-
-
Gonda, D.K.1
Bachmair, A.2
Wunning, I.3
Tobias, J.W.4
Lane, W.S.5
Varshavsky, A.6
-
10
-
-
69449087350
-
The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development
-
Graciet E, Walter F, Maoilidigh DO, Pollmann S, Meyerowitz EM, et al. 2009. The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development. Proc. Natl. Acad. Sci. USA 106:13618-23
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 13618-13623
-
-
Graciet, E.1
Walter, F.2
Maoilidigh, D.O.3
Pollmann, S.4
Meyerowitz, E.M.5
-
11
-
-
0032493356
-
PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway
-
Potuschak T, Stary S, Schlogelhofer P, Becker F, Nejinskaia V, Bachmair A. 1998. PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc. Natl. Acad. Sci. USA 95:7904-8
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 7904-7908
-
-
Potuschak, T.1
Stary, S.2
Schlogelhofer, P.3
Becker, F.4
Nejinskaia, V.5
Bachmair, A.6
-
13
-
-
77951567636
-
The bacterial N-end rule pathway: Expect the unexpected
-
Dougan DA, Truscott KN, Zeth K. 2010. The bacterial N-end rule pathway: expect the unexpected. Mol. Microbiol. 76:545-58
-
(2010)
Mol. Microbiol.
, vol.76
, pp. 545-558
-
-
Dougan, D.A.1
Truscott, K.N.2
Zeth, K.3
-
14
-
-
77955268037
-
The plant N-end rule pathway: Structure and functions
-
Graciet E, Wellmer F. 2010. The plant N-end rule pathway: structure and functions. Trends Plant Sci. 15:447-53
-
(2010)
Trends Plant Sci.
, vol.15
, pp. 447-453
-
-
Graciet, E.1
Wellmer, F.2
-
15
-
-
0025272837
-
Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae
-
Balzi E, Choder M, ChenWN, Varshavsky A, Goffeau A. 1990. Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J. Biol. Chem. 265:7464-71
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 7464-7471
-
-
Balzi, E.1
Choder, M.2
Chen, W.N.3
Varshavsky, A.4
Goffeau, A.5
-
16
-
-
33644786997
-
Aminoacyl-transferases and the N-end rule pathway of prokaryotic/ eukaryotic specificity in a human pathogen
-
Graciet E, Hu RG, Piatkov K, Rhee JH, Schwarz EM, Varshavsky A. 2006. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Proc. Natl. Acad. Sci. USA 103:3078-83
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 3078-3083
-
-
Graciet, E.1
Hu, R.G.2
Piatkov, K.3
Rhee, J.H.4
Schwarz, E.M.5
Varshavsky, A.6
-
17
-
-
50549200098
-
A soluble amino acid-incorporating system from rat liver
-
Kaji H, Novelli GD, Kaji A. 1963. A soluble amino acid-incorporating system from rat liver. Biochim. Biophys. Acta 76:474-77
-
(1963)
Biochim. Biophys. Acta
, vol.76
, pp. 474-477
-
-
Kaji, H.1
Novelli, G.D.2
Kaji, A.3
-
18
-
-
0001602527
-
Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway
-
Kwon YT, Kashina AS, Varshavsky A. 1999. Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Mol. Cell. Biol. 19:182-93
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 182-193
-
-
Kwon, Y.T.1
Kashina, A.S.2
Varshavsky, A.3
-
19
-
-
0027255191
-
The N-end rule in Escherichia coli: Cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat
-
Shrader TE, Tobias JW, Varshavsky A. 1993. The N-end rule in Escherichia coli: cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat. J. Bacteriol. 175:4364-74
-
(1993)
J. Bacteriol.
, vol.175
, pp. 4364-4374
-
-
Shrader, T.E.1
Tobias, J.W.2
Varshavsky, A.3
-
20
-
-
77957805791
-
Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases
-
Choi WS, Jeong BC, Joo YJ, LeeMR, Kim J, et al. 2010. Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat. Struct. Mol. Biol. 17:1175-81
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1175-1181
-
-
Choi, W.S.1
Jeong, B.C.2
Joo, Y.J.3
Lee, M.R.4
Kim, J.5
-
21
-
-
77957790301
-
Structural basis of substrate recognition and specificity in the N-end rule pathway
-
Matta-Camacho E, Kozlov G, Li FF, Gehring K. 2010. Structural basis of substrate recognition and specificity in the N-end rule pathway. Nat. Struct. Mol. Biol. 17:1182-87
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1182-1187
-
-
Matta-Camacho, E.1
Kozlov, G.2
Li, F.F.3
Gehring, K.4
-
22
-
-
0023808721
-
Purification and characterization of arginyl-tRNA-protein transferase from rabbit reticulocytes.Its involvement in post-translational modification and degradation of acidic NH2 termini substrates of the ubiquitin pathway
-
Ciechanover A, Ferber S, Ganoth D, Elias S, Hershko A, Arfin S. 1988. Purification and characterization of arginyl-tRNA-protein transferase from rabbit reticulocytes. Its involvement in post-translational modification and degradation of acidic NH2 termini substrates of the ubiquitin pathway. J. Biol. Chem. 263:11155-67
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 11155-11167
-
-
Ciechanover, A.1
Ferber, S.2
Ganoth, D.3
Elias, S.4
Hershko, A.5
Arfin, S.6
-
23
-
-
0014352172
-
Further studies on the soluble amino acid incorporating system from rat liver
-
Kaji H. 1968. Further studies on the soluble amino acid incorporating system from rat liver. Biochemistry 7:3844-50
-
(1968)
Biochemistry
, vol.7
, pp. 3844-3850
-
-
Kaji, H.1
-
24
-
-
0037025163
-
An essential role of N-terminal arginylation in cardiovascular development
-
Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, et al. 2002. An essential role of N-terminal arginylation in cardiovascular development. Science 297:96-99
-
(2002)
Science
, vol.297
, pp. 96-99
-
-
Kwon, Y.T.1
Kashina, A.S.2
Davydov, I.V.3
Hu, R.G.4
An, J.Y.5
-
25
-
-
0014674856
-
Enzymic modification of proteins. I. General characteristics of the arginine-transfer reaction in rabbit liver cytoplasm
-
Soffer RL, Horinishi H. 1969. Enzymic modification of proteins. I. General characteristics of the arginine-transfer reaction in rabbit liver cytoplasm. J. Mol. Biol. 43:163-75
-
(1969)
J. Mol. Biol.
, vol.43
, pp. 163-175
-
-
Soffer, R.L.1
Horinishi, H.2
-
26
-
-
33845953070
-
Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms
-
Hu RG, Brower CS, Wang H, Davydov IV, Sheng J, et al. 2006. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. J. Biol. Chem. 281:32559-73
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 32559-32573
-
-
Hu, R.G.1
Brower, C.S.2
Wang, H.3
Davydov, I.V.4
Sheng, J.5
-
27
-
-
22544484457
-
Identification of mammalian arginyltransferases that modify a specific subset of protein substrates
-
Rai R, Kashina A. 2005. Identification of mammalian arginyltransferases that modify a specific subset of protein substrates. Proc. Natl. Acad. Sci. USA 102:10123-28
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 10123-10128
-
-
Rai, R.1
Kashina, A.2
-
28
-
-
0034725661
-
RGS4 is arginylated and degraded by the N-end rule pathway in vitro
-
Davydov IV, Varshavsky A. 2000. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J. Biol. Chem. 275:22931-41
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 22931-22941
-
-
Davydov, I.V.1
Varshavsky, A.2
-
29
-
-
27144557281
-
The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators
-
Hu RG, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A. 2005. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437:981-86
-
(2005)
Nature
, vol.437
, pp. 981-986
-
-
Hu, R.G.1
Sheng, J.2
Qi, X.3
Xu, Z.4
Takahashi, T.T.5
Varshavsky, A.6
-
30
-
-
27244444724
-
RGS4 and RGS5 are in vivo substrates of the N-end rule pathway
-
Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, et al. 2005. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 102:15030-35
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 15030-15035
-
-
Lee, M.J.1
Tasaki, T.2
Moroi, K.3
An, J.Y.4
Kimura, S.5
-
31
-
-
81555213588
-
Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants
-
Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, et al. 2011. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature 479:415-18
-
(2011)
Nature
, vol.479
, pp. 415-418
-
-
Gibbs, D.J.1
Lee, S.C.2
Isa, N.M.3
Gramuglia, S.4
Fukao, T.5
-
32
-
-
81555214009
-
Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization
-
Licausi F, Kosmacz M, Weits DA, Giuntoli B, Giorgi FM, et al. 2011. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature 479:419-22
-
(2011)
Nature
, vol.479
, pp. 419-422
-
-
Licausi, F.1
Kosmacz, M.2
Weits, D.A.3
Giuntoli, B.4
Giorgi, F.M.5
-
33
-
-
77954496121
-
The arginylation-dependent association of calreticulin with stress granules is regulated by calcium
-
Carpio MA, Lopez Sambrooks C, Durand ES, Hallak ME. 2010. The arginylation-dependent association of calreticulin with stress granules is regulated by calcium. Biochem. J. 429:63-72
-
(2010)
Biochem. J.
, vol.429
, pp. 63-72
-
-
Carpio, M.A.1
Lopez Sambrooks, C.2
Durand, E.S.3
Hallak, M.E.4
-
34
-
-
81155162510
-
Posttranslational arginylation as a global biological regulator
-
Saha S, Kashina A. 2011. Posttranslational arginylation as a global biological regulator. Dev. Biol. 358:1-8
-
(2011)
Dev. Biol.
, vol.358
, pp. 1-8
-
-
Saha, S.1
Kashina, A.2
-
35
-
-
79251568327
-
Arginyltransferase is an ATP-independent selfregulating enzyme that forms distinct functional complexes in vivo
-
Wang J, Han X, Saha S, Xu T, Rai R, et al. 2011. Arginyltransferase is an ATP-independent selfregulating enzyme that forms distinct functional complexes in vivo. Chem. Biol. 18:121-30
-
(2011)
Chem. Biol.
, vol.18
, pp. 121-130
-
-
Wang, J.1
Han, X.2
Saha, S.3
Xu, T.4
Rai, R.5
-
36
-
-
70649088959
-
Ablation of arginylation in the mouse N-end rule pathway: Loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations
-
Brower CS, Varshavsky A. 2009. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS ONE 4:e7757
-
(2009)
PLoS ONE
, vol.4
-
-
Brower, C.S.1
Varshavsky, A.2
-
37
-
-
77950374827
-
Arginylation-dependent neural crest cell migration is essential for mouse development
-
Kurosaka S, Leu NA, Zhang F, Bunte R, Saha S, et al. 2010. Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet. 6:e1000878
-
(2010)
PLoS Genet.
, vol.6
-
-
Kurosaka, S.1
Leu, N.A.2
Zhang, F.3
Bunte, R.4
Saha, S.5
-
38
-
-
0036795587
-
A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis
-
Yoshida S, Ito M, Callis J, Nishida I, Watanabe A. 2002. A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J. 32:129-37
-
(2002)
Plant J.
, vol.32
, pp. 129-137
-
-
Yoshida, S.1
Ito, M.2
Callis, J.3
Nishida, I.4
Watanabe, A.5
-
39
-
-
0032883802
-
The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes
-
Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, et al. 1999. The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153:135-77
-
(1999)
Genetics
, vol.153
, pp. 135-177
-
-
Spradling, A.C.1
Stern, D.2
Beaton, A.3
Rhem, E.J.4
Laverty, T.5
-
40
-
-
0015218619
-
Enzymatic modification of proteins. VII. Substrate specificity of leucyl, phenylalanyl-transfer ribonucleic acid-protein transferase
-
LeibowitzMJ, Soffer RL. 1971. Enzymatic modification of proteins. VII. Substrate specificity of leucyl, phenylalanyl-transfer ribonucleic acid-protein transferase. J. Biol. Chem. 246:5207-12
-
(1971)
J. Biol. Chem.
, vol.246
, pp. 5207-5212
-
-
Leibowitz, M.J.1
Soffer, R.L.2
-
41
-
-
35348938968
-
Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase
-
Watanabe K, Toh Y, Suto K, Shimizu Y, Oka N, et al. 2007. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449:867-71
-
(2007)
Nature
, vol.449
, pp. 867-871
-
-
Watanabe, K.1
Toh, Y.2
Suto, K.3
Shimizu, Y.4
Oka, N.5
-
42
-
-
67649552963
-
Modification of PATase by L/Ftransferase generates a ClpS-dependent N-end rule substrate in Escherichia coli
-
Ninnis RL, Spall SK, Talbo GH, Truscott KN, Dougan DA. 2009. Modification of PATase by L/Ftransferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J. 28:1732-44
-
(2009)
EMBO J.
, vol.28
, pp. 1732-1744
-
-
Ninnis, R.L.1
Spall, S.K.2
Talbo, G.H.3
Truscott, K.N.4
Dougan, D.A.5
-
43
-
-
1842485068
-
Spalog' and 'sequelog' neutral terms for spatial and sequence similarity
-
Varshavsky A. 2004. 'Spalog' and 'sequelog': neutral terms for spatial and sequence similarity. Curr. Biol. 14:R181-83
-
(2004)
Curr. Biol.
, vol.14
-
-
Varshavsky, A.1
-
44
-
-
33747754168
-
Molecular dissection of arginyltransferases guided by similarity to bacterial peptidoglycan synthases
-
Rai R, Mushegian A, Makarova K, Kashina A. 2006. Molecular dissection of arginyltransferases guided by similarity to bacterial peptidoglycan synthases. EMBO Rep. 7:800-5
-
(2006)
EMBO Rep.
, vol.7
, pp. 800-805
-
-
Rai, R.1
Mushegian, A.2
Makarova, K.3
Kashina, A.4
-
45
-
-
33845706511
-
Crystal structures of leucyl/phenylalanyltRNA-protein transferase and its complex with an aminoacyl-tRNA analog
-
Suto K, Shimizu Y, Watanabe K, Ueda T, Fukai S, et al. 2006. Crystal structures of leucyl/phenylalanyltRNA-protein transferase and its complex with an aminoacyl-tRNA analog. EMBO J. 25:5942-50
-
(2006)
EMBO J.
, vol.25
, pp. 5942-5950
-
-
Suto, K.1
Shimizu, Y.2
Watanabe, K.3
Ueda, T.4
Fukai, S.5
-
46
-
-
0029016564
-
Yeast N-terminal amidase. A new enzyme and component of the N-end rule pathway
-
Baker RT, Varshavsky A. 1995. Yeast N-terminal amidase. A new enzyme and component of the N-end rule pathway. J. Biol. Chem. 270:12065-74
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 12065-12074
-
-
Baker, R.T.1
Varshavsky, A.2
-
47
-
-
0029905594
-
A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway
-
Grigoryev S, Stewart AE, Kwon YT, Arfin SM, Bradshaw RA, et al. 1996. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J. Biol. Chem. 271:28521-32
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 28521-28532
-
-
Grigoryev, S.1
Stewart, A.E.2
Kwon, Y.T.3
Arfin, S.M.4
Bradshaw, R.A.5
-
48
-
-
67449146916
-
Glutamine-specific N-terminal amidase, a component of the N-end rule pathway
-
Wang H, Piatkov KI, Brower CS, Varshavsky A. 2009. Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol. Cell 34:686-95
-
(2009)
Mol. Cell
, vol.34
, pp. 686-695
-
-
Wang, H.1
Piatkov, K.I.2
Brower, C.S.3
Varshavsky, A.4
-
49
-
-
79953699678
-
Expression and biochemical characterization of the human enzyme N-terminal asparagine amidohydrolase
-
Cantor JR, Stone EM, Georgiou G. 2011. Expression and biochemical characterization of the human enzyme N-terminal asparagine amidohydrolase. Biochemistry 50:3025-33
-
(2011)
Biochemistry
, vol.50
, pp. 3025-3033
-
-
Cantor, J.R.1
Stone, E.M.2
Georgiou, G.3
-
50
-
-
0001687306
-
Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway
-
Kwon YT, Balogh SA, Davydov IV, Kashina AS, Yoon JK, et al. 2000. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Mol. Cell. Biol. 20:4135-48
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 4135-4148
-
-
Kwon, Y.T.1
Balogh, S.A.2
Davydov, I.V.3
Kashina, A.S.4
Yoon, J.K.5
-
51
-
-
0033793995
-
Varying intertrial interval reveals temporally defined memory deficits and enhancements in NTAN1-deficient mice
-
Balogh SA, Kwon YT, Denenberg VH. 2000. Varying intertrial interval reveals temporally defined memory deficits and enhancements in NTAN1-deficient mice. Learn. Mem. 7:279-86
-
(2000)
Learn. Mem.
, vol.7
, pp. 279-286
-
-
Balogh, S.A.1
Kwon, Y.T.2
Denenberg, V.H.3
-
52
-
-
0035936959
-
Facilitated stimulus-response associative learning and long-term memory in mice lacking the NTAN1 amidase of the N-end rule pathway
-
Balogh SA, McDowell CS, Kwon YT, Denenberg VH. 2001. Facilitated stimulus-response associative learning and long-term memory in mice lacking the NTAN1 amidase of the N-end rule pathway. Brain Res. 892:336-43
-
(2001)
Brain Res.
, vol.892
, pp. 336-343
-
-
Balogh, S.A.1
McDowell, C.S.2
Kwon, Y.T.3
Denenberg, V.H.4
-
53
-
-
33746364222
-
The magnetism responsive gene Ntan1 in mouse brain
-
Goto Y, Taniura H, Yamada K, Hirai T, Sanada N, et al. 2006. The magnetism responsive gene Ntan1 in mouse brain. Neurochem. Int. 49:334-41
-
(2006)
Neurochem. Int.
, vol.49
, pp. 334-341
-
-
Goto, Y.1
Taniura, H.2
Yamada, K.3
Hirai, T.4
Sanada, N.5
-
54
-
-
33644803656
-
Stimulation of ubiquitin-proteasome pathway through the expression of amidohydrolase for N-terminal asparagine (Ntan1) in cultured rat hippocampal neurons exposed to static magnetism
-
Hirai T, Taniura H, Goto Y, OguraM, Sng JC, Yoneda Y. 2006. Stimulation of ubiquitin-proteasome pathway through the expression of amidohydrolase for N-terminal asparagine (Ntan1) in cultured rat hippocampal neurons exposed to static magnetism. J. Neurochem. 96:1519-30
-
(2006)
J. Neurochem.
, vol.96
, pp. 1519-1530
-
-
Hirai, T.1
Taniura, H.2
Goto, Y.3
Ogura, M.4
Sng, J.C.5
Yoneda, Y.6
-
55
-
-
0028291204
-
Transglutaminase factor XIII uses proteinase-like catalytic triad to crosslink macromolecules
-
Pedersen LC, Yee VC, Bishop PD, Le Trong I, Teller DC, Stenkamp RE. 1994. Transglutaminase factor XIII uses proteinase-like catalytic triad to crosslink macromolecules. Protein Sci. 3:1131-35
-
(1994)
Protein Sci.
, vol.3
, pp. 1131-1135
-
-
Pedersen, L.C.1
Yee, V.C.2
Bishop, P.D.3
Le Trong, I.4
Teller, D.C.5
Stenkamp, R.E.6
-
56
-
-
55949118522
-
Inactivation of effector caspases through nondegradative polyubiquitylation
-
Ditzel M, BroemerM, Tenev T, Bolduc C, LeeTV, et al. 2008. Inactivation of effector caspases through nondegradative polyubiquitylation. Mol. Cell 32:540-53
-
(2008)
Mol. Cell
, vol.32
, pp. 540-553
-
-
Ditzel, M.1
Broemer, M.2
Tenev, T.3
Bolduc, C.4
Lee, T.V.5
-
57
-
-
0037936841
-
Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis
-
Ditzel M, Wilson R, Tenev T, Zachariou A, Paul A, et al. 2003. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat. Cell Biol. 5:467-73
-
(2003)
Nat. Cell Biol.
, vol.5
, pp. 467-473
-
-
Ditzel, M.1
Wilson, R.2
Tenev, T.3
Zachariou, A.4
Paul, A.5
-
58
-
-
33947384611
-
Regulation of the Drosophila ubiquitin ligase DIAP1 is mediated via several distinct ubiquitin system pathways
-
Herman-BachinskyY, RyooHD, Ciechanover A, GonenH. 2007. Regulation of the Drosophila ubiquitin ligase DIAP1 is mediated via several distinct ubiquitin system pathways. Cell Death Differ. 14:861-71
-
(2007)
Cell Death Differ.
, vol.14
, pp. 861-871
-
-
Herman-Bachinsky, Y.1
Ryoo, H.D.2
Ciechanover, A.3
Gonen, H.4
-
59
-
-
34248999834
-
The antiapoptotic activity of insect IAPs requires activation by an evolutionarily conserved mechanism
-
Tenev T, Ditzel M, Zachariou A, Meier P. 2007. The antiapoptotic activity of insect IAPs requires activation by an evolutionarily conserved mechanism. Cell Death Differ. 14:1191-201
-
(2007)
Cell Death Differ.
, vol.14
, pp. 1191-1201
-
-
Tenev, T.1
Ditzel, M.2
Zachariou, A.3
Meier, P.4
-
60
-
-
2342617566
-
Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim
-
Yan N, Wu JW, Chai J, Li W, Shi Y. 2004. Molecular mechanisms of DrICE inhibition by DIAP1 and removal of inhibition by Reaper, Hid and Grim. Nat. Struct. Mol. Biol. 11:420-28
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 420-428
-
-
Yan, N.1
Wu, J.W.2
Chai, J.3
Li, W.4
Shi, Y.5
-
61
-
-
71449089622
-
A synopsis of eukaryotic Nalpha-terminal acetyltransferases: Nomenclature, subunits and substrates
-
Polevoda B, Arnesen T, Sherman F. 2009. A synopsis of eukaryotic Nalpha-terminal acetyltransferases: nomenclature, subunits and substrates. BMC Proc. 3(Suppl. 6):S2
-
(2009)
BMC Proc.
, vol.3
, Issue.SUPPL. 6
-
-
Polevoda, B.1
Arnesen, T.2
Sherman, F.3
-
63
-
-
0037462954
-
N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins
-
Polevoda B, Sherman F. 2003. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol. 325:595-622
-
(2003)
J. Mol. Biol.
, vol.325
, pp. 595-622
-
-
Polevoda, B.1
Sherman, F.2
-
64
-
-
0034711184
-
Nalpha-terminal acetylation of eukaryotic proteins
-
Polevoda B, Sherman F. 2000. Nalpha-terminal acetylation of eukaryotic proteins. J. Biol. Chem. 275:36479-82
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 36479-36482
-
-
Polevoda, B.1
Sherman, F.2
-
65
-
-
23344452833
-
A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons
-
Tasaki T, Mulder LC, Iwamatsu A, Lee MJ, Davydov IV, et al. 2005. A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons. Mol. Cell. Biol. 25:7120-36
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 7120-7136
-
-
Tasaki, T.1
Mulder, L.C.2
Iwamatsu, A.3
Lee, M.J.4
Davydov, I.V.5
-
66
-
-
59449093066
-
The substrate recognition domains of the N-end rule pathway
-
Tasaki T, Zakrzewska A, Dudgeon DD, Jiang Y, Lazo JS, Kwon YT. 2009. The substrate recognition domains of the N-end rule pathway. J. Biol. Chem. 284:1884-95
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 1884-1895
-
-
Tasaki, T.1
Zakrzewska, A.2
Dudgeon, D.D.3
Jiang, Y.4
Lazo, J.S.5
Kwon, Y.T.6
-
67
-
-
53049096418
-
Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway
-
Xia Z, Webster A, Du F, Piatkov K, Ghislain M, Varshavsky A. 2008. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J. Biol. Chem. 283:24011-28
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 24011-24028
-
-
Xia, Z.1
Webster, A.2
Du, F.3
Piatkov, K.4
Ghislain, M.5
Varshavsky, A.6
-
68
-
-
0032493449
-
The mouse and human genes encoding the recognition component of the N-end rule pathway
-
Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK, et al. 1998. The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 95:7898-903
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 7898-7903
-
-
Kwon, Y.T.1
Reiss, Y.2
Fried, V.A.3
Hershko, A.4
Yoon, J.K.5
-
69
-
-
32544432878
-
ClpS is an essential component of the N-end rule pathway in Escherichia coli
-
Erbse A, Schmidt R, Bornemann T, Schneider-Mergener J, Mogk A, et al. 2006. ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439:753-56
-
(2006)
Nature
, vol.439
, pp. 753-756
-
-
Erbse, A.1
Schmidt, R.2
Bornemann, T.3
Schneider-Mergener, J.4
Mogk, A.5
-
70
-
-
0035912183
-
Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability
-
Rao H, Uhlmann F, Nasmyth K, Varshavsky A. 2001. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410:955-59
-
(2001)
Nature
, vol.410
, pp. 955-959
-
-
Rao, H.1
Uhlmann, F.2
Nasmyth, K.3
Varshavsky, A.4
-
71
-
-
0032472322
-
The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor
-
Byrd C, Turner GC, Varshavsky A. 1998. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 17:269-77
-
(1998)
EMBO J.
, vol.17
, pp. 269-277
-
-
Byrd, C.1
Turner, G.C.2
Varshavsky, A.3
-
72
-
-
0037195103
-
Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain
-
Du F, Navarro-Garcia F, Xia Z, Tasaki T, Varshavsky A. 2002. Pairs of dipeptides synergistically activate the binding of substrate by ubiquitin ligase through dissociation of its autoinhibitory domain. Proc. Natl. Acad. Sci. USA 99:14110-15
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 14110-14115
-
-
Du, F.1
Navarro-Garcia, F.2
Xia, Z.3
Tasaki, T.4
Varshavsky, A.5
-
73
-
-
0034213352
-
Peptides accelerate their uptake by activating a ubiquitindependent proteolytic pathway
-
Turner GC, Du F, Varshavsky A. 2000. Peptides accelerate their uptake by activating a ubiquitindependent proteolytic pathway. Nature 405:579-83
-
(2000)
Nature
, vol.405
, pp. 579-583
-
-
Turner, G.C.1
Du, F.2
Varshavsky, A.3
-
74
-
-
0028169361
-
Degradation of Gαby the N-end rule pathway
-
Madura K, Varshavsky A. 1994. Degradation of Gαby the N-end rule pathway. Science 265:1454-58
-
(1994)
Science
, vol.265
, pp. 1454-1458
-
-
Madura, K.1
Varshavsky, A.2
-
75
-
-
60549096291
-
Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase
-
Hwang CS, Shemorry A, Varshavsky A. 2009. Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase. Proc. Natl. Acad. Sci. USA 106:2142-47
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 2142-2147
-
-
Hwang, C.S.1
Shemorry, A.2
Varshavsky, A.3
-
76
-
-
57049182407
-
Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1
-
Eisele F, Wolf DH. 2008. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 582:4143-46
-
(2008)
FEBS Lett.
, vol.582
, pp. 4143-4146
-
-
Eisele, F.1
Wolf, D.H.2
-
77
-
-
75749101057
-
Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1
-
Heck JW, Cheung SK, Hampton RY. 2010. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl. Acad. Sci. USA 107:1106-11
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 1106-1111
-
-
Heck, J.W.1
Cheung, S.K.2
Hampton, R.Y.3
-
78
-
-
78649894111
-
The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases
-
Hwang CS, Shemorry A, Auerbach D, Varshavsky A. 2010. The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nat. Cell Biol. 12:1177-85
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 1177-1185
-
-
Hwang, C.S.1
Shemorry, A.2
Auerbach, D.3
Varshavsky, A.4
-
79
-
-
0029119522
-
A proteolytic pathway that recognizes ubiquitin as a degradation signal
-
Johnson ES, Ma PC, Ota IM, Varshavsky A. 1995. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270:17442-56
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 17442-17456
-
-
Johnson, E.S.1
Ma, P.C.2
Ota, I.M.3
Varshavsky, A.4
-
80
-
-
0035166684
-
Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3α) of the N-end rule pathway
-
Kwon YT, Xia Z, Davydov IV, Lecker SH, Varshavsky A. 2001. Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3α) of the N-end rule pathway. Mol. Cell. Biol. 21:8007-21
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 8007-8021
-
-
Kwon, Y.T.1
Xia, Z.2
Davydov, I.V.3
Lecker, S.H.4
Varshavsky, A.5
-
82
-
-
28444458475
-
Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation ( Johanson-Blizzard syndrome)
-
Zenker M, Mayerle J, Lerch MM, Tagariello A, Zerres K, et al. 2005. Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation ( Johanson-Blizzard syndrome). Nat. Genet. 37:1345-50
-
(2005)
Nat. Genet.
, vol.37
, pp. 1345-1350
-
-
Zenker, M.1
Mayerle, J.2
Lerch, M.M.3
Tagariello, A.4
Zerres, K.5
-
83
-
-
78951484743
-
Novel UBR1 gene mutation in a patient with typical phenotype of Johanson-Blizzard syndrome
-
Fallahi GH, Sabbaghian M, Khalili M, Parvaneh N, Zenker M, Rezaei N. 2011. Novel UBR1 gene mutation in a patient with typical phenotype of Johanson-Blizzard syndrome. Eur. J. Pediatr. 170:233-35
-
(2011)
Eur. J. Pediatr.
, vol.170
, pp. 233-235
-
-
Fallahi, G.H.1
Sabbaghian, M.2
Khalili, M.3
Parvaneh, N.4
Zenker, M.5
Rezaei, N.6
-
84
-
-
0242664014
-
Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway
-
Kwon YT, Xia Z, An JY, Tasaki T, Davydov IV, et al. 2003. Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol. Cell. Biol. 23:8255-71
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8255-8271
-
-
Kwon, Y.T.1
Xia, Z.2
An, J.Y.3
Tasaki, T.4
Davydov, I.V.5
-
85
-
-
76649112438
-
UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination
-
An JY, Kim EA, Jiang Y, Zakrzewska A, Kim DE, et al. 2010. UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc. Natl. Acad. Sci. USA 107:1912-17
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 1912-1917
-
-
An, J.Y.1
Kim, E.A.2
Jiang, Y.3
Zakrzewska, A.4
Kim, D.E.5
-
86
-
-
33646573377
-
Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway
-
An JY, Seo JW, Tasaki T, Lee MJ, Varshavsky A, Kwon YT. 2006. Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 103:6212-17
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 6212-6217
-
-
An, J.Y.1
Seo, J.W.2
Tasaki, T.3
Lee, M.J.4
Varshavsky, A.5
Kwon, Y.T.6
-
87
-
-
27244439064
-
P600, a unique protein required for membrane morphogenesis and cell survival
-
Nakatani Y, KonishiH, Vassilev A, KurookaH, Ishiguro K, et al. 2005. p600, a unique protein required for membrane morphogenesis and cell survival. Proc. Natl. Acad. Sci. USA 102:15093-98
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 15093-15098
-
-
Nakatani, Y.1
Konishi, H.2
Vassilev, A.3
Kurooka, H.4
Ishiguro, K.5
-
89
-
-
23844456912
-
Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600
-
Huh KW, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Munger K. 2005. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc. Natl. Acad. Sci. USA 102:11492-97
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 11492-11497
-
-
Huh, K.W.1
Demasi, J.2
Ogawa, H.3
Nakatani, Y.4
Howley, P.M.5
Munger, K.6
-
90
-
-
43649101921
-
Protein 600 is a microtubule/endoplasmic reticulum-associated protein in CNS neurons
-
Shim SY, Wang J, Asada N, Neumayer G, Tran HC, et al. 2008. Protein 600 is a microtubule/endoplasmic reticulum-associated protein in CNS neurons. J. Neurosci. 28:3604-14
-
(2008)
J. Neurosci.
, vol.28
, pp. 3604-3614
-
-
Shim, S.Y.1
Wang, J.2
Asada, N.3
Neumayer, G.4
Tran, H.C.5
-
91
-
-
3543004088
-
Edd, the murine hyperplastic disc gene, is essential for yolk sac vascularization and chorioallantoic fusion
-
Saunders DN, Hird SL, Withington SL, Dunwoodie SL, Henderson MJ, et al. 2004. Edd, the murine hyperplastic disc gene, is essential for yolk sac vascularization and chorioallantoic fusion. Mol. Cell. Biol. 24:7225-34
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 7225-7234
-
-
Saunders, D.N.1
Hird, S.L.2
Withington, S.L.3
Dunwoodie, S.L.4
Henderson, M.J.5
-
92
-
-
0036479328
-
Cooperation of HECT-domain ubiquitin ligase hHYD and DNA topoisomerase II-binding protein for DNA damage response
-
Honda Y, Tojo M, Matsuzaki K, Anan T, Matsumoto M, et al. 2002. Cooperation of HECT-domain ubiquitin ligase hHYD and DNA topoisomerase II-binding protein for DNA damage response. J. Biol. Chem. 277:3599-605
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 3599-3605
-
-
Honda, Y.1
Tojo, M.2
Matsuzaki, K.3
Anan, T.4
Matsumoto, M.5
-
93
-
-
33646566338
-
Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2
-
Yoshida M, Yoshida K, Kozlov G, Lim NS, De Crescenzo G, et al. 2006. Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2. EMBO J. 25:1934-44
-
(2006)
EMBO J.
, vol.25
, pp. 1934-1944
-
-
Yoshida, M.1
Yoshida, K.2
Kozlov, G.3
Lim, N.S.4
De Crescenzo, G.5
-
94
-
-
79953152680
-
Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B
-
Cojocaru M, Bouchard A, Cloutier P, Cooper JJ, Varzavand K, et al. 2011. Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B. J. Biol. Chem. 286:5012-22
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 5012-5022
-
-
Cojocaru, M.1
Bouchard, A.2
Cloutier, P.3
Cooper, J.J.4
Varzavand, K.5
-
95
-
-
79955394867
-
ED Dinhibits ATM-mediated phosphorylation of p53
-
Ling S, LinWC. 2011.EDDinhibits ATM-mediated phosphorylation of p53. J. Biol. Chem. 286:14972-82
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 14972-14982
-
-
Ling, S.1
Lin, W.C.2
-
96
-
-
0037135579
-
EDD, the human hyperplastic discs protein, has a role in progesterone receptor coactivation and potential involvement in DNA damage response
-
HendersonMJ, Russell AJ, Hird S, Mũ nozM, Clancy JL, et al. 2002. EDD, the human hyperplastic discs protein, has a role in progesterone receptor coactivation and potential involvement in DNA damage response. J. Biol. Chem. 277:26468-78
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 26468-26478
-
-
Henderson, M.J.1
Russell, A.J.2
Hird, S.3
Mũnoz, M.4
Clancy, J.L.5
-
97
-
-
0344530352
-
PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues
-
Stary S, Yin XJ, Potuschak T, Schlogelhofer P, Nizhynska V, Bachmair A. 2003. PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues. Plant Physiol. 133:1360-66
-
(2003)
Plant Physiol.
, vol.133
, pp. 1360-1366
-
-
Stary, S.1
Yin, X.J.2
Potuschak, T.3
Schlogelhofer, P.4
Nizhynska, V.5
Bachmair, A.6
-
98
-
-
34250890107
-
PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus
-
Garzn M, EiflerK, Faust A, Scheel H, HofmannK, et al. 2007. PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus. FEBS Lett. 581:3189-96
-
(2007)
FEBS Lett.
, vol.581
, pp. 3189-3196
-
-
Garzn, M.1
Eiflerk Faust, A.2
Hofmannk, S.H.3
-
99
-
-
33845993905
-
The proteomics of N-terminal methionine cleavage
-
Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, et al. 2006. The proteomics of N-terminal methionine cleavage. Mol. Cell Proteomics 5:2336-49
-
(2006)
Mol. Cell Proteomics
, vol.5
, pp. 2336-2349
-
-
Frottin, F.1
Martinez, A.2
Peynot, P.3
Mitra, S.4
Holz, R.C.5
-
100
-
-
0035887277
-
A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated andMatalpha2 repressor degradation
-
Swanson R, Locher M, Hochstrasser M. 2001. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated andMatalpha2 repressor degradation. Genes. Dev. 15:2660-74
-
(2001)
Genes. Dev.
, vol.15
, pp. 2660-2674
-
-
Swanson, R.1
Locher, M.2
Hochstrasser, M.3
-
101
-
-
64149130398
-
ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway
-
Schmidt R, Zahn R, Bukau B, Mogk A. 2009. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol. Microbiol. 72:506-17
-
(2009)
Mol. Microbiol.
, vol.72
, pp. 506-517
-
-
Schmidt, R.1
Zahn, R.2
Bukau, B.3
Mogk, A.4
-
102
-
-
67349099562
-
Structural basis ofN-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS
-
Schuenemann VJ, Kralik SM, Albrecht R, Spall SK, Truscott KN, et al. 2009. Structural basis ofN-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep. 10:508-14
-
(2009)
EMBO Rep.
, vol.10
, pp. 508-514
-
-
Schuenemann, V.J.1
Kralik, S.M.2
Albrecht, R.3
Spall, S.K.4
Truscott, K.N.5
-
103
-
-
55049110221
-
Themolecular basis ofN-end rule recognition
-
Wang KH, Roman-HernandezG, Grant RA, Sauer RT, Baker TA. 2008. Themolecular basis ofN-end rule recognition. Mol. Cell 32:406-14
-
(2008)
Mol. Cell
, vol.32
, pp. 406-414
-
-
Wang, K.H.1
Roman-Hernandez, G.2
Grant, R.A.3
Sauer, R.T.4
Baker, T.A.5
-
104
-
-
79960451307
-
The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease
-
Romn-Hernndez G, Hou JY, Grant RA, Sauer RT, Baker TA. 2011. The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease. Mol. Cell 43:217-28
-
(2011)
Mol. Cell
, vol.43
, pp. 217-228
-
-
Romn-Hernndez, G.1
Hou, J.Y.2
Grant, R.A.3
Sauer, R.T.4
Baker, T.A.5
-
105
-
-
77952592280
-
Local and global mobility in the ClpA AAA+ chaperone detected by cryo-electron microscopy: Functional connotations
-
Effantin G, Ishikawa T, De Donatis GM, Maurizi MR, Steven AC. 2010. Local and global mobility in the ClpA AAA+ chaperone detected by cryo-electron microscopy: functional connotations. Structure 18:553-62
-
(2010)
Structure
, vol.18
, pp. 553-562
-
-
Effantin, G.1
Ishikawa, T.2
De Donatis, G.M.3
Maurizi, M.R.4
Steven, A.C.5
-
106
-
-
0036896886
-
Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA
-
Zeth K, Ravelli RB, Paal K, Cusack S, Bukau B, Dougan DA. 2002. Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA. Nat. Struct. Biol. 9:906-11
-
(2002)
Nat. Struct. Biol.
, vol.9
, pp. 906-911
-
-
Zeth, K.1
Ravelli, R.B.2
Paal, K.3
Cusack, S.4
Bukau, B.5
Dougan, D.A.6
-
107
-
-
23944497137
-
Ubiquitylation in apoptosis: DIAP1's (N-)en(d)igma
-
Ditzel M, Meier P. 2005. Ubiquitylation in apoptosis: DIAP1's (N-)en(d)igma. Cell Death Differ. 12:1208-12
-
(2005)
Cell Death Differ.
, vol.12
, pp. 1208-1212
-
-
Ditzel, M.1
Meier, P.2
-
108
-
-
68149157524
-
Inhibitor of apoptosis proteins in Drosophila: Gatekeepers of death
-
Orme M, Meier P. 2009. Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 14:950-60
-
(2009)
Apoptosis
, vol.14
, pp. 950-960
-
-
Orme, M.1
Meier, P.2
-
109
-
-
0036300082
-
Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms
-
Yoo SJ, Huh JR, Muro I, Yu H, Wang L, et al. 2002. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat. Cell Biol. 4:416-24
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 416-424
-
-
Yoo, S.J.1
Huh, J.R.2
Muro, I.3
Yu, H.4
Wang, L.5
-
111
-
-
67649794805
-
The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and-7 via unique mechanisms at distinct steps in their processing
-
Choi YE, Butterworth M, Malladi S, Duckett CS, Cohen GM, Bratton SB. 2009. The E3 ubiquitin ligase cIAP1 binds and ubiquitinates caspase-3 and-7 via unique mechanisms at distinct steps in their processing. J. Biol. Chem. 284:12772-82
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 12772-12782
-
-
Choi, Y.E.1
Butterworth, M.2
Malladi, S.3
Duckett, C.S.4
Cohen, G.M.5
Bratton, S.B.6
-
112
-
-
0034886271
-
Structural analysis of a functional DIAP1 fragment bound to Grim and Hid peptides
-
Wu JW, Cocina AE, Chai J, Hay BA, Shi Y. 2001. Structural analysis of a functional DIAP1 fragment bound to Grim and Hid peptides. Mol. Cell 8:95-104
-
(2001)
Mol. Cell
, vol.8
, pp. 95-104
-
-
Wu, J.W.1
Cocina, A.E.2
Chai, J.3
Hay, B.A.4
Shi, Y.5
-
113
-
-
0025967290
-
UBA1: An essential yeast gene encoding ubiquitin-activating enzyme
-
McGrath JP, Jentsch S, VarshavskyA. 1991.UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10:227-36
-
(1991)
EMBO J.
, vol.10
, pp. 227-236
-
-
Mc Grath, J.P.1
Jentsch, S.2
Varshavsky, A.3
-
114
-
-
34748884321
-
E1-L2 activates both ubiquitin and FAT10
-
Chiu YH, Sun Q, Chen ZJ. 2007. E1-L2 activates both ubiquitin and FAT10. Mol. Cell 27:1014-23
-
(2007)
Mol. Cell
, vol.27
, pp. 1014-1023
-
-
Chiu, Y.H.1
Sun, Q.2
Chen, Z.J.3
-
115
-
-
34347329214
-
Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging
-
Jin J, Li X, Gygi SP, Harper JW. 2007. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447:1135-38
-
(2007)
Nature
, vol.447
, pp. 1135-1138
-
-
Jin, J.1
Li, X.2
Gygi, S.P.3
Harper, J.W.4
-
116
-
-
79960693484
-
Alternative ubiquitin activation/conjugation cascades interact with N-end rule ubiquitin ligases to control degradation of RGS proteins
-
Lee PC, Sowa ME, Gygi SP, Harper JW. 2011. Alternative ubiquitin activation/conjugation cascades interact with N-end rule ubiquitin ligases to control degradation of RGS proteins. Mol. Cell 43:392-405
-
(2011)
Mol. Cell
, vol.43
, pp. 392-405
-
-
Lee, P.C.1
Sowa, M.E.2
Gygi, S.P.3
Harper, J.W.4
-
118
-
-
58049196794
-
Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway
-
Hwang CS, Varshavsky A. 2008. Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 105:19188-93
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 19188-19193
-
-
Hwang, C.S.1
Varshavsky, A.2
-
119
-
-
57649223684
-
Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter
-
Xia Z, Turner GC, Hwang CS, Byrd C, Varshavsky A. 2008. Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J. Biol. Chem. 283:28958-68
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 28958-28968
-
-
Xia, Z.1
Turner, G.C.2
Hwang, C.S.3
Byrd, C.4
Varshavsky, A.5
-
120
-
-
59749083485
-
Amino-acid-induced signalling via the SPS-sensing pathway in yeast
-
Ljungdahl PO. 2009. Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem. Soc. Trans. 37:242-47
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 242-247
-
-
Ljungdahl, P.O.1
-
121
-
-
78649847420
-
Hemin binds to human cytoplasmic arginyl-tRNA synthetase and inhibits its catalytic activity
-
Yang F, Xia X, Lei HY, Wang ED. 2010. Hemin binds to human cytoplasmic arginyl-tRNA synthetase and inhibits its catalytic activity. J. Biol. Chem. 285:39437-46
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 39437-39446
-
-
Yang, F.1
Xia, X.2
Lei, H.Y.3
Wang, E.D.4
-
123
-
-
0026558592
-
A strategy for the generation of conditional mutations by protein destabilization
-
Park EC, FinleyD, Szostak JW. 1992. A strategy for the generation of conditional mutations by protein destabilization. Proc. Natl. Acad. Sci. USA 89:1249-52
-
(1992)
Proc. Natl. Acad. Sci. USA
, vol.89
, pp. 1249-1252
-
-
Park, E.C.1
Finleyd Szostak, J.W.2
-
124
-
-
0029814693
-
Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae
-
Ghislain M, Dohmen RJ, Lvy F, Varshavsky A. 1996. Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae. EMBO J. 15:4884-99
-
(1996)
EMBO J.
, vol.15
, pp. 4884-4899
-
-
Ghislain, M.1
Dohmen, R.J.2
Lvy, F.3
Varshavsky, A.4
-
125
-
-
66249103970
-
Efficient protein depletion by genetically controlled deprotection of a dormant N-degron
-
Taxis C, Stier G, Spadaccini R, Knop M. 2009. Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol. Syst. Biol. 5:267
-
(2009)
Mol. Syst. Biol.
, vol.5
, pp. 267
-
-
Taxis, C.1
Stier, G.2
Spadaccini, R.3
Knop, M.4
-
126
-
-
28844506010
-
Heat-inducible degron and the making of conditional mutants
-
Dohmen RJ, Varshavsky A. 2005. Heat-inducible degron and the making of conditional mutants. Methods Enzymol. 399:799-822
-
(2005)
Methods Enzymol.
, vol.399
, pp. 799-822
-
-
Dohmen, R.J.1
Varshavsky, A.2
-
127
-
-
0028213449
-
Heat-inducible degron: A method for constructing temperature-sensitive mutants
-
Dohmen RJ, Wu P, Varshavsky A. 1994. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263:1273-76
-
(1994)
Science
, vol.263
, pp. 1273-1276
-
-
Dohmen, R.J.1
Wu, P.2
Varshavsky, A.3
-
128
-
-
0033555642
-
Analysis of a conditional degradation signal in yeast and mammalian cells
-
Lvy F, Johnston JA, Varshavsky A. 1999. Analysis of a conditional degradation signal in yeast and mammalian cells. Eur. J. Biochem. 259:244-52
-
(1999)
Eur. J. Biochem.
, vol.259
, pp. 244-252
-
-
Lvy, F.1
Johnston, J.A.2
Varshavsky, A.3
-
129
-
-
79955500670
-
A vertebrate N-end rule degron reveals that Orc6 is required in mitosis for daughter cell abscission
-
Bernal JA, Venkitaraman AR. 2011. A vertebrate N-end rule degron reveals that Orc6 is required in mitosis for daughter cell abscission. J. Cell Biol. 192:969-78
-
(2011)
J. Cell Biol.
, Issue.192
, pp. 969-978
-
-
Bernal, J.A.1
Venkitaraman, A.R.2
-
130
-
-
0032567339
-
Generation of destabilized green fluorescent protein as a transcription reporter
-
Li X, Zhao X, Fang Y, Jiang X, Duong T, et al. 1998. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273:34970-75
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 34970-34975
-
-
Li, X.1
Zhao, X.2
Fang, Y.3
Jiang, X.4
Duong, T.5
-
131
-
-
0034023407
-
Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells
-
DantumaNP, Lindsten K, Glas R, JellneM, Masucci MG. 2000. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat. Biotechnol. 18:538-43
-
(2000)
Nat. Biotechnol.
, vol.18
, pp. 538-543
-
-
Dantuma, N.P.1
Lindsten, K.2
Glas, R.3
Jellne, M.4
Masucci, M.G.5
-
132
-
-
28844485595
-
Monitoring of ubiquitin-dependent proteolysis with green fluorescent protein substrates
-
Menndez-Benito V, Heessen S, Dantuma NP. 2005. Monitoring of ubiquitin-dependent proteolysis with green fluorescent protein substrates. Methods Enzymol. 399:490-511
-
(2005)
Methods Enzymol.
, vol.399
, pp. 490-511
-
-
Menndez-Benito, V.1
Heessen, S.2
Dantuma, N.P.3
-
133
-
-
36849028012
-
The cyclophilin-like domain of Ran-binding protein-2 modulates selectively the activity of the ubiquitin-proteasome system and protein biogenesis
-
Yi H, Friedman JL, Ferreira PA. 2007. The cyclophilin-like domain of Ran-binding protein-2 modulates selectively the activity of the ubiquitin-proteasome system and protein biogenesis. J. Biol. Chem. 282:34770-78
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34770-34778
-
-
Yi, H.1
Friedman, J.L.2
Ferreira, P.A.3
-
134
-
-
77955686870
-
Identification of protein stability determinants in chloroplasts
-
Apel W, Schulze WX, Bock R. 2010. Identification of protein stability determinants in chloroplasts. Plant J. 63:636-50
-
(2010)
Plant J.
, vol.63
, pp. 636-650
-
-
Apel, W.1
Schulze, W.X.2
Bock, R.3
-
135
-
-
77952533111
-
VCP/p97 is essential formaturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD
-
Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, et al. 2010. VCP/p97 is essential formaturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6:217-27
-
(2010)
Autophagy
, vol.6
, pp. 217-227
-
-
Tresse, E.1
Salomons, F.A.2
Vesa, J.3
Bott, L.C.4
Kimonis, V.5
-
136
-
-
0036913248
-
Marker for real-time analysis of caspase activity in intact cells
-
1289-91
-
Lee P, Beem E, SegalMS. 2002. Marker for real-time analysis of caspase activity in intact cells. BioTechniques 33:1284-87, 1289-91
-
(2002)
BioTechniques
, vol.33
, pp. 1284-1287
-
-
Lee, P.1
Beem, E.2
Segal, M.S.3
-
137
-
-
33646381619
-
A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae
-
Hackett EA, Esch RK, Maleri S, Errede B. 2006. A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae. Yeast 23:333-49
-
(2006)
Yeast
, vol.23
, pp. 333-349
-
-
Hackett, E.A.1
Esch, R.K.2
Maleri, S.3
Errede, B.4
-
139
-
-
0008531195
-
Bivalent inhibitor of the N-end rule pathway
-
Kwon YT, Lvy F, Varshavsky A. 1999. Bivalent inhibitor of the N-end rule pathway. J. Biol. Chem. 274:18135-39
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 18135-18139
-
-
Kwon, Y.T.1
Lvy, F.2
Varshavsky, A.3
-
140
-
-
38349095024
-
Synthetic heterovalent inhibitors targeting recognition E3 components of the N-end rule pathway
-
Lee MJ, Pal K, Tasaki T, Roy S, Jiang Y, et al. 2008. Synthetic heterovalent inhibitors targeting recognition E3 components of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 105:100-5
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 100-105
-
-
Lee, M.J.1
Pal, K.2
Tasaki, T.3
Roy, S.4
Jiang, Y.5
-
141
-
-
60549087904
-
Multivalency-assisted control of intracellular signaling pathways: Application for ubiquitin-dependent N-end rule pathway
-
Sriram SM, Banerjee R, Kane RS, Kwon YT. 2009. Multivalency-assisted control of intracellular signaling pathways: application for ubiquitin-dependent N-end rule pathway. Chem. Biol. 16:121-31
-
(2009)
Chem. Biol.
, vol.16
, pp. 121-131
-
-
Sriram, S.M.1
Banerjee, R.2
Kane, R.S.3
Kwon, Y.T.4
-
142
-
-
1842429937
-
Ancient invasions: From endosymbionts to organelles
-
Dyall SD, Brown MT, Johnson PJ. 2004. Ancient invasions: from endosymbionts to organelles. Science 304:253-57
-
(2004)
Science
, vol.304
, pp. 253-257
-
-
Dyall, S.D.1
Brown, M.T.2
Johnson, P.J.3
-
143
-
-
34547117631
-
Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems
-
Tasaki T, Sohr R, Xia Z, Hellweg R, HortnaglH, et al. 2007. Biochemical and genetic studies of UBR3, a ubiquitin ligase with a function in olfactory and other sensory systems. J. Biol. Chem. 282:18510-20
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 18510-18520
-
-
Tasaki, T.1
Sohr, R.2
Xia, Z.3
Hortnaglh, H.R.4
-
144
-
-
84855871792
-
Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability
-
Meisenberg C, Tait PS, Dianova II, Wright K, Edelmann MJ, et al. 2012. Ubiquitin ligase UBR3 regulates cellular levels of the essential DNA repair protein APE1 and is required for genome stability. Nucleic Acids Res. 40:701-11
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 701-711
-
-
Meisenberg, C.1
Tait, P.S.2
Dianova, I.I.3
Wright, K.4
Edelmann, M.J.5
-
145
-
-
23744466996
-
Regulation of nuclear proteasome by Rhp6/Ubc2 through ubiquitination and destruction of the sensor and anchor Cut8
-
Takeda K, Yanagida M. 2005. Regulation of nuclear proteasome by Rhp6/Ubc2 through ubiquitination and destruction of the sensor and anchor Cut8. Cell 122:393-405
-
(2005)
Cell
, vol.122
, pp. 393-405
-
-
Takeda, K.1
Yanagida, M.2
-
146
-
-
11244343965
-
Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase
-
Wang L, Mao X, Ju D, Xie Y. 2004. Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J. Biol. Chem. 279:55218-23
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 55218-55223
-
-
Wang, L.1
Mao, X.2
Ju, D.3
Xie, Y.4
-
147
-
-
34548773505
-
CRM1/BIGmediated auxin action regulates Arabidopsis inflorescence development
-
Yamaguchi N, Suzuki M, Fukaki H, Morita-Terao M, Tasaka M, Komeda Y. 2007. CRM1/BIGmediated auxin action regulates Arabidopsis inflorescence development. Plant Cell. Physiol. 48:1275-90
-
(2007)
Plant Cell. Physiol.̀
, vol.48
, pp. 1275-1290
-
-
Yamaguchi, N.1
Suzuki, M.2
Fukaki, H.3
Morita-Terao, M.4
Tasaka, M.5
Komeda, Y.6
-
148
-
-
33847328747
-
FBXO11 promotes the neddylation of p53 and inhibits its transcriptional activity
-
AbidaWM, Nikolaev A, ZhaoW, Zhang W, Gu W. 2007. FBXO11 promotes the neddylation of p53 and inhibits its transcriptional activity. J. Biol. Chem. 282:1797-804
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 1797-1804
-
-
Abida, W.M.1
Nikolaev, A.2
Zhao, W.3
Zhang, W.4
Gu, W.5
-
149
-
-
79951554988
-
Unraveling the genetics of otitis media: From mouse to human and back again
-
Rye MS, Bhutta MF, Cheeseman MT, Burgner D, Blackwell JM, et al. 2011. Unraveling the genetics of otitis media: from mouse to human and back again. Mamm. Genome 22:66-82
-
(2011)
Mamm. Genome
, vol.22
, pp. 66-82
-
-
Rye, M.S.1
Bhutta, M.F.2
Cheeseman, M.T.3
Burgner, D.4
Blackwell, J.M.5
|