-
1
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
3
-
-
84988436225
-
Deep learning in image recognition
-
Wang Xiao-Gang. Deep learning in image recognition. Communications of the CCF, 2015, 11(8): 15-23
-
(2015)
Communications of the CCF
, vol.11
, Issue.8
, pp. 15-23
-
-
Wang, X.-G.1
-
4
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504-507
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
5
-
-
85198028989
-
ImageNet: a large-scale hierarchical image database
-
Miami, FL: IEEE
-
Deng J, Dong W, Socher R, Li L J, Li K, Li F F. ImageNet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 248-255
-
(2009)
Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Li, F.F.6
-
6
-
-
0000359337
-
Backpropagation applied to hand-written zip code recognition
-
LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W, Jackel L D. Backpropagation applied to hand-written zip code recognition. Neural Computation, 1989, 1(4): 541-51
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
7
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
8
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
Lake Tahoe, Nevada, USA: Curran Associates, Inc.
-
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems 25. Lake Tahoe, Nevada, USA: Curran Associates, Inc., 2012. 1097-1105
-
(2012)
Proceedings of Advances in Neural Information Processing Systems 25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
9
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Columbus, USA: IEEE
-
Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 580-587
-
(2014)
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
10
-
-
84939247735
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
He K M, Zhang X Y, Ren S Q, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916
-
(2015)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.37
, Issue.9
, pp. 1904-1916
-
-
He, K.M.1
Zhang, X.Y.2
Ren, S.Q.3
Sun, J.4
-
11
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA: IEEE
-
Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015. 1-9
-
(2015)
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.Q.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
12
-
-
84925410541
-
Very deep convolutional networks for large-scale image recognition
-
May 16
-
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [Online], available: http://arxiv.org/abs/1409.1556, May 16, 2016
-
(2016)
-
-
Simonyan, K.1
Zisserman, A.2
-
15
-
-
84978717864
-
Deep residual learning for image recognition
-
May 3
-
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition [Online], available: http: //arxiv. org/abs/1512. 03385, May 3, 2016
-
(2016)
-
-
He, K.M.1
Zhang, X.Y.2
Ren, S.Q.3
Sun, J.4
-
16
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-324
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
18
-
-
4043075824
-
-
Beijing: China Machine Press
-
Duda R O, Hart P E, Stork D G [Author], Li Hong-Dong, Yao Tian-Xiang [Translator]. Pattern Classification. Beijing: China Machine Press, 2003.
-
(2003)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
Li, H.-D.4
Yao, T.-X.5
-
20
-
-
84883175798
-
Stochastic pooling for regularization of deep convolutional neural networks
-
May 16
-
Zeiler M D, Fergus R. Stochastic pooling for regularization of deep convolutional neural networks [Online], available: http://arxiv.org/abs/1301.3557, May 16, 2016
-
(2016)
-
-
Zeiler, M.D.1
Fergus, R.2
-
21
-
-
84905286094
-
Rectifier nonlinearities improve neural network acoustic models
-
Atlanta, USA: IMLS
-
Maas A L, Hannun A Y, Ng A Y. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML Workshop on Deep Learning for Audio, Speech, and Language Processing. Atlanta, USA: IMLS, 2013.
-
(2013)
Proceedings of ICML Workshop on Deep Learning for Audio, Speech, and Language Processing
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
22
-
-
84969584486
-
Batch normalization: accelerating deep network training by reducing internal covariate shift
-
Lille, France: IMLS
-
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning. Lille, France: IMLS, 2015. 448-456
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
23
-
-
51949101231
-
A discriminatively trained, multiscale, deformable part model
-
Anchorage, USA: IEEE
-
Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
-
(2008)
Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Felzenszwalb, P.1
McAllester, D.2
Ramanan, D.3
-
25
-
-
84959195179
-
Deformable part models are convolutional neural networks
-
Boston, MA: IEEE
-
Girshick R, Iandola F, Darrell T, Malik J. Deformable part models are convolutional neural networks. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015. 437-446
-
(2015)
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 437-446
-
-
Girshick, R.1
Iandola, F.2
Darrell, T.3
Malik, J.4
-
27
-
-
84906347546
-
Overfeat: integrated recognition, localization and detection using convolutional networks
-
May 16
-
Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, Le-Cun Y. Overfeat: integrated recognition, localization and detection using convolutional networks [Online], available: http://arxiv.org/abs/1312.6229, May 16, 2016
-
(2016)
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
Le-Cun, Y.6
-
28
-
-
84881160857
-
Selective search for object recognition
-
Uijlings J R R, van de Sande K E A, Gevers T, Smeulders A W M. Selective search for object recognition. International Journal of Computer Vision, 2013, 104(2): 154-171
-
(2013)
International Journal of Computer Vision
, vol.104
, Issue.2
, pp. 154-171
-
-
Uijlings, J.R.R.1
van de Sande, K.E.A.2
Gevers, T.3
Smeulders, A.W.M.4
-
29
-
-
84960980241
-
Faster R-CNN: towards real-time object detection with region proposal networks
-
Montréal, Canada: MIT
-
Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of Advances in Neural Information Processing Systems 28. Montréal, Canada: MIT, 2015. 91-99
-
(2015)
Proceedings of Advances in Neural Information Processing Systems 28
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
31
-
-
84953933150
-
Is object localization for free?-weakly-supervised learning with convolutional neural networks
-
Boston, USA: IEEE
-
Oquab M, Bottou L, Laptev I, Sivic J. Is object localization for free?-weakly-supervised learning with convolutional neural networks. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 685-694
-
(2015)
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 685-694
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
32
-
-
84948382785
-
Deepid-net: deformable deep convolutional neural networks for object detection
-
Boston, USA: IEEE
-
Ouyang WL, Wang X G, Zeng X Y, Qiu S, Luo P, Tian Y L, Li H S, Yang S, Wang Z, Loy C C, Tang X O. Deepid-net: deformable deep convolutional neural networks for object detection. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 2403-2412
-
(2015)
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2403-2412
-
-
Ouyang, W.L.1
Wang, X.G.2
Zeng, X.Y.3
Qiu, S.4
Luo, P.5
Tian, Y.L.6
Li, H.S.7
Yang, S.8
Wang, Z.9
Loy, C.C.10
Tang, X.O.11
-
33
-
-
84988337527
-
From unified sub-space analysis to joint deep learning: progress of face recognition in the last decade
-
Wang Xiao-Gang, Sun Yi, Tang Xiao-Ou. From unified sub-space analysis to joint deep learning: progress of face recognition in the last decade. Communications of the CCF, 2015, 11(4): 8-14
-
(2015)
Communications of the CCF
, vol.11
, Issue.4
, pp. 8-14
-
-
Wang, X.-G.1
Sun, Y.2
Tang, X.-O.3
-
34
-
-
84973905350
-
HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition
-
Boston, USA: IEEE
-
Yan Z C, Zhang H, Piramuthu R, Jagadeesh V, DeCoste D, Di W, Yu Y Z. HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Boston, USA: IEEE, 2015. 2740-2748
-
(2015)
Proceedings of the 2015 IEEE International Conference on Computer Vision
, pp. 2740-2748
-
-
Yan, Z.C.1
Zhang, H.2
Piramuthu, R.3
Jagadeesh, V.4
DeCoste, D.5
Di, W.6
Yu, Y.Z.7
-
35
-
-
84959241183
-
Sparse convolutional neural networks
-
Boston, USA: IEEE
-
Liu B Y, Wang M, Foroosh H, Tappen M, Pensky M. Sparse convolutional neural networks. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 806-814
-
(2015)
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 806-814
-
-
Liu, B.Y.1
Wang, M.2
Foroosh, H.3
Tappen, M.4
Pensky, M.5
-
36
-
-
84988448331
-
3DMatch: learning the matching of local 3D geometry in range scans
-
August 11
-
Zeng A, Song S, Nießner M, Fisher M, Xiao J. 3DMatch: learning the matching of local 3D geometry in range scans [Online], available: http://arxiv.org/abs/1603.08182, August 11, 2016
-
(2016)
-
-
Zeng, A.1
Song, S.2
Nießner, M.3
Fisher, M.4
Xiao, J.5
-
38
-
-
84988337522
-
Deep-Context: context-encoding neural pathways for 3D holistic scene understanding
-
August 11
-
Zhang Y, Bai M, Kohli P, Izadi S, Xiao J. Deep-Context: context-encoding neural pathways for 3D holistic scene understanding [Online], available: http://arxiv.org/abs/1603.04922, August 11, 2016
-
(2016)
-
-
Zhang, Y.1
Bai, M.2
Kohli, P.3
Izadi, S.4
Xiao, J.5
-
39
-
-
84906514027
-
Part-based R-CNNs for fine-grained category detection
-
Zurich, Switzerland: Springer
-
Zhang N, Donahue J, Girshick R, Darrell T. Part-based R-CNNs for fine-grained category detection. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 834-849
-
(2014)
Proceedings of the 13th European Conference on Computer Vision
, pp. 834-849
-
-
Zhang, N.1
Donahue, J.2
Girshick, R.3
Darrell, T.4
-
40
-
-
84969962996
-
Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
-
Shin H C, Roth H R, Gao M C, Lu L, Xu Z Y, Nogues I, Yao J H, Mollura D, Summers R M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285-1298
-
(2016)
IEEE Transactions on Medical Imaging
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.C.1
Roth, H.R.2
Gao, M.C.3
Lu, L.4
Xu, Z.Y.5
Nogues, I.6
Yao, J.H.7
Mollura, D.8
Summers, R.M.9
-
41
-
-
0031185845
-
Eigenfaces vs. fisherfaces: recognition using class specific linear projection
-
Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.7
, pp. 711-720
-
-
Belhumeur, P.N.1
Hespanha, J.P.2
Kriegman, D.J.3
-
42
-
-
84911126535
-
Deep learning face representation from predicting 10, 000 classes
-
Columbus, USA: IEEE
-
Sun Y, Wang X G, Tang X O. Deep learning face representation from predicting 10, 000 classes. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 1891-1898
-
(2014)
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1891-1898
-
-
Sun, Y.1
Wang, X.G.2
Tang, X.O.3
-
43
-
-
84911198048
-
Deepface: closing the gap to human-level performance in face verification
-
Columbus, USA: IEEE
-
Taigman Y, Yang M, Ranzato M A, Wolf L. Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 1701-1708
-
(2014)
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1701-1708
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.A.3
Wolf, L.4
-
44
-
-
84937852544
-
Deep learning face representation by joint identification-verification
-
Montreal, Canada: Curran Associates, Inc
-
Sun Y, Wang Y H, Wang X G, Tang X O. Deep learning face representation by joint identification-verification. In: Proceedings of Advances in Neural Information Processing Systems 27. Montreal, Canada: Curran Associates, Inc., 2014. 1988-1996
-
(2014)
Proceedings of Advances in Neural Information Processing Systems 27
, pp. 1988-1996
-
-
Sun, Y.1
Wang, Y.H.2
Wang, X.G.3
Tang, X.O.4
-
45
-
-
84960947742
-
Face image analysis and recognition with deep learning
-
Shan Shi-Guang, Kan Mei-Na, Li Shao-Xin, Zhang Jie, Chen Xi-Lin. Face image analysis and recognition with deep learning. Communications of the CCF, 2015, 11(4): 15-21
-
(2015)
Communications of the CCF
, vol.11
, Issue.4
, pp. 15-21
-
-
Shan, S.-G.1
Kan, M.-N.2
Li, S.-X.3
Zhang, J.4
Chen, X.-L.5
-
46
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet C, Couprie C, Najman L, LeCun Y. Learning hierarchical features for scene labeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915-29
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
LeCun, Y.4
-
47
-
-
84938881034
-
Higher-order Markov random fields and their applications in scene understanding
-
Yu Miao, Hu Zhan-Yi. Higher-order Markov random fields and their applications in scene understanding. Acta Automatica Sinica, 2015, 41(7): 1213-1234
-
(2015)
Acta Automatica Sinica
, vol.41
, Issue.7
, pp. 1213-1234
-
-
Yu, M.1
Hu, Z.-Y.2
-
49
-
-
84866697430
-
Parsing clothing in fashion photographs
-
Providence, RI: IEEE
-
Yamaguchi K, Kiapour M H, Ortiz L E, Berg T L. Parsing clothing in fashion photographs. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012. 3570-3577
-
(2012)
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3570-3577
-
-
Yamaguchi, K.1
Kiapour, M.H.2
Ortiz, L.E.3
Berg, T.L.4
-
50
-
-
84890917459
-
Fashion parsing with weak color-category labels
-
Liu S, Feng J S, Domokos C, Xu H, Huang J S, Hu Z Z, Yan S C. Fashion parsing with weak color-category labels. IEEE Transactions on Multimedia, 2014, 16(1): 253-265
-
(2014)
IEEE Transactions on Multimedia
, vol.16
, Issue.1
, pp. 253-265
-
-
Liu, S.1
Feng, J.S.2
Domokos, C.3
Xu, H.4
Huang, J.S.5
Hu, Z.Z.6
Yan, S.C.7
-
51
-
-
84911432973
-
Towards unified human parsing and pose estimation
-
Columbus, OH: IEEE
-
Dong J, Chen Q, Shen X H, Yang J C, Yan S C. Towards unified human parsing and pose estimation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH: IEEE,2014. 843-850
-
(2014)
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 843-850
-
-
Dong, J.1
Chen, Q.2
Shen, X.H.3
Yang, J.C.4
Yan, S.C.5
-
52
-
-
84898822055
-
A deformable mixture parsing model with parselets
-
Sydney, Australia: IEEE
-
Dong J, Chen Q, Xia W, Huang Z Y, Yan S C. A deformable mixture parsing model with parselets. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 3408-3415
-
(2013)
Proceedings of the 2013 IEEE International Conference on Computer Vision
, pp. 3408-3415
-
-
Dong, J.1
Chen, Q.2
Xia, W.3
Huang, Z.Y.4
Yan, S.C.5
-
53
-
-
84959224319
-
Matching-CNN meets KNN: quasi-parametric human parsing
-
Boston, MA: IEEE
-
Liu S, Liang X D, Liu L Q, Shen X H, Yang J C, Xu C S, Lin L, Cao X C, Yan S C. Matching-CNN meets KNN: quasi-parametric human parsing. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015. 1419-1427
-
(2015)
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1419-1427
-
-
Liu, S.1
Liang, X.D.2
Liu, L.Q.3
Shen, X.H.4
Yang, J.C.5
Xu, C.S.6
Lin, L.7
Cao, X.C.8
Yan, S.C.9
-
55
-
-
80054898486
-
Nonparametric scene parsing via label transfer
-
Liu C, Yuen J, Torralba A. Nonparametric scene parsing via label transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2368-2382
-
(2011)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.33
, Issue.12
, pp. 2368-2382
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
-
56
-
-
84906346479
-
CollageParsing: nonparametric scene parsing by adaptive overlapping windows
-
Zurich, Switzerland: Springer
-
Tung F, Little J J. CollageParsing: nonparametric scene parsing by adaptive overlapping windows. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 511-525
-
(2014)
Proceedings of the 13th European Conference on Computer Vision
, pp. 511-525
-
-
Tung, F.1
Little, J.J.2
-
57
-
-
84965114050
-
Learning to segment object candidates
-
Montréal, Canada: Curran Associates, Inc
-
Pinheiro P O, Collobert R, Dollar P. Learning to segment object candidates. In: Proceedings of Advances in Neural Information Processing Systems 28. Montréal, Canada: Curran Associates, Inc. , 2015. 1981-1989
-
(2015)
Proceedings of Advances in Neural Information Processing Systems 28
, pp. 1981-1989
-
-
Pinheiro, P.O.1
Collobert, R.2
Dollar, P.3
-
58
-
-
84950998141
-
Deep deconvolutional networks for scene parsing
-
May 3
-
Mohan R. Deep deconvolutional networks for scene parsing [Online], available: http://arxiv. org/abs/1411. 4101, May 3, 2016
-
(2016)
-
-
Mohan, R.1
-
60
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
Santiago, Chile: IEEE
-
Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z Z, Du D L, Huang C, Torr P H S. Conditional random fields as recurrent neural networks. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 1529-1537
-
(2015)
Proceedings of the 2015 IEEE International Conference on Computer Vision
, pp. 1529-1537
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.Z.5
Du, D.L.6
Huang, C.7
Torr, P.H.S.8
-
61
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
Santiago, Chile: IEEE
-
Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. 2650-2658
-
(2015)
Proceedings of the 2015 IEEE International Conference on Computer Vision
, pp. 2650-2658
-
-
Eigen, D.1
Fergus, R.2
-
63
-
-
84907552337
-
Real-time continuous pose recovery of human hands using convolutional networks
-
Tompson J, Stein M, Lecun Y, Perlin K. Real-time continuous pose recovery of human hands using convolutional networks. ACM Transactions on Graphics (TOG), 2014, 33(5): Article No. 169
-
(2014)
ACM Transactions on Graphics (TOG)
, vol.33
, Issue.5
-
-
Tompson, J.1
Stein, M.2
Lecun, Y.3
Perlin, K.4
-
64
-
-
85083953149
-
Learning human pose estimation features with convolutional networks
-
Banff, Canada: Computational and Biological Learning Society
-
Jain A, Tompson J, Andriluka M, Taylor G W, Bregler C. Learning human pose estimation features with convolutional networks. In: Proceedings of the 2014 International Conference on Learning Representations. Banff, Canada: Computational and Biological Learning Society, 2014. 1-14
-
(2014)
Proceedings of the 2014 International Conference on Learning Representations
, pp. 1-14
-
-
Jain, A.1
Tompson, J.2
Andriluka, M.3
Taylor, G.W.4
Bregler, C.5
|