-
1
-
-
84941425069
-
Structural sparse tracking
-
Boston, USA
-
Zhang T, Liu S, Xu C, et al. Structural sparse tracking//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 150-158
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 150-158
-
-
Zhang, T.1
Liu, S.2
Xu, C.3
-
2
-
-
84934756930
-
Intelligent visual surveillance: A review
-
(in Chinese)
-
Huang Kai-Qi, Chen Xiao-Tang, Kang Yun-Feng, et al. Intelligent visual surveillance: A review. Chinese Journal of Computers, 2015, 38(6): 1093-1118(in Chinese)
-
(2015)
Chinese Journal of Computers
, vol.38
, Issue.6
, pp. 1093-1118
-
-
Huang, K.-Q.1
Chen, X.-T.2
Kang, Y.-F.3
-
3
-
-
84866285609
-
Real time robust L1 tracker using accelerated proximal gradient approach
-
Rhode Island, USA
-
Bao C, Wu Y, Ling H, et al. Real time robust L1 tracker using accelerated proximal gradient approach//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, USA, 2012: 1830-1837
-
(2012)
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1830-1837
-
-
Bao, C.1
Wu, Y.2
Ling, H.3
-
4
-
-
84862644870
-
Scribble tracker: A matting-based approach for robust tracking
-
Fan J, Shen X, Wu Y. Scribble tracker: A matting-based approach for robust tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1633-1644
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.34
, Issue.8
, pp. 1633-1644
-
-
Fan, J.1
Shen, X.2
Wu, Y.3
-
6
-
-
84897510119
-
The visual object tracking VOT2013 challenge results
-
Sydney, Australia
-
Kristan M, Pflugfelder R, Leonatdis A, et al. The visual object tracking VOT2013 challenge results//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops. Sydney, Australia, 2013: 98-111
-
(2013)
Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops
, pp. 98-111
-
-
Kristan, M.1
Pflugfelder, R.2
Leonatdis, A.3
-
7
-
-
84866615156
-
Adaptive appearance modeling for video tracking: Survey and evaluation
-
Salti S, Cavallaro A, Di Stefano L. Adaptive appearance modeling for video tracking: Survey and evaluation. IEEE Transactions on Image Processing, 2012, 21(10): 4334-4348
-
(2012)
IEEE Transactions on Image Processing
, vol.21
, Issue.10
, pp. 4334-4348
-
-
Salti, S.1
Cavallaro, A.2
Di Stefano, L.3
-
9
-
-
84867597162
-
Robust multi-object tracking via cross-domain contextual information for sports video analysis
-
Kyoto, Japan
-
Zhang T, Ghanem B, Ahuja N. Robust multi-object tracking via cross-domain contextual information for sports video analysis //Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Kyoto, Japan, 2012: 985-988
-
(2012)
Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 985-988
-
-
Zhang, T.1
Ghanem, B.2
Ahuja, N.3
-
10
-
-
67649583790
-
Human tracking in infrared images based on particles Mean-Shift migration algorithm
-
(in Chinese)
-
Yun Ting-Jin, Guo Yong-Cai, Gao Chao. Human tracking in infrared images based on particles Mean-Shift migration algorithm. Chinese Journal of Computers, 2009, 32(6): 1222-1228(in Chinese)
-
(2009)
Chinese Journal of Computers
, vol.32
, Issue.6
, pp. 1222-1228
-
-
Yun, T.-J.1
Guo, Y.-C.2
Gao, C.3
-
13
-
-
84898020313
-
Real-time tracking via on-line boosting
-
Edinburgh, Germany
-
Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting//Proceedings of the British Machine Vision Conference. Edinburgh, Germany, 2006, 1(5): 6-15
-
(2006)
Proceedings of the British Machine Vision Conference
, vol.1
, Issue.5
, pp. 6-15
-
-
Grabner, H.1
Grabner, M.2
Bischof, H.3
-
15
-
-
28444480859
-
Face contour extraction and tracking using Level Sets
-
(in Chinese)
-
Huang Fu-Zhen, Su Jian-Bo. Face contour extraction and tracking using Level Sets. Chinese Journal of Computers, 2003, 26(4): 491-496(in Chinese)
-
(2003)
Chinese Journal of Computers
, vol.26
, Issue.4
, pp. 491-496
-
-
Huang, F.-Z.1
Su, J.-B.2
-
21
-
-
80054005322
-
Tracking video object based on central macroblocks
-
(in Chinese)
-
Xiao Guo-Qiang, Kang Qin, Jiang Jian-Min, et al. Tracking video object based on central macroblocks. Chinese Journal of Computers, 2011, 34(9): 1712-1718(in Chinese)
-
(2011)
Chinese Journal of Computers
, vol.34
, Issue.9
, pp. 1712-1718
-
-
Xiao, G.-Q.1
Kang, Q.2
Jiang, J.-M.3
-
22
-
-
84866678444
-
Robust visual tracking via multi-task sparse learning
-
Rhode Island, USA
-
Zhang T, Ghanem B, Liu S, et al. Robust visual tracking via multi-task sparse learning//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Rhode Island, USA, 2012: 2042-2049
-
(2012)
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2042-2049
-
-
Zhang, T.1
Ghanem, B.2
Liu, S.3
-
23
-
-
84867865809
-
Low-rank sparse learning for robust visual tracking
-
Firenze, Italy
-
Zhang T, Ghanem B, Liu S, et al. Low-rank sparse learning for robust visual tracking//Proceedings of the 2012 European Conference on Computer Vision. Firenze, Italy, 2012: 470-484
-
(2012)
Proceedings of the 2012 European Conference on Computer Vision
, pp. 470-484
-
-
Zhang, T.1
Ghanem, B.2
Liu, S.3
-
24
-
-
84873114012
-
Robust visual tracking via structured multi-task sparse learning
-
Zhang T, Ghanem B, Liu S, et al. Robust visual tracking via structured multi-task sparse learning. International Journal of Computer Vision, 2013, 101(2): 367-383
-
(2013)
International Journal of Computer Vision
, vol.101
, Issue.2
, pp. 367-383
-
-
Zhang, T.1
Ghanem, B.2
Liu, S.3
-
25
-
-
84922000600
-
Robust visual tracking via consistent low-rank sparse learning
-
Zhang T, Liu S, Ahuja N, et al. Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision, 2014, 111(2): 171-190
-
(2014)
International Journal of Computer Vision
, vol.111
, Issue.2
, pp. 171-190
-
-
Zhang, T.1
Liu, S.2
Ahuja, N.3
-
26
-
-
84979256300
-
Tracking by auto-reconstructing particle filter trackers
-
(in Chinese)
-
Wang Yu-Xia, Zhao Qing-Jie, Cai Yi-Ming, et al. Tracking by auto-reconstructing particle filter trackers. Chinese Journal of Computers, 2016, 39(7): 1294-1306(in Chinese)
-
(2016)
Chinese Journal of Computers
, vol.39
, Issue.7
, pp. 1294-1306
-
-
Wang, Y.-X.1
Zhao, Q.-J.2
Cai, Y.-M.3
-
28
-
-
77957774108
-
Human tracking using convolutional neural networks
-
Fan J, Xu W, Wu Y, et al. Human tracking using convolutional neural networks. IEEE Transactions on Neural Networks, 2010, 21(10): 1610-1623
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, Issue.10
, pp. 1610-1623
-
-
Fan, J.1
Xu, W.2
Wu, Y.3
-
29
-
-
84949929207
-
An ensemble of deep neural networks for object tracking
-
Pairs, France
-
Zhou X, Xie L, Zhang P, et al. An ensemble of deep neural networks for object tracking//Proceedings of the 2014 IEEE International Conference on Image Processing. Pairs, France, 2014: 843-847
-
(2014)
Proceedings of the 2014 IEEE International Conference on Image Processing
, pp. 843-847
-
-
Zhou, X.1
Xie, L.2
Zhang, P.3
-
31
-
-
84945159973
-
DeepTrack: Learning discriminative feature representations online for robust visual tracking
-
arXiv preprint arXiv:150300072
-
Li H, Li Y, Porikli F. DeepTrack: Learning discriminative feature representations online for robust visual tracking. arXiv preprint arXiv:150300072, 2015
-
(2015)
-
-
Li, H.1
Li, Y.2
Porikli, F.3
-
32
-
-
85088746113
-
DeepTrack: Learning discriminative feature representations by convolutional neural networks for visual tracking
-
Nottingham, England
-
Li H, Li Y, Porikli F. DeepTrack: Learning discriminative feature representations by convolutional neural networks for visual tracking//Proceedings of the British Machine Vision Conference. Nottingham, England, 2014: 1-11
-
(2014)
Proceedings of the British Machine Vision Conference
, pp. 1-11
-
-
Li, H.1
Li, Y.2
Porikli, F.3
-
33
-
-
84948743135
-
Online tracking by learning discriminative saliency map with convolutional neural network
-
arXiv preprint arXiv:150206796
-
Hong S, You T, Kwak S, et al. Online tracking by learning discriminative saliency map with convolutional neural network. arXiv preprint arXiv:150206796, 2015
-
(2015)
-
-
Hong, S.1
You, T.2
Kwak, S.3
-
34
-
-
84945961638
-
Transferring rich feature hierarchies for robust visual tracking
-
arXiv preprint arXiv:150104587
-
Wang N, Li S, Gupta A, et al. Transferring rich feature hierarchies for robust visual tracking. arXiv preprint arXiv:150104587, 2015
-
(2015)
-
-
Wang, N.1
Li, S.2
Gupta, A.3
-
35
-
-
84950121900
-
CNNTracker: Online discriminative object tracking via deep convolutional neural network
-
Chen Y, Yang X, Zhong B, et al. CNNTracker: Online discriminative object tracking via deep convolutional neural network. Applied Soft Computing, 2015, 38(6): 1088-1098
-
(2015)
Applied Soft Computing
, vol.38
, Issue.6
, pp. 1088-1098
-
-
Chen, Y.1
Yang, X.2
Zhong, B.3
-
36
-
-
84944673229
-
Visual tracking based on convolutional deep belief network
-
Chen Yunji, Ienne P, Ji Qing eds. Springer International Publishing
-
Hu D, Zhou X, Wu J. Visual tracking based on convolutional deep belief network//Chen Yunji, Ienne P, Ji Qing eds. Advanced Parallel Processing Technologies. Springer International Publishing, 2015: 103-115
-
(2015)
Advanced Parallel Processing Technologies
, pp. 103-115
-
-
Hu, D.1
Zhou, X.2
Wu, J.3
-
37
-
-
84943556337
-
Robust tracking via convolutional networks without learning
-
arXiv preprint arXiv:150104505
-
Zhang K, Liu Q, Wu Y, et al. Robust tracking via convolutional networks without learning. arXiv preprint arXiv:150104505, 2015
-
(2015)
-
-
Zhang, K.1
Liu, Q.2
Wu, Y.3
-
38
-
-
84931572897
-
Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle
-
Kuen J, Lim K M, Lee C P. Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle. Pattern Recognition, 2015, 48(10): 2964-2982
-
(2015)
Pattern Recognition
, vol.48
, Issue.10
, pp. 2964-2982
-
-
Kuen, J.1
Lim, K.M.2
Lee, C.P.3
-
40
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
Columbus, USA
-
Karpathy A, Toderici G, Shetty S, et al. Large-scale video classification with convolutional neural networks//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 1725-1732
-
(2014)
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
-
41
-
-
23044533906
-
On the role of object-specific features for real world object recognition in biological vision
-
Tübingen, Germany
-
Serre T, Riesenhuber M, Louie J, et al. On the role of object-specific features for real world object recognition in biological vision//Proceedings of the Biologically Motivated Computer Vision. Tübingen, Germany, 2002: 387-397
-
(2002)
Proceedings of the Biologically Motivated Computer Vision
, pp. 387-397
-
-
Serre, T.1
Riesenhuber, M.2
Louie, J.3
-
43
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Orlando, USA
-
Jia Y, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding//Proceedings of the ACM International Conference on Multimedia. Orlando, USA, 2014: 675-678
-
(2014)
Proceedings of the ACM International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
-
44
-
-
77951298115
-
The pascal visual object classes (VOC) challenge
-
Everingham M, Van Gool L, Williams C K, et al. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303-338
-
(2010)
International Journal of Computer Vision
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
-
45
-
-
84905258215
-
Cross-domain multi-event tracking via CO-PMHT
-
Zhang T, Xu C. Cross-domain multi-event tracking via CO-PMHT. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2014, 10(4): 31-42
-
(2014)
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM)
, vol.10
, Issue.4
, pp. 31-42
-
-
Zhang, T.1
Xu, C.2
|