-
1
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
2
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio, "Learning deep architectures for AI, " Foundations and Trends in Machine Learning, vol. 2, no. 1, pp. 1-27, 2009.
-
(2009)
Foundations and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-27
-
-
Bengio, Y.1
-
3
-
-
70350346030
-
Ensemble learning
-
Springer, Berlin, Germany
-
Z. H. Zhou, "Ensemble Learning, " in Encyclopedia of Biometrics, pp. 270-273, Springer, Berlin, Germany, 2009.
-
(2009)
Encyclopedia of Biometrics
, pp. 270-273
-
-
Zhou, Z.H.1
-
4
-
-
0025507176
-
Neural network ensembles
-
L. K. Hansen and P. Salamon, "Neural network ensembles, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993-1001, 1990.
-
(1990)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansen, L.K.1
Salamon, P.2
-
5
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire, "The strength of weak learnability, " Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
6
-
-
84990843810
-
Deep learning research on clinical electrocardiogram analysis
-
L. P. Jin and J. Dong, "Deep learning research on clinical electrocardiogram analysis, " Science China Information Sciences, vol. 45, no. 3, pp. 398-416, 2015.
-
(2015)
Science China Information Sciences
, vol.45
, Issue.3
, pp. 398-416
-
-
Jin, L.P.1
Dong, J.2
-
7
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors, "Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
8
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting, " Journal of Computer and System Sciences, vol. 55, no. 1, part 2, pp. 119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
9
-
-
0001337304
-
Boosting and other ensemble methods
-
H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik, "Boosting and other ensemble methods, " Neural Computation, vol. 6, no. 6, pp. 1289-1301, 1994.
-
(1994)
Neural Computation
, vol.6
, Issue.6
, pp. 1289-1301
-
-
Drucker, H.1
Cortes, C.2
Jackel, L.D.3
LeCun, Y.4
Vapnik, V.5
-
10
-
-
84880692052
-
A brief introduction to boosting
-
Stockholm, Sweden, August
-
R. E. Schapire, "A brief introduction to boosting, " in Proceedings of the 16th International Joint Conference onArtificial Intelligence (IJCAI '99), pp. 1401-1406, Stockholm, Sweden, August 1999.
-
(1999)
Proceedings of the 16th International Joint Conference OnArtificial Intelligence (IJCAI '99)
, pp. 1401-1406
-
-
Schapire, R.E.1
-
11
-
-
0030352275
-
Reducing variance of committee prediction with resampling techniques
-
B. Parmanto, P. W. Munro, and H. R. Doyle, "Reducing variance of committee prediction with resampling techniques, " Connection Science, vol. 8, no. 3-4, pp. 405-426, 1996.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 405-426
-
-
Parmanto, B.1
Munro, P.W.2
Doyle, H.R.3
-
12
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
E. Bauer and R. Kohavi, "An empirical comparison of voting classification algorithms: bagging, boosting, and variants, " Machine Learning, vol. 36, no. 1, pp. 105-139, 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
13
-
-
0000275022
-
Prediction games and arcing classifiers
-
L. Breiman, "Prediction games and arcing classifiers, " Neural Computation, vol. 11, no. 7, pp. 1493-1517, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
14
-
-
0032139235
-
The random subspace method for constructing decision forests
-
T. K. Ho, "The random subspace method for constructing decision forests, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 832-844, 1998.
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.K.1
-
15
-
-
0038808753
-
Input decimated ensembles
-
K. Tumer and N. C. Oza, "Input decimated ensembles, " Pattern Analysis & Applications, vol. 6, no. 1, pp. 65-77, 2003.
-
(2003)
Pattern Analysis & Applications
, vol.6
, Issue.1
, pp. 65-77
-
-
Tumer, K.1
Oza, N.C.2
-
16
-
-
33750095186
-
Rotation forest: A new classifier ensemble method
-
J. J. Rodríguez, L. I. Kuncheva, and C. J. Alonso, "Rotation forest: a new classifier ensemble method, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1619-1630, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.10
, pp. 1619-1630
-
-
Rodríguez, J.J.1
Kuncheva, L.I.2
Alonso, C.J.3
-
17
-
-
84867086266
-
Combining fisher linear discriminants for dissimilarity representations
-
Springer, Berlin, Germany
-
E. Pekalska, M. Skurichina, and R. P. W. Duin, "Combining fisher linear discriminants for dissimilarity representations, " in Multiple Classifier Systems, vol. 1857 of Lecture Notes in Computer Science, pp. 117-126, Springer, Berlin, Germany, 2000.
-
(2000)
Multiple Classifier Systems Vol. 1857 of Lecture Notes in Computer Science
, pp. 117-126
-
-
Pekalska, E.1
Skurichina, M.2
Duin, R.P.W.3
-
18
-
-
9644281038
-
Using diversity measures for generating errorcorrecting output codes in classifier ensembles
-
L. I. Kuncheva, "Using diversity measures for generating errorcorrecting output codes in classifier ensembles, " Pattern Recognition Letters, vol. 26, no. 1, pp. 83-90, 2005.
-
(2005)
Pattern Recognition Letters
, vol.26
, Issue.1
, pp. 83-90
-
-
Kuncheva, L.I.1
-
19
-
-
0029183827
-
Efficient classification for multiclass problems using modular neural networks
-
R. Anand, K. Mehrotra, C. K. Mohan, and S. Ranka, "Efficient classification for multiclass problems using modular neural networks, " IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 117-124, 1995.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, Issue.1
, pp. 117-124
-
-
Anand, R.1
Mehrotra, K.2
Mohan, C.K.3
Ranka, S.4
-
20
-
-
0032355984
-
Classification by pairwise coupling
-
T. Hastie and R. Tibshirani, "Classification by pairwise coupling, " The Annals of Statistics, vol. 26, no. 2, pp. 451-471, 1998.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.2
, pp. 451-471
-
-
Hastie, T.1
Tibshirani, R.2
-
21
-
-
0034276320
-
Randomizing outputs to increase prediction accuracy
-
L. Breiman, "Randomizing outputs to increase prediction accuracy, " Machine Learning, vol. 40, no. 3, pp. 229-242, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.3
, pp. 229-242
-
-
Breiman, L.1
-
22
-
-
56449095607
-
Class-switching neural network ensembles
-
G. Martínez-Muñoz, A. Sánchez-Martínez, D. Hernández-Lobato, and A. Suárez, "Class-switching neural network ensembles, " Neurocomputing, vol. 71, no. 13-15, pp. 2521-2528, 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.13-15
, pp. 2521-2528
-
-
Martínez-Muñoz, G.1
Sánchez-Martínez, A.2
Hernández-Lobato, D.3
Suárez, A.4
-
23
-
-
0000670848
-
Back propagation is sensitiveto initial conditions
-
San Francisco, Calif, USA
-
J. F. Kolen and J. B. Pollack, "Back propagation is sensitiveto initial conditions, " in Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS '91), pp. 860-867, San Francisco, Calif, USA, 1991.
-
(1991)
Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS '91)
, pp. 860-867
-
-
Kolen, J.F.1
Pollack, J.B.2
-
24
-
-
0030235637
-
Error reduction through learning multiple descriptions
-
K. M. Ali and M. J. Pazzani, "Error reduction through learning multiple descriptions, "Machine Learning, vol. 24, no. 3, pp. 173-202, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.3
, pp. 173-202
-
-
Ali, K.M.1
Pazzani, M.J.2
-
25
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests, " Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
26
-
-
0031238275
-
Application ofmajority voting to pattern recognition: An analysis of its behavior and performance
-
L. Lamand C. Y. Suen, "Application ofmajority voting to pattern recognition: an analysis of its behavior and performance, " IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans, vol. 27, no. 5, pp. 553-568, 1997.
-
(1997)
IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans
, vol.27
, Issue.5
, pp. 553-568
-
-
Lamand, L.1
Suen, Y.C.2
-
27
-
-
21244501361
-
A theoretical and experimental analysis of linear combiners for multiple classifier systems
-
G. Fumera and F. Roli, "A theoretical and experimental analysis of linear combiners for multiple classifier systems, " IEEE Transactions on Pattern Analysis andMachine Intelligence, vol. 27, no. 6, pp. 942-956, 2005.
-
(2005)
IEEE Transactions on Pattern Analysis AndMachine Intelligence
, vol.27
, Issue.6
, pp. 942-956
-
-
Fumera, G.1
Roli, F.2
-
28
-
-
0027961797
-
Combining the results of several neural network classifiers
-
G. Rogova, "Combining the results of several neural network classifiers, " Neural Networks, vol. 7, no. 5, pp. 777-781, 1994.
-
(1994)
Neural Networks
, vol.7
, Issue.5
, pp. 777-781
-
-
Rogova, G.1
-
29
-
-
0026692226
-
Stacked generalization
-
D. H. Wolpert, "Stacked generalization, " Neural Networks, vol. 5, no. 2, pp. 241-259, 1992.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.H.1
-
32
-
-
84923852371
-
Horizontal and vertical ensemble with deep representation for classification
-
Atlanta, Ga, USA
-
J. J. Xie, B. Xu, and Z. Chuang, "Horizontal and vertical ensemble with deep representation for classification, " in Proceedings of the International Conference on Machine LearningWorkshop on Representation Learning (ICML '13), Atlanta, Ga, USA, 2013.
-
(2013)
Proceedings of the International Conference on Machine LearningWorkshop on Representation Learning (ICML '13)
-
-
Xie, J.J.1
Xu, B.2
Chuang, Z.3
-
33
-
-
84893100083
-
Learning ensemble classifiers via restricted Boltzmann machines
-
C.-X. Zhang, J.-S. Zhang, N.-N. Ji, and G. Guo, "Learning ensemble classifiers via restricted Boltzmann machines, " Pattern Recognition Letters, vol. 36, no. 1, pp. 161-170, 2014.
-
(2014)
Pattern Recognition Letters
, vol.36
, Issue.1
, pp. 161-170
-
-
Zhang, C.-X.1
Zhang, J.-S.2
Ji, N.-N.3
Guo, G.4
-
34
-
-
84946688846
-
Ensemble deep learning for regression and time series forecasting
-
Orlando, Fla, USA
-
X. H. Qiu, L. Zhang, Y. Ren et al., "Ensemble deep learning for regression and time series forecasting, " in Proceedings of the IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL '14), Orlando, Fla, USA, 2014.
-
(2014)
Proceedings of the IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL '14)
-
-
Qiu, X.H.1
Zhang, L.2
Ren, Y.3
-
35
-
-
84959176713
-
A diversitypenalizing ensemble training method for deep learning
-
Speech Communication Association, Dresden, Germany
-
X. H. Zhang, D. Povey, and S. Khudanpur, "A diversitypenalizing ensemble training method for deep learning, " in Proceedings of the 16th Annual Conference of International Speech Communication Association, Dresden, Germany, 2015.
-
(2015)
Proceedings of the 16th Annual Conference of International
-
-
Zhang, X.H.1
Povey, D.2
Khudanpur, S.3
-
36
-
-
84951084176
-
Improving deep neural network ensembles using reconstruction error
-
Killarney, Ireland, July
-
W. Huang, H. Hong, K. G. Bian, X. Zhou, G. Song, and K. Xie, "Improving deep neural network ensembles using reconstruction error, " in Proceedings of the International Joint Conference on Neural Networks (IJCNN '15), pp. 1-7, Killarney, Ireland, July 2015.
-
(2015)
Proceedings of the International Joint Conference on Neural Networks (IJCNN '15)
, pp. 1-7
-
-
Huang, W.1
Hong, H.2
Bian, K.G.3
Zhou, X.4
Song, G.5
Xie, K.6
-
37
-
-
84873150267
-
A deep learning approach with an ensemblebased neural network classifier for black box ICML 2013 contest
-
Brussels, Belgium
-
L. Romaszko, "A deep learning approach with an ensemblebased neural network classifier for black box ICML 2013 contest, " in Proceedings of the IEEE 12th International Conference on Data Mining Workshops, pp. 865-868, Brussels, Belgium, 2012.
-
(2012)
Proceedings of the IEEE 12th International Conference on Data Mining Workshops
, pp. 865-868
-
-
Romaszko, L.1
-
38
-
-
84951099137
-
Ensemble of deep neural networks using acoustic environment classification for statistical model-based voice activity detection
-
I. Hwang, H. Park, and J. Chang, "Ensemble of deep neural networks using acoustic environment classification for statistical model-based voice activity detection, " Computer Speech & Language, vol. 38, pp. 1-12, 2016.
-
(2016)
Computer Speech & Language
, vol.38
, pp. 1-12
-
-
Hwang, I.1
Park, H.2
Chang, J.3
-
39
-
-
84949929207
-
An ensemble of deep neural networks for object tracking
-
IEEE, Paris, France, October
-
X. Zhou, L. Xie, P. Zhang, and Y. Zhang, "An ensemble of deep neural networks for object tracking, " in Proceedings of the IEEE International Conference on Image Processing (ICIP '14), pp. 843-847, IEEE, Paris, France, October 2014.
-
(2014)
Proceedings of the IEEE International Conference on Image Processing (ICIP '14)
, pp. 843-847
-
-
Zhou, X.1
Xie, L.2
Zhang, P.3
Zhang, Y.4
-
40
-
-
84939857115
-
An effective and novel neural network ensemble for shift pattern detection in control charts
-
M. Barghash, "An effective and novel neural network ensemble for shift pattern detection in control charts, " Computational Intelligence and Neuroscience, vol. 2015, Article ID 939248, 9 pages, 2015.
-
(2015)
Computational Intelligence and Neuroscience
, vol.2015
-
-
Barghash, M.1
-
41
-
-
0030372023
-
On combining artificial neural nets
-
A. J. C. Sharkey, "On combining artificial neural nets, " Connection Science, vol. 8, no. 3-4, pp. 299-314, 1996.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
, pp. 299-314
-
-
Sharkey, A.J.C.1
-
42
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
New York, NY, USA, November
-
Y. LeCun, L. Bottou, Y. Bengio et al., "Gradient-based learning applied to document recognition, " in Proceedings of the IEEE, pp. 2278-2324, New York, NY, USA, November 1998.
-
(1998)
Proceedings of the IEEE
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
-
43
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
44
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Vancouver, Canada
-
Y. Bengio, P. Lamblin, D. Popovici et al., "Greedy layer-wise training of deep networks, " in Proceedings of the Advances in Neural Information Processing Systems (NIPS '06), pp. 153-160, Vancouver, Canada.
-
Proceedings of the Advances in Neural Information Processing Systems (NIPS '06)
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
-
45
-
-
84939174565
-
A new multi-channels sequence recognition framework using deep convolutional neural network
-
R. F. Zhang, C. P. Li, and D. Y. Jia, "A new multi-channels sequence recognition framework using deep convolutional neural network, " Procedia Computer Science, vol. 53, pp. 383-390, 2015.
-
(2015)
Procedia Computer Science
, vol.53
, pp. 383-390
-
-
Zhang, R.F.1
Li, C.P.2
Jia, D.Y.3
-
46
-
-
84958543676
-
Time series classification using multi-channels deep convolutional neural networks
-
F. Li, G. Li, S.-W. Hwang, B. Yao, and Z. Zhang, Eds. vol. 8485 of Lecture Notes in Computer Science
-
Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, "Time series classification using multi-channels deep convolutional neural networks, " inWeb-Age InformationManagement, F. Li, G. Li, S.-W. Hwang, B. Yao, and Z. Zhang, Eds., vol. 8485 of Lecture Notes in Computer Science, pp. 298-310, 2014.
-
(2014)
Web-Age InformationManagement
, pp. 298-310
-
-
Zheng, Y.1
Liu, Q.2
Chen, E.3
Ge, Y.4
Zhao, J.L.5
-
47
-
-
84870941922
-
Wearable ECG monitors and its remote diagnosis service platform
-
J. Dong, J. W. Zhang, H. H. Zhu, L. P. Wang, X. Liu, and Z. J. Li, "Wearable ECG monitors and its remote diagnosis service platform, " IEEE Intelligent Systems, vol. 27, no. 6, pp. 36-43, 2012.
-
(2012)
IEEE Intelligent Systems
, vol.27
, Issue.6
, pp. 36-43
-
-
Dong, J.1
Zhang, J.W.2
Zhu, H.H.3
Wang, L.P.4
Liu, X.5
Li, Z.J.6
-
50
-
-
84868541740
-
CCDD: An enhanced standard ECG database with its management and annotation tools
-
J.-W. Zhang, X. Liu, and J. Dong, "CCDD: an enhanced standard ecg database with its management and annotation tools, " International Journal on Artificial Intelligence Tools, vol. 21, no. 5, Article ID 1240020, 26 pages, 2012.
-
(2012)
International Journal on Artificial Intelligence Tools
, vol.21
, Issue.5
-
-
Zhang, J.-W.1
Liu, X.2
Dong, J.3
-
51
-
-
34250094997
-
Accelerating the convergence of the back-propagation method
-
T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, and D. L. Alkon, "Accelerating the convergence of the back-propagation method, " Biological Cybernetics, vol. 59, no. 4-5, pp. 257-263, 1988.
-
(1988)
Biological Cybernetics
, vol.59
, Issue.4-5
, pp. 257-263
-
-
Vogl, T.P.1
Mangis, J.K.2
Rigler, A.K.3
Zink, W.T.4
Alkon, D.L.5
-
52
-
-
84990851755
-
-
Theano documentation [EB/OL]
-
Theano documentation [EB/OL], http://deeplearning. net/ software/theano/.
-
-
-
-
53
-
-
2342622786
-
Leave one out error, stability, and generalization of voting combinations of classifiers
-
T. Evgeniou, M. Pontil, and A. Elisseeff, "Leave one out error, stability, and generalization of voting combinations of classifiers, " Machine Learning, vol. 55, no. 1, pp. 71-97, 2004.
-
(2004)
Machine Learning
, vol.55
, Issue.1
, pp. 71-97
-
-
Evgeniou, T.1
Pontil, M.2
Elisseeff, A.3
-
54
-
-
84866562436
-
Heartbeat classification using morphological and dynamic features of ECGsignals
-
C. Ye, B. V. K. Vijaya Kumar, and M. T. Coimbra, "Heartbeat classification using morphological and dynamic features of ECGsignals, " IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2930-2941, 2012.
-
(2012)
IEEE Transactions on Biomedical Engineering
, vol.59
, Issue.10
, pp. 2930-2941
-
-
Ye, C.1
Vijaya Kumar, B.V.K.2
Coimbra, M.T.3
-
55
-
-
0021523445
-
Estimation of QRS complex power spectra for design of a QRS filter
-
N. V. Thakor, J. G. Webster, and W. J. Tompkins, "Estimation of QRS complex power spectra for design of a QRS filter, " IEEE Transactions on Biomedical Engineering, vol. 31, no. 11, pp. 702-706, 1984.
-
(1984)
IEEE Transactions on Biomedical Engineering
, vol.31
, Issue.11
, pp. 702-706
-
-
Thakor, N.V.1
Webster, J.G.2
Tompkins, W.J.3
-
56
-
-
84948776811
-
-
JohnWiley & Sons, New York, NY, USA, 2nd edition
-
X. H. Zhou, N. A. Obuchowski, and D. K. McClish, Statistical Methods in DiagnosticMedicine, JohnWiley & Sons, New York, NY, USA, 2nd edition, 2011.
-
(2011)
Statistical Methods in DiagnosticMedicine
-
-
Zhou, X.H.1
Obuchowski, N.A.2
McClish, D.K.3
-
57
-
-
70349915779
-
A small sphere and large margin approach for novelty detection using training data with outliers
-
M. Wu and J. Ye, "A small sphere and large margin approach for novelty detection using training data with outliers, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 11, pp. 2088-2092, 2009.
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.31
, Issue.11
, pp. 2088-2092
-
-
Wu, M.1
Ye, J.2
-
58
-
-
84990833042
-
-
Shanghai Science and Technology Press, Shanghai, China, 1st edition
-
X. Liu, Atlas of Classical Electrocardiograms, Shanghai Science and Technology Press, Shanghai, China, 1st edition, 2011.
-
(2011)
Atlas of Classical Electrocardiograms
-
-
Liu, X.1
-
59
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsar, "Statistical comparisons of classifiers over multiple data sets, " Journal of Machine LearningResearch, vol. 7, pp. 1-30, 2006.
-
(2006)
Journal of Machine LearningResearch
, vol.7
, pp. 1-30
-
-
Demsar, J.1
|