메뉴 건너뛰기




Volumn 40, Issue 6, 2017, Pages 1229-1251

Review of Convolutional Neural Network

Author keywords

Convolutional neural network; Deep learning; Domain data; Network structure; Training method

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; CONVOLUTION; DEEP LEARNING; DEEP NEURAL NETWORKS; FACE RECOGNITION; FAULT TOLERANCE; FORMAL LANGUAGES; LEARNING ALGORITHMS; LEARNING SYSTEMS; LINEAR TRANSFORMATIONS; MATHEMATICAL TRANSFORMATIONS; NATURAL LANGUAGE PROCESSING SYSTEMS; NEURAL NETWORKS; OBJECT DETECTION; OBJECT RECOGNITION; RECURRENT NEURAL NETWORKS; SCALES (WEIGHING INSTRUMENTS); SEMANTICS; SPEECH RECOGNITION; UNSUPERVISED LEARNING;

EID: 85029554489     PISSN: 02544164     EISSN: None     Source Type: Journal    
DOI: 10.11897/SP.J.1016.2017.01229     Document Type: Review
Times cited : (797)

References (107)
  • 1
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , Issue.4 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 2
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 1958, 65(6): 386-408.
    • (1958) Psychological Review , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 4
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D E, Hinton G, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.2    Williams, R.J.3
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995, 20(3): 273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.1    Salakhutdinov, R.R.2
  • 7
    • 84885069866 scopus 로고    scopus 로고
    • Deep learning: Yesterday, today, and tomorrow
    • (in Chinese)
    • Yu Kai, Jia Lei, Chen Yu-Qiang, et al. Deep learning: Yesterday, today, and tomorrow. Journal of Computer Research and Development, 2013, 50(9): 1799-1804 (in Chinese).
    • (2013) Journal of Computer Research and Development , vol.50 , Issue.9 , pp. 1799-1804
    • Yu, K.1    Jia, L.2    Chen, Y.-Q.3
  • 11
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • Lecun, Y.1    Bengio, Y.2    Hinton, G.3
  • 13
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527-1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 15
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep Boltzmann machines
    • Salakhutdinov R, Hinton G. An efficient learning procedure for deep Boltzmann machines. Neural Computation, 2012, 24(8): 1967-2006.
    • (2012) Neural Computation , vol.24 , Issue.8 , pp. 1967-2006
    • Salakhutdinov, R.1    Hinton, G.2
  • 18
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent P, Larochelle H, Bengio Y, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 2010, 11(12): 3371-3408.
    • (2010) Journal of Machine Learning Research , vol.11 , Issue.12 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3
  • 19
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3
  • 20
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 11(4): 541-551.
    • (1989) Neural Computation , vol.11 , Issue.4 , pp. 541-551
    • LeCun, Y.1    Boser, B.2    Denker, J.S.3
  • 21
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • David S, Huang A, Maddidon C J. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587): 484-489.
    • (2016) Nature , vol.529 , Issue.7587 , pp. 484-489
    • David, S.1    Huang, A.2    Maddidon, C.J.3
  • 23
    • 0032123630 scopus 로고    scopus 로고
    • Evaluation of convolutional neural networks for visual recognition
    • Neubauer C. Evaluation of convolutional neural networks for visual recognition. IEEE Transactions on Neural Networks, 1998, 9(4): 685-696.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.4 , pp. 685-696
    • Neubauer, C.1
  • 27
    • 84962128752 scopus 로고    scopus 로고
    • Real-time patient-specific ECG classification by 1D convolutional neural networks
    • Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1D convolutional neural networks. IEEE Transactions on Biomedical Engineering, 2016, 63(3): 664-675.
    • (2016) IEEE Transactions on Biomedical Engineering , vol.63 , Issue.3 , pp. 664-675
    • Kiranyaz, S.1    Ince, T.2    Gabbouj, M.3
  • 28
    • 33645410496 scopus 로고
    • Receptive fields binocular interaction, and functional architecture in the cat's visual cortex
    • Hubel D H, Wiesel T N. Receptive fields binocular interaction, and functional architecture in the cat's visual cortex. Journal of Physiology, 1962, 160(1): 106-154.
    • (1962) Journal of Physiology , vol.160 , Issue.1 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 29
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 1980, 36(4): 193-202.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 30
    • 84943597870 scopus 로고    scopus 로고
    • Deep convolution neural networks in computer vision: A review
    • Yoo H-J. Deep convolution neural networks in computer vision: A review. IEIE Transactions on Smart Processing and Computing, 2015, 4(1): 35-43.
    • (2015) IEIE Transactions on Smart Processing and Computing , vol.4 , Issue.1 , pp. 35-43
    • Yoo, H.-J.1
  • 31
    • 84977106973 scopus 로고    scopus 로고
    • Demonstration of convolution kernel operation on resistive cross-point array
    • Gao Li-Gang, Chen Pai-Yu, Yu Shi-Meng. Demonstration of convolution kernel operation on resistive cross-point array. IEEE Electron Device Letters, 2016, 37(7): 870-873.
    • (2016) IEEE Electron Device Letters , vol.37 , Issue.7 , pp. 870-873
    • Gao, L.-G.1    Chen, P.-Y.2    Yu, S.-M.3
  • 32
    • 85029551977 scopus 로고    scopus 로고
    • Study on Approach of Electrocardiogram Classification for Clinical Application
    • [Ph.D. dissertation]. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, (in Chinese)
    • Jin Lin-Peng. Study on Approach of Electrocardiogram Classification for Clinical Application[Ph.D. dissertation]. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 2016 (in Chinese).
    • (2016)
    • Jin, L.-P.1
  • 33
    • 84960920723 scopus 로고    scopus 로고
    • Empirical evaluation of rectified activations in convolution network
    • arXiv:1505.00853v2
    • Xu Bing, Wang Nai-Yan, Chen Tian-Qi, et al. Empirical evaluation of rectified activations in convolution network. arXiv:1505.00853v2, 2015.
    • (2015)
    • Xu, B.1    Wang, N.-Y.2    Chen, T.-Q.3
  • 37
    • 84978483293 scopus 로고    scopus 로고
    • Recent advances in convolutional neural networks
    • arXiv:1512.07108v5
    • Gu Jiu-Xiang, Wang Zhen-Hua, Jason Kuen, et al. Recent advances in convolutional neural networks. arXiv:1512.07108v5, 2017.
    • (2017)
    • Gu, J.-X.1    Wang, Z.-H.2    Jason, K.3
  • 39
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • arXiv:1301.3557v1
    • Zeiler M D, Fergus R. Stochastic pooling for regularization of deep convolutional neural networks. arXiv:1301.3557v1, 2013.
    • (2013)
    • Zeiler, M.D.1    Fergus, R.2
  • 43
    • 85007377756 scopus 로고    scopus 로고
    • An introduction to convolutional neural networks
    • arXiv:1511.08458v2
    • O'Shea K, Nash R. An introduction to convolutional neural networks. arXiv:1511.08458v2, 2015.
    • (2015)
    • O'Shea, K.1    Nash, R.2
  • 44
  • 45
    • 84922343800 scopus 로고    scopus 로고
    • Deep convolutional neural networks for large-scale speech tasks
    • Sainatha T N, Kingsburya B, Saona G, et al. Deep convolutional neural networks for large-scale speech tasks. Neural Networks, 2015, 64(Special Issue): 39-48.
    • (2015) Neural Networks , vol.64 , pp. 39-48
    • Sainatha, T.N.1    Kingsburya, B.2    Saona, G.3
  • 46
  • 48
    • 84990843810 scopus 로고    scopus 로고
    • Deep learning research on clinical electrocardiogram analysis
    • (in Chinese)
    • Jin Lin-Peng, Dong Jun. Deep learning research on clinical electrocardiogram analysis. Science China: Information Sciences, 2015, 45(3): 398-416 (in Chinese).
    • (2015) Science China: Information Sciences , vol.45 , Issue.3 , pp. 398-416
    • Jin, L.-P.1    Dong, J.2
  • 50
    • 84939241380 scopus 로고    scopus 로고
    • Network in network
    • arXiv:1312.4400v3
    • Lin Min, Chen Qiang, Yan Shui-Cheng. Network in network. arXiv:1312.4400v3, 2013.
    • (2013)
    • Lin, M.1    Chen, Q.2    Yan, S.-C.3
  • 52
    • 84962751319 scopus 로고    scopus 로고
    • Spatial transformer networks
    • arXiv:1506.02025v3
    • Jaderberg M, Simonyan K, Zisserman A, et al. Spatial transformer networks. arXiv:1506.02025v3, 2016.
    • (2016)
    • Jaderberg, M.1    Simonyan, K.2    Zisserman, A.3
  • 55
    • 85014890080 scopus 로고    scopus 로고
    • Stacked what-where auto-encoders
    • arXiv:1506.02351v8
    • Zhao Jun-Bo, Mathieu M, Goroshin R, et al. Stacked what-where auto-encoders. arXiv:1506.02351v8, 2016.
    • (2016)
    • Zhao, J.-B.1    Mathieu, M.2    Goroshin, R.3
  • 60
    • 85028222906 scopus 로고    scopus 로고
    • Vehicle type classification using a semisupervised convolutional neural network
    • Dong Zhen, Wu Yu-Wei, Pei Ming-Tao, et al. Vehicle type classification using a semisupervised convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2247-2256.
    • (2015) IEEE Transactions on Intelligent Transportation Systems , vol.16 , Issue.4 , pp. 2247-2256
    • Dong, Z.1    Wu, Y.-W.2    Pei, M.-T.3
  • 61
    • 84990841514 scopus 로고    scopus 로고
    • Ensemble deep learning for biomedical time series classification
    • Jin Lin-Peng, Dong Jun. Ensemble deep learning for biomedical time series classification. Computational Intelligence and Neuroscience, 2016, 2016(3): 1-13.
    • (2016) Computational Intelligence and Neuroscience , vol.2016 , Issue.3 , pp. 1-13
    • Jin, L.-P.1    Dong, J.2
  • 63
    • 84979557463 scopus 로고    scopus 로고
    • Theano: A python framework for fast computation of mathematical expressions
    • arXiv:1605.02688v1
    • Al-Rfou R, Alain G, Almahairi A, et al. Theano: A python framework for fast computation of mathematical expressions. arXiv:1605.02688v1, 2016.
    • (2016)
    • Al-Rfou, R.1    Alain, G.2    Almahairi, A.3
  • 64
    • 85012891370 scopus 로고    scopus 로고
    • Comparative study of deep learning software frameworks
    • arXiv:1511.06435v3
    • Bahrampour S, Ramakrishnan N, Schott L, et al. Comparative study of deep learning software frameworks. arXiv:1511.06435v3, 2016.
    • (2016)
    • Bahrampour, S.1    Ramakrishnan, N.2    Schott, L.3
  • 66
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • arXiv:1409.1556v6
    • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556v6, 2014.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 68
    • 84964923476 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • arXiv:1502.03167
    • Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015.
    • (2015)
    • Ioffe, S.1    Szegedy, C.2
  • 70
    • 84988436225 scopus 로고    scopus 로고
    • Deep learning in image recognition
    • (in Chinese)
    • Wang Xiao-Gang. Deep learning in image recognition. Communications of the CCF, 2015, 11(8): 15-23 (in Chinese).
    • (2015) Communications of the CCF , vol.11 , Issue.8 , pp. 15-23
    • Wang, X.-G.1
  • 71
    • 85015258305 scopus 로고    scopus 로고
    • Systematic evaluation of CNN advances on the imageNet
    • arXiv:1606.02228v2
    • Mishkin D, Sergievskiy N, Matas J. Systematic evaluation of CNN advances on the imageNet. arXiv:1606.02228v2, 2016.
    • (2016)
    • Mishkin, D.1    Sergievskiy, N.2    Matas, J.3
  • 76
    • 84931584166 scopus 로고    scopus 로고
    • DeepID3: Face recognition with very deep neural networks
    • arXiv:1502.00873v1
    • Sun Yi, Liang Ding, Wang Xiao-Gang, et al. DeepID3: Face recognition with very deep neural networks. arXiv:1502.00873v1, 2015.
    • (2015)
    • Sun, Y.1    Liang, D.2    Wang, X.-G.3
  • 79
    • 84988443668 scopus 로고    scopus 로고
    • Convolutional neural networks in image understanding
    • (in Chinese)
    • Chang Liang, Deng Xiao-Ming, Zhou Ming-Quan, et al. Convolutional neural networks in image understanding. Acta Automatica Sinica, 2016, 42(9): 1300-1312 (in Chinese).
    • (2016) Acta Automatica Sinica , vol.42 , Issue.9 , pp. 1300-1312
    • Chang, L.1    Deng, X.-M.2    Zhou, M.-Q.3
  • 83
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton G, Deng Li, Yu Dong, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 2012, 29(6): 82-97.
    • (2012) IEEE Signal Processing Magazine , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1    Deng, L.2    Yu, D.3
  • 85
    • 84870941922 scopus 로고    scopus 로고
    • Wearable ECG monitors and its remote diagnosis service platform
    • Dong Jun, Zhang Jia-Wei, Zhu Hong-Hai, et al. Wearable ECG monitors and its remote diagnosis service platform. IEEE Intelligent Systems, 2012, 27(6): 36-43.
    • (2012) IEEE Intelligent Systems , vol.27 , Issue.6 , pp. 36-43
    • Dong, J.1    Zhang, J.-W.2    Zhu, H.-H.3
  • 87
    • 85019037402 scopus 로고    scopus 로고
    • Key Algorithms on Computer-Aided Electrocardiogram Analysis and Development of Remote Multi-Signs Monitoring System
    • [Ph.D. dissertation]. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, (in Chinese)
    • Zhu Hong-Hai. Key Algorithms on Computer-Aided Electrocardiogram Analysis and Development of Remote Multi-Signs Monitoring System[Ph.D. dissertation]. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 2013 (in Chinese).
    • (2013)
    • Zhu, H.-H.1
  • 88
    • 84868541740 scopus 로고    scopus 로고
    • CCDD: An enhanced standard ECG database with its management and annotation tools
    • Zhang Jia-Wei, Liu Xia, Dong Jun. CCDD: An enhanced standard ECG database with its management and annotation tools. International Journal on Article Intelligence Tools, 2012, 21(5): 1-26.
    • (2012) International Journal on Article Intelligence Tools , vol.21 , Issue.5 , pp. 1-26
    • Zhang, J.-W.1    Liu, X.2    Dong, J.3
  • 89
    • 45749119160 scopus 로고    scopus 로고
    • Robust electrocardiogram beat classification using discrete wavelet transform
    • Fayyaz-ul-Afsar Amir Minhas, Muhammad Arif. Robust electrocardiogram beat classification using discrete wavelet transform. Physiological Measurement, 2008, 29(5): 555-570.
    • (2008) Physiological Measurement , vol.29 , Issue.5 , pp. 555-570
    • Minhas, F.-U.-A.A.1    Arif, M.2
  • 90
    • 67649619218 scopus 로고    scopus 로고
    • A two-stage mechanism for registration and classification of ECG using Gaussian mixture model
    • Martis R J, Chakraborty C, Ray A K. A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognition, 2009, 42(11): 2979-2988.
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2979-2988
    • Martis, R.J.1    Chakraborty, C.2    Ray, A.K.3
  • 91
    • 84855310308 scopus 로고    scopus 로고
    • Computer-based rhythm diagnosis and its possible influence on nonexpert electrocardiogram readers
    • Hakacova N, Tragardh-Johansson E, Wagner G S, et al. Computer-based rhythm diagnosis and its possible influence on nonexpert electrocardiogram readers. Journal of Electrocardiology, 2012, 45(1): 18-22.
    • (2012) Journal of Electrocardiology , vol.45 , Issue.1 , pp. 18-22
    • Hakacova, N.1    Tragardh-Johansson, E.2    Wagner, G.S.3
  • 92
    • 34250094997 scopus 로고
    • Accelerating the convergence of the back-propagation method
    • Vogl T P, Mangis J K, Rigler A K, et al. Accelerating the convergence of the back-propagation method. Biological Cybernetics, 1988, 59(4): 257-263.
    • (1988) Biological Cybernetics , vol.59 , Issue.4 , pp. 257-263
    • Vogl, T.P.1    Mangis, J.K.2    Rigler, A.K.3
  • 93
    • 84990831193 scopus 로고    scopus 로고
    • Study on Approach of ECG Classification with Domain Knowledge
    • [Ph.D. dissertation]. East China Normal University, Shanghai, (in Chinese)
    • Wang Li-Ping. Study on Approach of ECG Classification with Domain Knowledge[Ph.D. dissertation]. East China Normal University, Shanghai, 2012 (in Chinese).
    • (2012)
    • Wang, L.-P.1
  • 94
    • 85019034033 scopus 로고    scopus 로고
    • PVC recognition algorithm based on ensemble learning
    • (in Chinese)
    • Zhou Fei-Yan, Jin Lin-Peng, Dong Jun. PVC recognition algorithm based on ensemble learning. Acta Electronica Sinica, 2017, 45(2): 501-507 (in Chinese).
    • (2017) Acta Electronica Sinica , vol.45 , Issue.2 , pp. 501-507
    • Zhou, F.-Y.1    Jin, L.-P.2    Dong, J.3
  • 96
    • 84952630924 scopus 로고    scopus 로고
    • Exploiting multi-channels deep convolutional neural networks for multivariate time series classification
    • Zheng Yi, Liu Qi, Chen En-Hong, et al. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification. Frontiers of Computer Science, 2015, 10(1): 96-112.
    • (2015) Frontiers of Computer Science , vol.10 , Issue.1 , pp. 96-112
    • Zheng, Y.1    Liu, Q.2    Chen, E.-H.3
  • 97
    • 85014560523 scopus 로고    scopus 로고
    • Multi-scale convolutional neural networks for time series classification
    • arXiv:1603.06995
    • Cui Zhi-Cheng, Chen Wen-Lin, Chen Yi-Xin. Multi-scale convolutional neural networks for time series classification. arXiv:1603.06995, 2016.
    • (2016)
    • Cui, Z.-C.1    Chen, W.-L.2    Chen, Y.-X.3
  • 99
    • 84961917629 scopus 로고    scopus 로고
    • You only look once: Unified, real-time object detection
    • arXiv:1506.02640v5
    • Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. arXiv:1506.02640v5, 2015.
    • (2015)
    • Redmon, J.1    Divvala, S.2    Girshick, R.3
  • 103
    • 85119398413 scopus 로고    scopus 로고
    • Short text clustering via convolutional neural networks
    • Denver, USA
    • Xu Jia-Ming, Wang Peng, Tian Guan-Hua, et al. Short text clustering via convolutional neural networks// Proceedings of the NAACL-HLT 2015. Denver, USA, 2015: 62-69.
    • (2015) Proceedings of the NAACL-HLT 2015 , pp. 62-69
    • Xu, J.-M.1    Wang, P.2    Tian, G.-H.3
  • 104
    • 84979270710 scopus 로고    scopus 로고
    • Robust visual tracking method via deep learning
    • (in Chinese)
    • Gao Jun-Yu, Yang Xiao-Shan, Zhang Tian-Zhu, et al. Robust visual tracking method via deep learning. Chinese Journal of Computers, 2016, 39(7): 1419-1434 (in Chinese).
    • (2016) Chinese Journal of Computers , vol.39 , Issue.7 , pp. 1419-1434
    • Gao, J.-Y.1    Yang, X.-S.2    Zhang, T.-Z.3
  • 105
    • 84982214191 scopus 로고    scopus 로고
    • Remote sensing image fusion based on deep support value learning networks
    • (in Chinese)
    • Li Hong, Liu Fang, Yang Shu-Yuan, et al. Remote sensing image fusion based on deep support value learning networks. Chinese Journal of Computers, 2016, 39(8): 1583-1596 (in Chinese).
    • (2016) Chinese Journal of Computers , vol.39 , Issue.8 , pp. 1583-1596
    • Li, H.1    Liu, F.2    Yang, S.-Y.3
  • 106
    • 85029552392 scopus 로고    scopus 로고
    • The Research on Signal Perception and Computer Aided Recognition of Traditional Chinese Medicine Pulse Diagnosis
    • [Ph.D. dissertation]. East China Normal University, Shanghai, (in Chinese)
    • Hu Xiao-Juan. The Research on Signal Perception and Computer Aided Recognition of Traditional Chinese Medicine Pulse Diagnosis[Ph.D. dissertation]. East China Normal University, Shanghai, 2013 (in Chinese).
    • (2013)
    • Hu, X.-J.1
  • 107
    • 84957837518 scopus 로고    scopus 로고
    • Deep learning for visual understanding: A review
    • Guo Yan-Ming, Liu Yu, Ard Oerlemans, et al. Deep learning for visual understanding: A review. Neurocomputing, 2016, 187(Special Issue): 27-48.
    • (2016) Neurocomputing , vol.187 , pp. 27-48
    • Guo, Y.-M.1    Liu, Y.2    Oerlemans, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.