메뉴 건너뛰기




Volumn 64, Issue , 2015, Pages 39-48

Deep Convolutional Neural Networks for Large-scale Speech Tasks

Author keywords

Deep learning; Neural networks; Speech recognition

Indexed keywords

CONTINUOUS SPEECH RECOGNITION; CONVOLUTION; DEEP LEARNING; NEURAL NETWORKS; RHENIUM COMPOUNDS; SPEECH; SPEECH RECOGNITION;

EID: 84922343800     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2014.08.005     Document Type: Article
Times cited : (461)

References (34)
  • 1
    • 84867605836 scopus 로고    scopus 로고
    • Applying convolutional neural network concepts to hybrid NN-HMM model for speech recognition
    • Abdel-Hamid, O., Mohamed, A., Jiang, H., Penn, G. (2012). Applying convolutional neural network concepts to hybrid NN-HMM model for speech recognition, In Proc. ICASSP.
    • (2012) Proc. ICASSP.
    • Abdel-Hamid, O.1    Mohamed, A.2    Jiang, H.3    Penn, G.4
  • 3
    • 84890527827 scopus 로고    scopus 로고
    • Improving deep neural networks for LVCSR using rectified linear units and dropout
    • Dahl, G., Sainath, T., Hinton, G. (2013), Improving deep neural networks for LVCSR using rectified linear units and dropout. In Proc. ICASSP.
    • (2013) Proc. ICASSP.
    • Dahl, G.1    Sainath, T.2    Hinton, G.3
  • 5
    • 84890545163 scopus 로고    scopus 로고
    • A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion
    • Deng, L., Abdel-Hamid, O., Yu, D. (2013). A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion. In Proc. ICASSP.
    • (2013) Proc. ICASSP.
    • Deng, L.1    Abdel-Hamid, O.2    Yu, D.3
  • 6
    • 0032050110 scopus 로고    scopus 로고
    • Maximum likelihood linear transformations for HMM-based speech recognition
    • Gales M. Maximum likelihood linear transformations for HMM-based speech recognition. Computer Speech and Language 1998, 12(2):75-98.
    • (1998) Computer Speech and Language , vol.12 , Issue.2 , pp. 75-98
    • Gales, M.1
  • 8
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot, X., Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proc. AI Stats.
    • Proc. AI Stats.
    • Glorot, X.1    Bengio, Y.2
  • 11
    • 84878539964 scopus 로고    scopus 로고
    • Application of pretrained deep neural networks to large vocabulary speech recognition
    • Jaitly, N., Nguyen, P., Senior, A. W., Vanhoucke, V. (2012). Application of pretrained deep neural networks to large vocabulary speech recognition, In Proc. Interspeech.
    • (2012) Proc. Interspeech
    • Jaitly, N.1    Nguyen, P.2    Senior, A.W.3    Vanhoucke, V.4
  • 12
    • 70349213445 scopus 로고    scopus 로고
    • Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
    • Kingsbury, B. (2009). Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling. In Proc. ICASSP.
    • (2009) Proc. ICASSP.
    • Kingsbury, B.1
  • 13
    • 84878379108 scopus 로고    scopus 로고
    • Scalable minimum bayes risk training of deep neural network acoustic models using distributed hessian-free optimization
    • Kingsbury, B., Sainath, T. N., Soltau, H. (2012). Scalable minimum bayes risk training of deep neural network acoustic models using distributed hessian-free optimization. In Proc. Interspeech.
    • (2012) Proc. Interspeech.
    • Kingsbury, B.1    Sainath, T.N.2    Soltau, H.3
  • 15
    • 0030737097 scopus 로고    scopus 로고
    • Face recognition: A convolutional neural-network approach
    • Lawrence S. Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks 1997, 8(1):98-113.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 98-113
    • Lawrence, S.1
  • 18
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • LeCun, Y., Huang, F., Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting, Proc. CVPR.
    • (2004) Proc. CVPR.
    • LeCun, Y.1    Huang, F.2    Bottou, L.3
  • 19
    • 0029747183 scopus 로고    scopus 로고
    • Speaker normalization using efficient frequency warping procedures
    • Lee, L., Rose, R. C. (1996). Speaker normalization using efficient frequency warping procedures, In Proc. ICASSP.
    • (1996) Proc. ICASSP.
    • Lee, L.1    Rose, R.C.2
  • 21
    • 84867585919 scopus 로고    scopus 로고
    • Understanding how deep belief networks perform acoustic modelling
    • Mohamed, A., Hinton, G., Penn, G. (2012). Understanding how deep belief networks perform acoustic modelling, In ICASSP.
    • (2012) ICASSP.
    • Mohamed, A.1    Hinton, G.2    Penn, G.3
  • 27
    • 84893691530 scopus 로고    scopus 로고
    • Speaker adaptation of neural network acoustic models using I-vectors
    • (in preperation)
    • Saon, G., Soltau, H., Picheny, M., Nahamoo, D. 2013 Speaker adaptation of neural network acoustic models using I-vectors. In Proc. ASRU (in preperation).
    • (2013) Proc. ASRU
    • Saon, G.1    Soltau, H.2    Picheny, M.3    Nahamoo, D.4
  • 28
    • 84865801985 scopus 로고    scopus 로고
    • Conversational Speech Transcription Using Context-Dependent Deep Neural Networks
    • Seide, F., Li, G., Yu, D. 2011 Conversational Speech Transcription Using Context-Dependent Deep Neural Networks, In: Proc. Interspeech.
    • (2011) Proc. Interspeech.
    • Seide, F.1    Li, G.2    Yu, D.3
  • 30
  • 33
    • 0002144369 scopus 로고
    • Tree-based State Tying for High Accuracy Acoustic Modelling
    • Young, S. J., Odell, J., Woodland, P. 1994 Tree-based State Tying for High Accuracy Acoustic Modelling, In: Proc. HLT. pp. 307-312.
    • (1994) Proc. HLT , pp. 307-312
    • Young, S.J.1    Odell, J.2    Woodland, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.