메뉴 건너뛰기




Volumn 97, Issue , 2017, Pages 12-32

Knowledge discovery in cardiology: A systematic literature review

Author keywords

Cardiology; Data mining; Knowledge extraction; Medical tasks

Indexed keywords

CARDIOLOGY; DECISION MAKING; DECISION TREES; MEDICAL COMPUTING; SUPPORT VECTOR MACHINES;

EID: 84988689033     PISSN: 13865056     EISSN: 18728243     Source Type: Journal    
DOI: 10.1016/j.ijmedinf.2016.09.005     Document Type: Review
Times cited : (72)

References (181)
  • 1
    • 84988708132 scopus 로고    scopus 로고
    • Global status report on non communicable diseases. Geneva, World Health Organization, 2011.
    • [1] Global status report on non communicable diseases 2010. Geneva, World Health Organization, 2011.
    • (2010)
  • 2
    • 84988708133 scopus 로고    scopus 로고
    • Global atlas on cardiovascular disease prevention and control. Geneva, World Health Organization,.
    • [2] Global atlas on cardiovascular disease prevention and control. Geneva, World Health Organization, 2011.
    • (2011)
  • 3
    • 33845338724 scopus 로고    scopus 로고
    • Projections of global mortality and burden of disease from 2002 to 2030
    • [3] Mathers, C.D., Loncar, D., Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med., 3, 2006, e442.
    • (2006) PLoS Med. , vol.3 , pp. e442
    • Mathers, C.D.1    Loncar, D.2
  • 4
    • 84988726904 scopus 로고    scopus 로고
    • [4] http://www.who.int/mediacentre/factsheets/fs317/en/.
  • 5
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • [5] Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., From data mining to knowledge discovery in databases. AI Mag. 17 (1996), 37–54.
    • (1996) AI Mag. , vol.17 , pp. 37-54
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 6
    • 77958153220 scopus 로고    scopus 로고
    • Educational data mining: a review of the state of the art
    • [6] Romero, C., Ventura, S., Educational data mining: a review of the state of the art. IEEE Trans. Syst. Man Cybern Part C 40 (2010), 601–618.
    • (2010) IEEE Trans. Syst. Man Cybern Part C , vol.40 , pp. 601-618
    • Romero, C.1    Ventura, S.2
  • 7
    • 43549125222 scopus 로고    scopus 로고
    • Data mining in course management systems: moodle case study and tutorial
    • [7] Romero, C., Ventura, S., Garcia, E., Data mining in course management systems: moodle case study and tutorial. Comput. Educ. 51 (2008), 368–384.
    • (2008) Comput. Educ. , vol.51 , pp. 368-384
    • Romero, C.1    Ventura, S.2    Garcia, E.3
  • 8
    • 37249089420 scopus 로고    scopus 로고
    • Predictive data mining in clinical medicine: current issues and guidelines
    • [8] Bellazzi, R., Zupan, B., Predictive data mining in clinical medicine: current issues and guidelines. Int. J. Med. Inform. 77 (2008), 81–97.
    • (2008) Int. J. Med. Inform. , vol.77 , pp. 81-97
    • Bellazzi, R.1    Zupan, B.2
  • 9
    • 33751432287 scopus 로고    scopus 로고
    • Data mining techniques for the detection of fraudulent financial statements
    • [9] Kirkos, E., Spathis, C., Manolopoulos, Y., Data mining techniques for the detection of fraudulent financial statements. Expert Syst. Appl. 32 (2007), 995–1003.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 995-1003
    • Kirkos, E.1    Spathis, C.2    Manolopoulos, Y.3
  • 10
    • 78651084785 scopus 로고    scopus 로고
    • The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature
    • [10] Ngai, E.W.T., Hu, Y., Wong, Y.H., Che, Y., Sun, X., The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature. Decis. Support Syst. 50 (2011), 559–569.
    • (2011) Decis. Support Syst. , vol.50 , pp. 559-569
    • Ngai, E.W.T.1    Hu, Y.2    Wong, Y.H.3    Che, Y.4    Sun, X.5
  • 11
    • 34548680757 scopus 로고    scopus 로고
    • Strong compound-risk factors: efficient discovery through emerging patterns and contrast sets
    • [11] Jinyan, L., Qiang, Y., Strong compound-risk factors: efficient discovery through emerging patterns and contrast sets. IEEE Trans. Inf. Technol. B 11 (2007), 544–552.
    • (2007) IEEE Trans. Inf. Technol. B , vol.11 , pp. 544-552
    • Jinyan, L.1    Qiang, Y.2
  • 12
    • 84866851639 scopus 로고    scopus 로고
    • Review of data mining classification models in cardiovascular disease diagnosis
    • [12] Kumari, M., Godara, S., Review of data mining classification models in cardiovascular disease diagnosis. Int. J. Comput. Appl. 4 (2011), 1–4.
    • (2011) Int. J. Comput. Appl. , vol.4 , pp. 1-4
    • Kumari, M.1    Godara, S.2
  • 13
    • 84918523848 scopus 로고    scopus 로고
    • Review of heart disease prediction system using data mining and hybrid intelligent techniques
    • [13] Chitra, R., Seenivasagam, V., Review of heart disease prediction system using data mining and hybrid intelligent techniques. ICTACT J. Soft Comput. 3 (2013), 605–609.
    • (2013) ICTACT J. Soft Comput. , vol.3 , pp. 605-609
    • Chitra, R.1    Seenivasagam, V.2
  • 14
    • 33847286844 scopus 로고    scopus 로고
    • Lessons from applying the systematic literature review process within the software engineering domain
    • [14] Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M., Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80 (2007), 571–583.
    • (2007) J. Syst. Softw. , vol.80 , pp. 571-583
    • Brereton, P.1    Kitchenham, B.A.2    Budgen, D.3    Turner, M.4    Khalil, M.5
  • 15
    • 85027945931 scopus 로고    scopus 로고
    • Analogy-based software development effort estimation: a systematic mapping and review
    • [16] Idri, A., Amazal, F.A., Abran, A., Analogy-based software development effort estimation: a systematic mapping and review. Inf. Softw. Technol. 58 (2015), 206–230.
    • (2015) Inf. Softw. Technol. , vol.58 , pp. 206-230
    • Idri, A.1    Amazal, F.A.2    Abran, A.3
  • 17
    • 84901431429 scopus 로고    scopus 로고
    • A data mining approach for prediction of heart disease using neural networks
    • [23] Dangare, C.S., Apte, S.S., A data mining approach for prediction of heart disease using neural networks. Int. J. Comput. Eng. Tchnol. 3 (2012), 30–40.
    • (2012) Int. J. Comput. Eng. Tchnol. , vol.3 , pp. 30-40
    • Dangare, C.S.1    Apte, S.S.2
  • 18
    • 84861810268 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease
    • [24] Muthukaruppan, S., Er, M.J., A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease. Expert Syst. Appl. 39 (2012), 11657–11665.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 11657-11665
    • Muthukaruppan, S.1    Er, M.J.2
  • 19
    • 33746602742 scopus 로고    scopus 로고
    • An association rule mining-based methodology for automated detection of ischemic ECG beats
    • [25] Exarchos, T.P., Papaloukas, C., Fotiadis, D.I., Michalis, L.K., An association rule mining-based methodology for automated detection of ischemic ECG beats. IEEE Trans. Biomed. Eng. 53 (2006), 1531–1540.
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , pp. 1531-1540
    • Exarchos, T.P.1    Papaloukas, C.2    Fotiadis, D.I.3    Michalis, L.K.4
  • 20
    • 84880883861 scopus 로고    scopus 로고
    • Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population
    • [26] Liu, J., Tang, Z.H., Zeng, F., Li, Z., Zhou, L., Artificial neural network models for prediction of cardiovascular autonomic dysfunction in general Chinese population. BMC Med. Inform. Decis. Mak., 13, 2013, 80.
    • (2013) BMC Med. Inform. Decis. Mak. , vol.13 , pp. 80
    • Liu, J.1    Tang, Z.H.2    Zeng, F.3    Li, Z.4    Zhou, L.5
  • 21
  • 26
    • 84884893460 scopus 로고    scopus 로고
    • Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability
    • [32] Melillo, P., DeLuca, N., Bracale, M., Pecchia, L., Classification tree for risk assessment in patients suffering from congestive heart failure via long-term heart rate variability. IEEE J. Biomed. Health Inf. 17 (2013), 727–733.
    • (2013) IEEE J. Biomed. Health Inf. , vol.17 , pp. 727-733
    • Melillo, P.1    DeLuca, N.2    Bracale, M.3    Pecchia, L.4
  • 27
    • 84865337557 scopus 로고    scopus 로고
    • Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules
    • [33] Anooj, P.K., Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules. Cent. Eur. J. Comput. Sci. 1 (2011), 482–498.
    • (2011) Cent. Eur. J. Comput. Sci. , vol.1 , pp. 482-498
    • Anooj, P.K.1
  • 29
    • 84866002275 scopus 로고    scopus 로고
    • Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches
    • [35] Son, C.S., Kim, Y.N., Kim, H.S., Park, H.S., Kim, M.S., Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. J. Biomed. Inf. 45 (2012), 999–1008.
    • (2012) J. Biomed. Inf. , vol.45 , pp. 999-1008
    • Son, C.S.1    Kim, Y.N.2    Kim, H.S.3    Park, H.S.4    Kim, M.S.5
  • 31
    • 85042696795 scopus 로고    scopus 로고
    • Intelligent heart disease prediction system using probabilistic neural network
    • [37] Dessai, I.S.F., Intelligent heart disease prediction system using probabilistic neural network. Int. J. Adv. Comput. Theory Eng. 2 (2013), 38–44.
    • (2013) Int. J. Adv. Comput. Theory Eng. , vol.2 , pp. 38-44
    • Dessai, I.S.F.1
  • 33
    • 50049126632 scopus 로고    scopus 로고
    • Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal
    • [39] Asl, B.M., Setarehdan, S.K., Mohebbi, M., Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif. Intell. Med. 44 (2008), 51–64.
    • (2008) Artif. Intell. Med. , vol.44 , pp. 51-64
    • Asl, B.M.1    Setarehdan, S.K.2    Mohebbi, M.3
  • 34
    • 84855203264 scopus 로고    scopus 로고
    • Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal
    • [40] Mohebbi, M., Ghassemian, H., Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal. Comput. Meth. Prog. Biomed. 105 (2012), 40–49.
    • (2012) Comput. Meth. Prog. Biomed. , vol.105 , pp. 40-49
    • Mohebbi, M.1    Ghassemian, H.2
  • 35
    • 33750051338 scopus 로고    scopus 로고
    • A decision support system based on support vector machines for diagnosis of the heart valve diseases
    • [41] Çomak, E., Arslan, A., Türkoğlu, I., A decision support system based on support vector machines for diagnosis of the heart valve diseases. Comput. Biol. Med. 37 (2007), 21–27.
    • (2007) Comput. Biol. Med. , vol.37 , pp. 21-27
    • Çomak, E.1    Arslan, A.2    Türkoğlu, I.3
  • 36
    • 77955313314 scopus 로고    scopus 로고
    • A new method for classification of ECG arrhythmias using neural network with adaptive activation function
    • [42] Özbaya, Y., Tezel, G., A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digit Signal Process 20 (2010), 1040–1049.
    • (2010) Digit Signal Process , vol.20 , pp. 1040-1049
    • Özbaya, Y.1    Tezel, G.2
  • 38
    • 78651294041 scopus 로고    scopus 로고
    • Diagnosis of cardiovascular abnormalities from compressed ECG: a data mining-Based approach
    • 33–39
    • [44] Sufi, F., Khalil, I., Diagnosis of cardiovascular abnormalities from compressed ECG: a data mining-Based approach. IEEE Trans. Inf. Technol. Biomed., 15, 2011 33–39.
    • (2011) IEEE Trans. Inf. Technol. Biomed. , vol.15
    • Sufi, F.1    Khalil, I.2
  • 39
    • 84864060051 scopus 로고    scopus 로고
    • Sparse representation-based heartbeat classification using independent component analysis
    • [45] Huang, H.F., Hu, G.S., Zhu, L., Sparse representation-based heartbeat classification using independent component analysis. J. Med. Syst. 36 (2012), 1235–1247.
    • (2012) J. Med. Syst. , vol.36 , pp. 1235-1247
    • Huang, H.F.1    Hu, G.S.2    Zhu, L.3
  • 42
    • 48349093208 scopus 로고    scopus 로고
    • Cardiovascular abnormality detection method using cardiac sound characteristic waveform with data clustering technique
    • [48] Choi, S., Jiang, Z., Kim, I.H., Park, C.W., Cardiovascular abnormality detection method using cardiac sound characteristic waveform with data clustering technique. International Conference on Control, Automation and Systems, 2007, 1596–1600.
    • (2007) International Conference on Control, Automation and Systems , pp. 1596-1600
    • Choi, S.1    Jiang, Z.2    Kim, I.H.3    Park, C.W.4
  • 43
    • 70449562697 scopus 로고    scopus 로고
    • Neural Networks Based Diagnosis of Heart Arrhythmias Using Chaotic and Nonlinear Features of HRV Signals
    • International Association of Computer Science and Information Technology
    • [49] Rouhani, M., Soleymani, R., Neural Networks Based Diagnosis of Heart Arrhythmias Using Chaotic and Nonlinear Features of HRV Signals. 2009, International Association of Computer Science and Information Technology, 545–549.
    • (2009) , pp. 545-549
    • Rouhani, M.1    Soleymani, R.2
  • 44
    • 84866877390 scopus 로고    scopus 로고
    • Development of evolutionary data mining algorithms and their applications to cardiac disease diagnosis
    • [50] Liu, J.L., Hsu, Y.T., Hung, C.L., Development of evolutionary data mining algorithms and their applications to cardiac disease diagnosis. IEEE Congress on Evolutionary Computation, 2012, 1–8.
    • (2012) IEEE Congress on Evolutionary Computation , pp. 1-8
    • Liu, J.L.1    Hsu, Y.T.2    Hung, C.L.3
  • 46
    • 78650661164 scopus 로고    scopus 로고
    • Association rule discovery with fuzzy decreasing support on Syndrome Differentiation and medication in coronary heart disease
    • [52] Yi, W., Duan, J., Lu, M., Association rule discovery with fuzzy decreasing support on Syndrome Differentiation and medication in coronary heart disease. 3rd International Conference on Biomedical Engineering and Informatics, 2010, 2297–2301.
    • (2010) 3rd International Conference on Biomedical Engineering and Informatics , pp. 2297-2301
    • Yi, W.1    Duan, J.2    Lu, M.3
  • 47
    • 84867287964 scopus 로고    scopus 로고
    • Effective diagnosis of coronary artery disease using the rotation forest ensemble method
    • [53] Karabulut, E.M., İbrikçi, T., Effective diagnosis of coronary artery disease using the rotation forest ensemble method. J. Med. Syst. 36 (2012), 3011–3018.
    • (2012) J. Med. Syst. , vol.36 , pp. 3011-3018
    • Karabulut, E.M.1    İbrikçi, T.2
  • 48
    • 84867321522 scopus 로고    scopus 로고
    • Design of a fuzzy-based decision support system for coronary heart disease diagnosis
    • [54] Lahsasna, A., Ainon, R.N., Zainuddin, R., Bulgiba, A., Design of a fuzzy-based decision support system for coronary heart disease diagnosis. J. Med. Syst. 36 (2012), 3293–3306.
    • (2012) J. Med. Syst. , vol.36 , pp. 3293-3306
    • Lahsasna, A.1    Ainon, R.N.2    Zainuddin, R.3    Bulgiba, A.4
  • 52
    • 60249097051 scopus 로고    scopus 로고
    • Effective diagnosis of heart disease through neural networks ensembles
    • [58] Das, R., Turkoglu, I., Sengur, A., Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 36 (2009), 7675–7680.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7675-7680
    • Das, R.1    Turkoglu, I.2    Sengur, A.3
  • 54
    • 78651313386 scopus 로고    scopus 로고
    • Discrimination power of short-term heart rate variability measures for CHF assessment
    • [60] Pecchia, L., Melillo, P., Sansone, M., Bracale, M., Discrimination power of short-term heart rate variability measures for CHF assessment. IEEE Trans. Inf. Technol. Biomed. 15 (2011), 40–46.
    • (2011) IEEE Trans. Inf. Technol. Biomed. , vol.15 , pp. 40-46
    • Pecchia, L.1    Melillo, P.2    Sansone, M.3    Bracale, M.4
  • 55
    • 62249105920 scopus 로고    scopus 로고
    • Early detection of decompensation conditions in heart failure patients by knowledge discovery: the HEARTFAID approaches
    • [61] Candelieri, A., Conforti, D., Perticone, F., Sciacqua, A., Kawecka-Jaszcz, K., Styczkiewicz, K., Early detection of decompensation conditions in heart failure patients by knowledge discovery: the HEARTFAID approaches. Comput. Cardiol., 2008, 893–896.
    • (2008) Comput. Cardiol. , pp. 893-896
    • Candelieri, A.1    Conforti, D.2    Perticone, F.3    Sciacqua, A.4    Kawecka-Jaszcz, K.5    Styczkiewicz, K.6
  • 56
    • 84856495532 scopus 로고    scopus 로고
    • Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device
    • [62] Wang, Y., Simon, M.A., Bonde, P., Harris, B.U., Teuteberg, J.J., Kormos, R.L., Antaki, J.F., Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J. Heart Lung Transpl. 31 (2012), 140–149.
    • (2012) J. Heart Lung Transpl. , vol.31 , pp. 140-149
    • Wang, Y.1    Simon, M.A.2    Bonde, P.3    Harris, B.U.4    Teuteberg, J.J.5    Kormos, R.L.6    Antaki, J.F.7
  • 57
    • 77954309290 scopus 로고    scopus 로고
    • Classification of the electrocardiogram signals using supervised classifiers and efficient features
    • [63] Zadeh, A.E., Khazaee, A., Ranaee, V., Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput. Methods Prog. Biomed. 99 (2010), 179–194.
    • (2010) Comput. Methods Prog. Biomed. , vol.99 , pp. 179-194
    • Zadeh, A.E.1    Khazaee, A.2    Ranaee, V.3
  • 58
    • 84862808925 scopus 로고    scopus 로고
    • Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines
    • [64] Shen, C.P., Kao, W.C., Yang, Y.Y., Hsu, M.C., Wu, F., Lai, Y.T., Detection of cardiac arrhythmia in electrocardiograms using adaptive feature extraction and modified support vector machines. Expert Syst. Appl. 39 (2012), 7845–7852.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 7845-7852
    • Shen, C.P.1    Kao, W.C.2    Yang, Y.Y.3    Hsu, M.C.4    Wu, F.5    Lai, Y.T.6
  • 60
    • 80053222008 scopus 로고    scopus 로고
    • A survey on graphical methods for classification predictive performance evaluation
    • [67] Prati, R.C., Batista, G.E.A.P.A., Monard, M.C., A survey on graphical methods for classification predictive performance evaluation. IEEE Trans. Knowl. Data Eng. 23 (2011), 1601–1618.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , pp. 1601-1618
    • Prati, R.C.1    Batista, G.E.A.P.A.2    Monard, M.C.3
  • 61
    • 0003585297 scopus 로고    scopus 로고
    • Data Mining, Concepts and Techniques
    • Morgan Kaufmann Publishers
    • [68] Han, J., Kamber, M., Data Mining, Concepts and Techniques. 2001, Morgan Kaufmann Publishers.
    • (2001)
    • Han, J.1    Kamber, M.2
  • 62
    • 84943201883 scopus 로고    scopus 로고
    • BagMOOV: a novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting
    • [69] Bashir, S., Qamar, U., Khan, F.H., BagMOOV: a novel ensemble for heart disease prediction bootstrap aggregation with multi-objective optimized voting. Aust. Phys. Eng. Sci. Med. 38 (2015), 305–323.
    • (2015) Aust. Phys. Eng. Sci. Med. , vol.38 , pp. 305-323
    • Bashir, S.1    Qamar, U.2    Khan, F.H.3
  • 65
    • 33751375903 scopus 로고    scopus 로고
    • Cardiovascular Disease.Disease Control Priorities in Developing Countries
    • 2nd edition World Bank Washington (DC) (Chapter 33) available from:
    • [72] Gaziano, T., Reddy, K.S., Paccaud, F., et al. Cardiovascular Disease.Disease Control Priorities in Developing Countries. 2nd edition, 2006, World Bank, Washington (DC) (Chapter 33) available from: http://www.ncbi.nlm.nih.gov/books/NBK11767/.
    • (2006)
    • Gaziano, T.1    Reddy, K.S.2    Paccaud, F.3
  • 66
    • 84988711218 scopus 로고    scopus 로고
    • A review: comparative study of various clustering techniques in data mining
    • [73] Joshi, A., Kaur, R., A review: comparative study of various clustering techniques in data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3 (2013), 55–57.
    • (2013) Int. J. Adv. Res. Comput. Sci. Softw. Eng. , vol.3 , pp. 55-57
    • Joshi, A.1    Kaur, R.2
  • 68
    • 37249092976 scopus 로고    scopus 로고
    • A comparison of four data mining models: bayes, neural network, SVM and decision trees in identifying syndromes in Coronary heart disease
    • [75] Jianxin, C., Yanwei, X., Guangcheng, X., Jing, C., Jianqiang, Y., Dongbin, Z., Jie, W., A comparison of four data mining models: bayes, neural network, SVM and decision trees in identifying syndromes in Coronary heart disease. 4th International Symposium on Neural Networks 4491 (2007), 1274–1279.
    • (2007) 4th International Symposium on Neural Networks , vol.4491 , pp. 1274-1279
    • Jianxin, C.1    Yanwei, X.2    Guangcheng, X.3    Jing, C.4    Jianqiang, Y.5    Dongbin, Z.6    Jie, W.7
  • 70
    • 58249098813 scopus 로고    scopus 로고
    • Heart sound reproduction based on neural network classification of cardiac valve disorders using wavelet transforms of PCG signals
    • [77] Babaei, S., Geranmayeh, A., Heart sound reproduction based on neural network classification of cardiac valve disorders using wavelet transforms of PCG signals. Comput. Biol. Med. 39 (2009), 8–15.
    • (2009) Comput. Biol. Med. , vol.39 , pp. 8-15
    • Babaei, S.1    Geranmayeh, A.2
  • 71
    • 68749120727 scopus 로고    scopus 로고
    • Coronary artery disease prediction method using linear and nonlinear feature of heart rate variability in three recumbent postures
    • [78] Lee, H.G., Kim, W.S., Noh, K.Y., Shin, J.H., Yun, U., Ryu, K.H., Coronary artery disease prediction method using linear and nonlinear feature of heart rate variability in three recumbent postures. Inf. Syst. Front. 11 (2009), 419–431.
    • (2009) Inf. Syst. Front. , vol.11 , pp. 419-431
    • Lee, H.G.1    Kim, W.S.2    Noh, K.Y.3    Shin, J.H.4    Yun, U.5    Ryu, K.H.6
  • 72
    • 84870239197 scopus 로고    scopus 로고
    • Association rule mining to detect factors which contribute to heart disease in males and females
    • [79] Nahar, J., Tasadduq, I., Tickle, K.S., Chen, Y.P.P., Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst. Appl. 40 (2013), 1086–1093.
    • (2013) Expert Syst. Appl. , vol.40 , pp. 1086-1093
    • Nahar, J.1    Tasadduq, I.2    Tickle, K.S.3    Chen, Y.P.P.4
  • 73
    • 56349166799 scopus 로고    scopus 로고
    • Assessment of exercise stress testing with artificial neural network in determining coronary artery disease and predicting lesion localization
    • [80] Babaoglu, I., Baykan, O.K., Aygul, N., Ozdemir, K., Bayrak, M., Assessment of exercise stress testing with artificial neural network in determining coronary artery disease and predicting lesion localization. Expert Syst. Appl. 36 (2009), 2562–2566.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2562-2566
    • Babaoglu, I.1    Baykan, O.K.2    Aygul, N.3    Ozdemir, K.4    Bayrak, M.5
  • 74
    • 34248647301 scopus 로고    scopus 로고
    • Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease
    • [81] Kurt, I., Ture, M., Kurum, A.T., Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl. 34 (2008), 366–374.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 366-374
    • Kurt, I.1    Ture, M.2    Kurum, A.T.3
  • 75
    • 84861813983 scopus 로고    scopus 로고
    • Application of principal component analysis to ECG signals for automated diagnosis of cardiac health
    • [82] Martis, R.J., Acharya, U.R., Mandana, K.M., Raya, A.K., Chakraborty, C., Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39 (2012), 11792–11800.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 11792-11800
    • Martis, R.J.1    Acharya, U.R.2    Mandana, K.M.3    Raya, A.K.4    Chakraborty, C.5
  • 77
    • 71349083973 scopus 로고    scopus 로고
    • A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
    • [84] Babaoglu, I., Findik, O., Ülker, E., A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine. Expert Syst. Appl. 37 (2010), 3177–3183.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3177-3183
    • Babaoglu, I.1    Findik, O.2    Ülker, E.3
  • 78
    • 51549100211 scopus 로고    scopus 로고
    • A data mining approach for Coronary heart disease prediction using HRV features and carotid arterial wall thickness BMEI 2008
    • [85] Lee, H.G., Noh, K.Y., Ryu, K.H., A data mining approach for Coronary heart disease prediction using HRV features and carotid arterial wall thickness BMEI 2008. International Conference on BioMedical Engineering and Informatics 1 (2008), 200–206.
    • (2008) International Conference on BioMedical Engineering and Informatics , vol.1 , pp. 200-206
    • Lee, H.G.1    Noh, K.Y.2    Ryu, K.H.3
  • 80
    • 64749091342 scopus 로고    scopus 로고
    • Support vectors machine-based identification of heart valve diseases using heart sounds
    • [87] Maglogiannis, I., Loukis, E., Zafiropoulos, E., Stasis, A., Support vectors machine-based identification of heart valve diseases using heart sounds. Comput. Meth. Prog. Biomed. 95 (2009), 47–61.
    • (2009) Comput. Meth. Prog. Biomed. , vol.95 , pp. 47-61
    • Maglogiannis, I.1    Loukis, E.2    Zafiropoulos, E.3    Stasis, A.4
  • 81
    • 33750457954 scopus 로고    scopus 로고
    • Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and k-nn (nearest neighbour) based weighting preprocessing
    • [88] Polat, K., Şahan, S., Güneş, S., Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and k-nn (nearest neighbour) based weighting preprocessing. Expert Syst. Appl. 32 (2007), 625–631.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 625-631
    • Polat, K.1    Şahan, S.2    Güneş, S.3
  • 82
    • 84879425850 scopus 로고    scopus 로고
    • Intelligent and effective heart disease prediction system using weighted associative classifiers
    • [89] Soni, J., Ansari, U., Sharma, D., Soni, S., Intelligent and effective heart disease prediction system using weighted associative classifiers. Int. J. Comput. Sci. Eng. 3 (2011), 2385–2392.
    • (2011) Int. J. Comput. Sci. Eng. , vol.3 , pp. 2385-2392
    • Soni, J.1    Ansari, U.2    Sharma, D.3    Soni, S.4
  • 83
    • 85015834811 scopus 로고    scopus 로고
    • Predicting the analysis of heart disease symptoms using medicinal data mining methods
    • [90] Manikantan, V., Latha, S., Predicting the analysis of heart disease symptoms using medicinal data mining methods. Int. J. Adv. Comput. Theory Eng. 2 (2013), 2319–2526.
    • (2013) Int. J. Adv. Comput. Theory Eng. , vol.2 , pp. 2319-2526
    • Manikantan, V.1    Latha, S.2
  • 86
    • 67749108627 scopus 로고    scopus 로고
    • Heartbeat time series classification with support vector machines
    • [93] Kampouraki, A., Manis, G., Nikou, C., Heartbeat time series classification with support vector machines. IEEE Trans. Inf. Technol. Biomed. 13 (2009), 512–518.
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , pp. 512-518
    • Kampouraki, A.1    Manis, G.2    Nikou, C.3
  • 87
    • 79961170069 scopus 로고    scopus 로고
    • Prediction of persistence of combined evidence-based cardiovascular medications in patients with acute coronary syndrome after hospital discharge using neural networks
    • [94] Bourdès, V., Ferrières, J., Amar, J., Amelineau, E., Bonnevay, S., Berlion, M., Danchin, N., Prediction of persistence of combined evidence-based cardiovascular medications in patients with acute coronary syndrome after hospital discharge using neural networks. Med. Biol. Eng. Comput. 49 (2011), 947–955.
    • (2011) Med. Biol. Eng. Comput. , vol.49 , pp. 947-955
    • Bourdès, V.1    Ferrières, J.2    Amar, J.3    Amelineau, E.4    Bonnevay, S.5    Berlion, M.6    Danchin, N.7
  • 88
    • 33645714452 scopus 로고    scopus 로고
    • Association rule discovery with the train and test approach for heart disease prediction
    • [95] Ordonez, C., Association rule discovery with the train and test approach for heart disease prediction. IEEE Trans. Inf. Technol. Biomed. 10 (2006), 334–343.
    • (2006) IEEE Trans. Inf. Technol. Biomed. , vol.10 , pp. 334-343
    • Ordonez, C.1
  • 89
    • 84896726192 scopus 로고    scopus 로고
    • Heart sound screening in real-time assistive environments through MCMC Bayesian data mining
    • [96] Maragoudakis, M., Loukis, E., Heart sound screening in real-time assistive environments through MCMC Bayesian data mining. Univ. Access Inf. Soc. 13 (2014), 73–88.
    • (2014) Univ. Access Inf. Soc. , vol.13 , pp. 73-88
    • Maragoudakis, M.1    Loukis, E.2
  • 90
    • 58149316227 scopus 로고    scopus 로고
    • Diagnosis of valvular heart disease through neural networks ensembles
    • [97] Dasa, R., Turkoglu, I., Sengur, A., Diagnosis of valvular heart disease through neural networks ensembles. Comput. Meth. Prog. Biomed. 93 (2009), 185–191.
    • (2009) Comput. Meth. Prog. Biomed. , vol.93 , pp. 185-191
    • Dasa, R.1    Turkoglu, I.2    Sengur, A.3
  • 91
    • 84929868819 scopus 로고    scopus 로고
    • Effective analysis and predictive model of stroke disease using classification methods
    • [98] Sudha, A., Gayathri, P., Jaisankar, N., Effective analysis and predictive model of stroke disease using classification methods. Int. J. Comput. Appl. 43 (2012), 26–31.
    • (2012) Int. J. Comput. Appl. , vol.43 , pp. 26-31
    • Sudha, A.1    Gayathri, P.2    Jaisankar, N.3
  • 93
    • 79952010476 scopus 로고    scopus 로고
    • Remote health monitoring of heart failure with data mining via CART method on HRV features
    • [100] Pecchia, L., Melillo, P., Bracale, M., Remote health monitoring of heart failure with data mining via CART method on HRV features. IEEE Trans. Biomed. Eng. 58 (2011), 800–804.
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , pp. 800-804
    • Pecchia, L.1    Melillo, P.2    Bracale, M.3
  • 94
    • 77954684244 scopus 로고    scopus 로고
    • Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning
    • [101] Liu, G.P., Li, G.Z., Wang, Y.L., Wang, Y.Q., Modelling of inquiry diagnosis for coronary heart disease in traditional Chinese medicine by using multi-label learning. BMC Complement. Altern. Med. 10 (2010), 1–12.
    • (2010) BMC Complement. Altern. Med. , vol.10 , pp. 1-12
    • Liu, G.P.1    Li, G.Z.2    Wang, Y.L.3    Wang, Y.Q.4
  • 95
    • 33847608463 scopus 로고    scopus 로고
    • Unsupervised classification of ventricular extrasystoles using bounded clustering algorithms and morphology matching
    • [102] Cuesta-Frau, D., Biagetti, M.O., Quinteiro, R.A., Micó-Tormos, P., Aboy, M., Unsupervised classification of ventricular extrasystoles using bounded clustering algorithms and morphology matching. Med. Biol. Eng. Comput. 45 (2007), 229–239.
    • (2007) Med. Biol. Eng. Comput. , vol.45 , pp. 229-239
    • Cuesta-Frau, D.1    Biagetti, M.O.2    Quinteiro, R.A.3    Micó-Tormos, P.4    Aboy, M.5
  • 97
    • 84876485723 scopus 로고    scopus 로고
    • Decision trees: a recent overview
    • [105] Kotsiantis, S.B., Decision trees: a recent overview. Artif. Intell. Rev. 39 (2013), 261–283.
    • (2013) Artif. Intell. Rev. , vol.39 , pp. 261-283
    • Kotsiantis, S.B.1
  • 98
    • 84888293910 scopus 로고    scopus 로고
    • Hybrid intelligent modeling schemes for heart disease classification
    • [106] Shao, Y.E., Hou, C.D., Chiu, C.C., Hybrid intelligent modeling schemes for heart disease classification. Appl. Soft Comput. 14 (2014), 47–52.
    • (2014) Appl. Soft Comput. , vol.14 , pp. 47-52
    • Shao, Y.E.1    Hou, C.D.2    Chiu, C.C.3
  • 99
    • 0037209480 scopus 로고    scopus 로고
    • Classification of heart rate data using artificial neural network and fuzzy equivalence relation
    • [107] Acharya, U.R., Bhat, P.S., Iyengar, S.S., Rao, A., Dua, S., Classification of heart rate data using artificial neural network and fuzzy equivalence relation. Pattern Recogn. 36 (2003), 61–68.
    • (2003) Pattern Recogn. , vol.36 , pp. 61-68
    • Acharya, U.R.1    Bhat, P.S.2    Iyengar, S.S.3    Rao, A.4    Dua, S.5
  • 100
    • 84907810054 scopus 로고    scopus 로고
    • Heart diseases prediction based on ECG signals classification using a genetic-fuzzy system and dynamical model of ECG signals
    • [108] Vafaie, M.H., Ataei, M., Koofigar, H.R., Heart diseases prediction based on ECG signals classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomed. Signal Process. Control 14 (2014), 291–296.
    • (2014) Biomed. Signal Process. Control , vol.14 , pp. 291-296
    • Vafaie, M.H.1    Ataei, M.2    Koofigar, H.R.3
  • 101
  • 103
    • 84988686712 scopus 로고    scopus 로고
    • The CORE Conference Ranking Exercise − CORE Portal.
    • [111] The CORE Conference Ranking Exercise − CORE Portal. http://core.edu.au/index.php/categories/conference%20rankings.
  • 104
    • 84988708119 scopus 로고    scopus 로고
    • Journal Citation Reports.
    • [112] Journal Citation Reports. http://thomsonreuters.com/journal-citation-reports/.
  • 105
    • 84988707839 scopus 로고    scopus 로고
    • Mentoring Advice on Conferences Versus Journals for CSE Faculty,.
    • [113] K.W. Bowyer, Mentoring Advice on Conferences Versus Journals for CSE Faculty, 2012.
    • (2012)
    • Bowyer, K.W.1
  • 106
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • [114] Zhang, G., Patuwo, B.E., Hu, M.Y., Forecasting with artificial neural networks: the state of the art. Int. J. Forecasting 14 (1998), 35–62.
    • (1998) Int. J. Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 107
    • 84893972699 scopus 로고    scopus 로고
    • Heartbeat classification using disease-specific feature selection
    • [115] Zhang, Z., Dong, J., Luo, X., Choi, K.S., Wu, X., Heartbeat classification using disease-specific feature selection. Comput. Biol. Med. 46 (2014), 79–89.
    • (2014) Comput. Biol. Med. , vol.46 , pp. 79-89
    • Zhang, Z.1    Dong, J.2    Luo, X.3    Choi, K.S.4    Wu, X.5
  • 108
    • 84937133402 scopus 로고    scopus 로고
    • PcHD: personalized classification of heartbeat types using a decision tree
    • [116] Park, J., Kang, K., PcHD: personalized classification of heartbeat types using a decision tree. Comput. Biol. Med. 54 (2014), 79–88.
    • (2014) Comput. Biol. Med. , vol.54 , pp. 79-88
    • Park, J.1    Kang, K.2
  • 109
    • 84901633982 scopus 로고    scopus 로고
    • Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system
    • [117] Sanz, J.A., Galar, M., Jurio, A., Brugos, A., Pagola, M., Bustince, H., Medical diagnosis of cardiovascular diseases using an interval-valued fuzzy rule-based classification system. Appl. Soft Comput. 20 (2014), 103–111.
    • (2014) Appl. Soft Comput. , vol.20 , pp. 103-111
    • Sanz, J.A.1    Galar, M.2    Jurio, A.3    Brugos, A.4    Pagola, M.5    Bustince, H.6
  • 110
    • 84902320128 scopus 로고    scopus 로고
    • Electrocardiogram beat classification using empirical mode decomposition and multiclass directed acyclic graph support vector machine
    • [118] Saini, I., Singh, D., Khosla, A., Electrocardiogram beat classification using empirical mode decomposition and multiclass directed acyclic graph support vector machine. Comput. Electr. Eng. 40 (2014), 1774–1787.
    • (2014) Comput. Electr. Eng. , vol.40 , pp. 1774-1787
    • Saini, I.1    Singh, D.2    Khosla, A.3
  • 111
    • 84901253139 scopus 로고    scopus 로고
    • Ventricular fibrillation and tachycardia classification using a machine learning approach
    • [119] Qiao, L., Rajagopalan, C., Clifford, G.D., Ventricular fibrillation and tachycardia classification using a machine learning approach. IEEE Trans. Biomed. Eng. 61 (2014), 1607–1613.
    • (2014) IEEE Trans. Biomed. Eng. , vol.61 , pp. 1607-1613
    • Qiao, L.1    Rajagopalan, C.2    Clifford, G.D.3
  • 112
    • 85027948668 scopus 로고    scopus 로고
    • Hybrid classification engine for cardiac arrhythmia cloud service in elderly healthcare management
    • [120] Chen, H., Cheng, B.C., Liao, G.T., Kuo, T.C., Hybrid classification engine for cardiac arrhythmia cloud service in elderly healthcare management. J. Visual Lang. Comput. 25 (2014), 745–753.
    • (2014) J. Visual Lang. Comput. , vol.25 , pp. 745-753
    • Chen, H.1    Cheng, B.C.2    Liao, G.T.3    Kuo, T.C.4
  • 113
    • 84988726749 scopus 로고    scopus 로고
    • Association rules mining on heart failure differential treatment based on the improved firefly algorithm
    • [121] Yuan, F., Chen, S., Liu, H., Association rules mining on heart failure differential treatment based on the improved firefly algorithm. J. Comput. 9 (2014), 822–829.
    • (2014) J. Comput. , vol.9 , pp. 822-829
    • Yuan, F.1    Chen, S.2    Liu, H.3
  • 114
    • 84890286490 scopus 로고    scopus 로고
    • Multiclass maximum margin clustering via immune evolutionary algorithm for automatic diagnosis of electrocardiogram arrhythmias
    • [122] Zhu, B., Ding, Y., Hao, K., Multiclass maximum margin clustering via immune evolutionary algorithm for automatic diagnosis of electrocardiogram arrhythmias. Appl. Math. Comput. 227 (2014), 428–436.
    • (2014) Appl. Math. Comput. , vol.227 , pp. 428-436
    • Zhu, B.1    Ding, Y.2    Hao, K.3
  • 116
    • 84906786979 scopus 로고    scopus 로고
    • Adaptive mining prediction model for content recommendation to coronary heart disease patients
    • [124] Kim, J.K., Lee, J.S., Park, D.K., Lim, Y.S., Lee, Y.H., Jung, E.Y., Adaptive mining prediction model for content recommendation to coronary heart disease patients. Cluster Comput. 17 (2014), 881–891.
    • (2014) Cluster Comput. , vol.17 , pp. 881-891
    • Kim, J.K.1    Lee, J.S.2    Park, D.K.3    Lim, Y.S.4    Lee, Y.H.5    Jung, E.Y.6
  • 117
    • 84885423072 scopus 로고    scopus 로고
    • Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images
    • [125] Acharya, U.R., Sree, S.V., Krishnan, M.M.R., Krishnananda, N., Ranjan, S., Umesh, P., Suri, J.S., Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images. Comput. Meth. Prog. Biomed. 112 (2013), 624–632.
    • (2013) Comput. Meth. Prog. Biomed. , vol.112 , pp. 624-632
    • Acharya, U.R.1    Sree, S.V.2    Krishnan, M.M.R.3    Krishnananda, N.4    Ranjan, S.5    Umesh, P.6    Suri, J.S.7
  • 118
    • 84893692492 scopus 로고    scopus 로고
    • Identifying functional modules for coronary artery disease by a prior knowledge-based approach
    • [126] Li, H., Zuo, X., Ouyang, P., Lin, M., Zhao, Z., Liang, Y., Zhong, S., Rao, S., Identifying functional modules for coronary artery disease by a prior knowledge-based approach. Gene 537 (2014), 260–268.
    • (2014) Gene , vol.537 , pp. 260-268
    • Li, H.1    Zuo, X.2    Ouyang, P.3    Lin, M.4    Zhao, Z.5    Liang, Y.6    Zhong, S.7    Rao, S.8
  • 120
    • 84921369632 scopus 로고    scopus 로고
    • Empirical studies on usability of mHealth apps: a systematic literature review
    • 1
    • [128] Zapata, B.C., Fernández-Alemán, J.L., Idri, A., Toval, A., Empirical studies on usability of mHealth apps: a systematic literature review. J. Medical Systems, 39(2), 2015 1.
    • (2015) J. Medical Systems , vol.39 , Issue.2
    • Zapata, B.C.1    Fernández-Alemán, J.L.2    Idri, A.3    Toval, A.4
  • 122
    • 84930476972 scopus 로고    scopus 로고
    • Data mining for censored time-to-event data: a Bayesian network model for predicting cardiovascular risk from electronic health record data
    • [130] Bandyopadhyay, S., Wolfson, J., Vock, D.M., Vazquez-Benitez, G., Data mining for censored time-to-event data: a Bayesian network model for predicting cardiovascular risk from electronic health record data. Data Min. Knowl. Discov. 29 (2015), 1033–1069.
    • (2015) Data Min. Knowl. Discov. , vol.29 , pp. 1033-1069
    • Bandyopadhyay, S.1    Wolfson, J.2    Vock, D.M.3    Vazquez-Benitez, G.4
  • 123
    • 84940610220 scopus 로고    scopus 로고
    • Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients
    • [131] Kotu, L.P., Engan, K., Borhani, R., Katsaggelos, A.K., Ørn, S., Woie, L., Eftestø, T., Cardiac magnetic resonance image-based classification of the risk of arrhythmias in post-myocardial infarction patients. Artif. Intell. Med. 64 (2015), 205–215.
    • (2015) Artif. Intell. Med. , vol.64 , pp. 205-215
    • Kotu, L.P.1    Engan, K.2    Borhani, R.3    Katsaggelos, A.K.4    Ørn, S.5    Woie, L.6    Eftestø, T.7
  • 124
    • 84928987803 scopus 로고    scopus 로고
    • Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques
    • [132] Sahin, H., Subas, A., Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques. Appl. Soft Comput. 33 (2015), 231–238.
    • (2015) Appl. Soft Comput. , vol.33 , pp. 231-238
    • Sahin, H.1    Subas, A.2
  • 125
    • 84922265438 scopus 로고    scopus 로고
    • Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases
    • [133] Alickovic, E., Subasi, A., Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases. Circuits Syst. Signal Process. 34 (2015), 513–533.
    • (2015) Circuits Syst. Signal Process. , vol.34 , pp. 513-533
    • Alickovic, E.1    Subasi, A.2
  • 127
    • 84929577449 scopus 로고    scopus 로고
    • A multi-wavelet optimization approach using similarity measures for electrocardiogram signal classification
    • [135] Nazarahari, M., Namin, S.G., Davaie-Markazi, A.H., Anaraki, A.K., A multi-wavelet optimization approach using similarity measures for electrocardiogram signal classification. Biomed. Signal Process. Control 20 (2015), 142–151.
    • (2015) Biomed. Signal Process. Control , vol.20 , pp. 142-151
    • Nazarahari, M.1    Namin, S.G.2    Davaie-Markazi, A.H.3    Anaraki, A.K.4
  • 132
    • 84988728000 scopus 로고    scopus 로고
    • Ventricular fibrillation and tachycardia classification using a machine learning approach
    • [140] Ravindranath, K.R., Ventricular fibrillation and tachycardia classification using a machine learning approach. International Conference on Pervasive Computing, 2015, 1–5.
    • (2015) International Conference on Pervasive Computing , pp. 1-5
    • Ravindranath, K.R.1
  • 133
    • 85015775268 scopus 로고    scopus 로고
    • Automatic classifier based on heart rate variability to identify fallers among hypertensive subjects
    • [141] Melillo, P., Jovic, A., De Luca, N., Pecchia, L., Automatic classifier based on heart rate variability to identify fallers among hypertensive subjects. Healthc. Technol. Lett. 2 (2015), 89–94.
    • (2015) Healthc. Technol. Lett. , vol.2 , pp. 89-94
    • Melillo, P.1    Jovic, A.2    De Luca, N.3    Pecchia, L.4
  • 135
    • 84931380594 scopus 로고    scopus 로고
    • A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule-based system
    • [143] Marateb, H.R., Goudarzi, S., A noninvasive method for coronary artery diseases diagnosis using a clinically-interpretable fuzzy rule-based system. Int. J. Res. Med. Sci. 20 (2015), 214–223.
    • (2015) Int. J. Res. Med. Sci. , vol.20 , pp. 214-223
    • Marateb, H.R.1    Goudarzi, S.2
  • 136
    • 84918504867 scopus 로고    scopus 로고
    • Applications of data mining methods in the integrative medical studies of coronary heart disease: progress and prospect
    • [144] Feng, Y., Wang, Y., Guo, F., Xu, H., Applications of data mining methods in the integrative medical studies of coronary heart disease: progress and prospect. Evid.-Based Complement. Altern. Med. 2014 (2014), 2827–2835.
    • (2014) Evid.-Based Complement. Altern. Med. , vol.2014 , pp. 2827-2835
    • Feng, Y.1    Wang, Y.2    Guo, F.3    Xu, H.4
  • 137
    • 84880061591 scopus 로고    scopus 로고
    • Use of data mining techniques to determine and predict length of stay of cardiac patients
    • [145] Hachesu, P.R., Ahmadi, M., Alizadeh, S., Sadoughi, F., Use of data mining techniques to determine and predict length of stay of cardiac patients. Healthc. Inf. Res. 19 (2013), 121–129.
    • (2013) Healthc. Inf. Res. , vol.19 , pp. 121-129
    • Hachesu, P.R.1    Ahmadi, M.2    Alizadeh, S.3    Sadoughi, F.4
  • 138
    • 84899915806 scopus 로고    scopus 로고
    • Coronary artery disease detection using a fuzzy-boosting PSO approach
    • [146] Ghadiri Hedeshi, N., Saniee Abadeh, M., Coronary artery disease detection using a fuzzy-boosting PSO approach. Comput. Intell. Neurosci., 2014, 448–460.
    • (2014) Comput. Intell. Neurosci. , pp. 448-460
    • Ghadiri Hedeshi, N.1    Saniee Abadeh, M.2
  • 139
    • 84875243337 scopus 로고    scopus 로고
    • Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes
    • [147] Austin, P.C., Tu, J.V., Ho, J.E., Levy, D., Lee, D.S., Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. J. Clin. Epidemiol. 66 (2013), 398–407.
    • (2013) J. Clin. Epidemiol. , vol.66 , pp. 398-407
    • Austin, P.C.1    Tu, J.V.2    Ho, J.E.3    Levy, D.4    Lee, D.S.5
  • 140
    • 84865535937 scopus 로고    scopus 로고
    • Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods
    • [148] Austin, P.C., Lee, D.S., Steyerberg, E.W., Tu, J.V., Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods. Biom. J. 54 (2012), 657–673.
    • (2012) Biom. J. , vol.54 , pp. 657-673
    • Austin, P.C.1    Lee, D.S.2    Steyerberg, E.W.3    Tu, J.V.4
  • 141
    • 0036755111 scopus 로고    scopus 로고
    • Bayesian learning for cardiac SPECT image interpretation
    • [149] Sacha, J.P., Goodenday, L.S., Cios, K.J., Bayesian learning for cardiac SPECT image interpretation. Artif. Intell. Med. 26 (2002), 109–143.
    • (2002) Artif. Intell. Med. , vol.26 , pp. 109-143
    • Sacha, J.P.1    Goodenday, L.S.2    Cios, K.J.3
  • 142
    • 4644275524 scopus 로고    scopus 로고
    • Automated ischemic beat classification using genetic algorithms and multicriteria decision analysis
    • [150] Goletsis, Y., Papaloukas, C., Fotiadis, D.I., Likas, A., Michalis, L.K., Automated ischemic beat classification using genetic algorithms and multicriteria decision analysis. IEEE Trans. Biomed. Eng. 51 (2004), 1717–1725.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 1717-1725
    • Goletsis, Y.1    Papaloukas, C.2    Fotiadis, D.I.3    Likas, A.4    Michalis, L.K.5
  • 144
  • 149
    • 33646338651 scopus 로고    scopus 로고
    • Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines
    • [157] Georgoulas, G., Stylios, C.D., Groumpos, P.P., Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans. Biomed. Eng. 53 (2006), 875–884.
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , pp. 875-884
    • Georgoulas, G.1    Stylios, C.D.2    Groumpos, P.P.3
  • 150
    • 1642265037 scopus 로고    scopus 로고
    • Support vector machine-based expert system for reliable heartbeat recognition
    • [158] Osowski, S., Hoai, L.T., Markiewicz, T., Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51 (2004), 582–589.
    • (2004) IEEE Trans. Biomed. Eng. , vol.51 , pp. 582-589
    • Osowski, S.1    Hoai, L.T.2    Markiewicz, T.3
  • 151
    • 0034774017 scopus 로고    scopus 로고
    • ECG beat recognition using fuzzy hybrid neural network
    • [159] Osowski, S., Linh, T.H., ECG beat recognition using fuzzy hybrid neural network. IEEE Trans. Biomed. Eng. 48 (2001), 1265–1271.
    • (2001) IEEE Trans. Biomed. Eng. , vol.48 , pp. 1265-1271
    • Osowski, S.1    Linh, T.H.2
  • 152
    • 84909634152 scopus 로고    scopus 로고
    • A machine learning system to improve heart failure patient assistance
    • [160] Guidi, G., Pettenati, M.C., Melillo, P., Iadanza, E., A machine learning system to improve heart failure patient assistance. IEEE J. Bio. Med. Health Inf. 18 (2014), 1750–1756.
    • (2014) IEEE J. Bio. Med. Health Inf. , vol.18 , pp. 1750-1756
    • Guidi, G.1    Pettenati, M.C.2    Melillo, P.3    Iadanza, E.4
  • 153
    • 84921904308 scopus 로고    scopus 로고
    • Prediction of hospitalization due to heart diseases by supervised learning methods
    • [161] Dai, W., Brisimi, T.S., Adams, W.G., Mela, T., Saligrama, V., Paschalidis, I., Prediction of hospitalization due to heart diseases by supervised learning methods. Int. J. Med. Inf. 84 (2015), 189–197.
    • (2015) Int. J. Med. Inf. , vol.84 , pp. 189-197
    • Dai, W.1    Brisimi, T.S.2    Adams, W.G.3    Mela, T.4    Saligrama, V.5    Paschalidis, I.6
  • 154
    • 77954684244 scopus 로고    scopus 로고
    • Modelling of inquiry diagnosis for coronary heart disease in Traditional Chinese Medicine by using multi-label learning
    • [162] Liu, G.P., Li, G.Z., Wang, Y.L., Wang, Y.Q., Modelling of inquiry diagnosis for coronary heart disease in Traditional Chinese Medicine by using multi-label learning. BMC Complement. Altern. Med. 10 (2010), 1–12.
    • (2010) BMC Complement. Altern. Med. , vol.10 , pp. 1-12
    • Liu, G.P.1    Li, G.Z.2    Wang, Y.L.3    Wang, Y.Q.4
  • 155
    • 84885423072 scopus 로고    scopus 로고
    • Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images
    • [163] Acharya, U.R., Sree, S.V., Muthu Rama Krishnan, M., Krishnananda, N., Ranjan, S., Umesh, P., Suri, J.S., Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images. Comput. Methods Prog. Biomed. 112 (2013), 624–632.
    • (2013) Comput. Methods Prog. Biomed. , vol.112 , pp. 624-632
    • Acharya, U.R.1    Sree, S.V.2    Muthu Rama Krishnan, M.3    Krishnananda, N.4    Ranjan, S.5    Umesh, P.6    Suri, J.S.7
  • 156
    • 70349510651 scopus 로고    scopus 로고
    • Non-invasive risk stratification of coronary artery disease: an evaluation of some commonly used statistical classifiers in terms of predictive accuracy and clinical usefulness
    • [164] Gregori, D., Bigi, R., Cortigiani, L., Bovenzi, F., Fiorentini, C., Picano, E., Non-invasive risk stratification of coronary artery disease: an evaluation of some commonly used statistical classifiers in terms of predictive accuracy and clinical usefulness. J. Eval. Clin. Pract. 15 (2009), 777–781.
    • (2009) J. Eval. Clin. Pract. , vol.15 , pp. 777-781
    • Gregori, D.1    Bigi, R.2    Cortigiani, L.3    Bovenzi, F.4    Fiorentini, C.5    Picano, E.6
  • 158
    • 35748971527 scopus 로고    scopus 로고
    • Predicting coronary artery disease with medical profile and gene polymorphisms data
    • [166] Chen, Q., Li, G., Leong, T.Y., Heng, C.K., Predicting coronary artery disease with medical profile and gene polymorphisms data. Medinfo MEDINFO, 2007, 1219–1224.
    • (2007) Medinfo MEDINFO , pp. 1219-1224
    • Chen, Q.1    Li, G.2    Leong, T.Y.3    Heng, C.K.4
  • 159
    • 0034566844 scopus 로고    scopus 로고
    • Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression
    • [167] Colombet, I., Ruelland, A., Chatellier, G., Gueyffier, F., Degoulet, P., Jaulent, M.C., Models to predict cardiovascular risk: comparison of CART, multilayer perceptron and logistic regression. AMIA Symposium, 2000, 156–160.
    • (2000) AMIA Symposium , pp. 156-160
    • Colombet, I.1    Ruelland, A.2    Chatellier, G.3    Gueyffier, F.4    Degoulet, P.5    Jaulent, M.C.6
  • 160
    • 84949652664 scopus 로고    scopus 로고
    • Combining multiple ECG features does not improve prediction of defibrillation outcome compared to single features in a large population of out-of-hospital cardiac arrests
    • [168] He, M., Gong, Y., Li, Y., Mauri, T., Fumagalli, F., Bozzola, M., Cesana, G., Latini, R., Pesenti, A., Ristagno, G., Combining multiple ECG features does not improve prediction of defibrillation outcome compared to single features in a large population of out-of-hospital cardiac arrests. Crit. Care, 19, 2015, 1.
    • (2015) Crit. Care , vol.19 , pp. 1
    • He, M.1    Gong, Y.2    Li, Y.3    Mauri, T.4    Fumagalli, F.5    Bozzola, M.6    Cesana, G.7    Latini, R.8    Pesenti, A.9    Ristagno, G.10
  • 161
    • 84911405071 scopus 로고    scopus 로고
    • Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features
    • [169] Murukesan, L., Murugappan, M., Iqbal, M., Saravanan, K., Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features. J. Med. Imaging Health Inf. 4 (2014), 521–532.
    • (2014) J. Med. Imaging Health Inf. , vol.4 , pp. 521-532
    • Murukesan, L.1    Murugappan, M.2    Iqbal, M.3    Saravanan, K.4
  • 162
    • 84878473520 scopus 로고    scopus 로고
    • ECG arrhythmia classification using a probabilistic neural network with a feature reduction method
    • [170] Wang, J.S., Chiang, W.C., Hsu, Y.L., Yang, Y.T.C., ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing 116 (2013), 38–45.
    • (2013) Neurocomputing , vol.116 , pp. 38-45
    • Wang, J.S.1    Chiang, W.C.2    Hsu, Y.L.3    Yang, Y.T.C.4
  • 163
    • 84881095384 scopus 로고    scopus 로고
    • Comparison of prediction model for cardiovascular autonomic dysfunction using artificial neural network and logistic regression analysis
    • [171] Tang, Z.H., Liu, J., Zeng, F., Li, Z., Yu, X., Zhou, L., Comparison of prediction model for cardiovascular autonomic dysfunction using artificial neural network and logistic regression analysis. PLoS One, 8, 2013, 8.
    • (2013) PLoS One , vol.8 , pp. 8
    • Tang, Z.H.1    Liu, J.2    Zeng, F.3    Li, Z.4    Yu, X.5    Zhou, L.6
  • 165
    • 74049158271 scopus 로고    scopus 로고
    • Robust algorithm for arrhythmia classification in ECG using extreme learning machine
    • [173] Kim, J., Shin, H.S., Shin, K., Lee, M., Robust algorithm for arrhythmia classification in ECG using extreme learning machine. Biomed. Eng. Online, 8, 2009, 31.
    • (2009) Biomed. Eng. Online , vol.8 , pp. 31
    • Kim, J.1    Shin, H.S.2    Shin, K.3    Lee, M.4
  • 167
    • 44349119093 scopus 로고    scopus 로고
    • Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods
    • [175] Chesnokov, Y.V., Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artif. Intell. Med. 43 (2008), 151–165.
    • (2008) Artif. Intell. Med. , vol.43 , pp. 151-165
    • Chesnokov, Y.V.1
  • 168
    • 38649112898 scopus 로고    scopus 로고
    • A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery—Part II: an illustrative example
    • [176] Cevenini, G., Barbini, E., Scolletta, S., Biagioli, B., Giomarelli, P., Barbini, P., A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery—Part II: an illustrative example. BMC Med. Inf. Decis. Mak., 7, 2007, 35.
    • (2007) BMC Med. Inf. Decis. Mak. , vol.7 , pp. 35
    • Cevenini, G.1    Barbini, E.2    Scolletta, S.3    Biagioli, B.4    Giomarelli, P.5    Barbini, P.6
  • 169
  • 170
    • 84938378747 scopus 로고    scopus 로고
    • New algorithm of mortality risk prediction for cardiovascular patients admitted in intensive care unit
    • [178] Moridani, M.K., Setarehdan, S.K., Nasrabadi, A.M., Hajinasrollah, E., New algorithm of mortality risk prediction for cardiovascular patients admitted in intensive care unit. Int. J. Clin. Exp. Med. 8 (2015), 8916–8926.
    • (2015) Int. J. Clin. Exp. Med. , vol.8 , pp. 8916-8926
    • Moridani, M.K.1    Setarehdan, S.K.2    Nasrabadi, A.M.3    Hajinasrollah, E.4
  • 171
    • 79951554559 scopus 로고    scopus 로고
    • High efficient system for automatic classification of the electrocardiogram beats
    • [179] Zadeh, A.E., Khazaee, A., High efficient system for automatic classification of the electrocardiogram beats. Ann. Biomed. Eng. 39 (2011), 996–1011.
    • (2011) Ann. Biomed. Eng. , vol.39 , pp. 996-1011
    • Zadeh, A.E.1    Khazaee, A.2
  • 173
    • 84867292482 scopus 로고    scopus 로고
    • Accurate prediction of coronary artery disease using reliable diagnosis system
    • [181] Mandal, I., Sairam, N., Accurate prediction of coronary artery disease using reliable diagnosis system. J. Med. Syst. 36 (2012), 3353–3373.
    • (2012) J. Med. Syst. , vol.36 , pp. 3353-3373
    • Mandal, I.1    Sairam, N.2
  • 174
    • 84863228265 scopus 로고    scopus 로고
    • Prediction models for early risk detection of cardiovascular event
    • [182] Purwanto Eswaran, C., Logeswaran, R., Rahman, A.R.A., Prediction models for early risk detection of cardiovascular event. J. Med. Syst. 36 (2012), 521–531.
    • (2012) J. Med. Syst. , vol.36 , pp. 521-531
    • Purwanto Eswaran, C.1    Logeswaran, R.2    Rahman, A.R.A.3
  • 175
    • 78650611734 scopus 로고    scopus 로고
    • A multi-stage automatic arrhythmia recognition and classification system
    • [183] Kutlu, Y., Kuntalp, D., A multi-stage automatic arrhythmia recognition and classification system. Comput. Biol. Med. 41 (2011), 37–45.
    • (2011) Comput. Biol. Med. , vol.41 , pp. 37-45
    • Kutlu, Y.1    Kuntalp, D.2
  • 176
    • 84940387810 scopus 로고    scopus 로고
    • A framework for guiding and evaluating literature reviews
    • [184] Templier, M., Pare, G., A framework for guiding and evaluating literature reviews. Commun. Assoc. Inf. Syst. 37 (2015), 112–137.
    • (2015) Commun. Assoc. Inf. Syst. , vol.37 , pp. 112-137
    • Templier, M.1    Pare, G.2
  • 177
    • 84887346660 scopus 로고    scopus 로고
    • Cochrane Handbook for Systematic Reviews of Interventions
    • John Wiley & Sons Chichester, United Kingdom
    • [185] Higgins, J.P.T., Green, S., Cochrane Handbook for Systematic Reviews of Interventions. 2008, John Wiley & Sons, Chichester, United Kingdom.
    • (2008)
    • Higgins, J.P.T.1    Green, S.2
  • 178
    • 68049137869 scopus 로고    scopus 로고
    • The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration
    • [186] Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Loannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J., Moher, D., The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6 (2009), 65–94.
    • (2009) PLoS Med. , vol.6 , pp. 65-94
    • Liberati, A.1    Altman, D.G.2    Tetzlaff, J.3    Mulrow, C.4    Gøtzsche, P.C.5    Loannidis, J.P.A.6    Clarke, M.7    Devereaux, P.J.8    Kleijnen, J.9    Moher, D.10
  • 179
    • 84860650363 scopus 로고    scopus 로고
    • A guide to conducting a systematic literature review of information systems research
    • [187] Okoli, C., Schabram, K., A guide to conducting a systematic literature review of information systems research. Sprouts 10 (2010), 1–46.
    • (2010) Sprouts , vol.10 , pp. 1-46
    • Okoli, C.1    Schabram, K.2
  • 180
    • 84938830011 scopus 로고    scopus 로고
    • Heart disease diagnosis using C4.5 algorithms—a case study
    • [188] Idri, A., Kadi, I., Benjelloun, H., Heart disease diagnosis using C4.5 algorithms—a case study. HEALTHINF, 2015, 397–404.
    • (2015) HEALTHINF , pp. 397-404
    • Idri, A.1    Kadi, I.2    Benjelloun, H.3
  • 181
    • 84971622111 scopus 로고    scopus 로고
    • Cardiovascular dysautonomias diagnosis using crisp and fuzzy decision tree: a comparative study
    • [189] Kadi, I., Idri, A., Cardiovascular dysautonomias diagnosis using crisp and fuzzy decision tree: a comparative study. 10th Annual Conference on Health Informatics Meets eHealth, 2016, 1–8.
    • (2016) 10th Annual Conference on Health Informatics Meets eHealth , pp. 1-8
    • Kadi, I.1    Idri, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.