메뉴 건너뛰기




Volumn 9078, Issue , 2015, Pages 534-546

Convolutional nonlinear neighbourhood components analysis for time series classification

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; DATA MINING; NEAREST NEIGHBOR SEARCH; TIME SERIES;

EID: 84945579885     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-18032-8_42     Document Type: Conference Paper
Times cited : (12)

References (24)
  • 1
    • 84866041459 scopus 로고    scopus 로고
    • A complexity-invariant distance measure for time series
    • Batista, G., Wang, X., Keogh, E.J.: A complexity-invariant distance measure for time series. In: SIAM Conf. Data Min. (2011)
    • (2011) SIAM Conf. Data Min
    • Batista, G.1    Wang, X.2    Keogh, E.J.3
  • 3
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures.
    • Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)
    • (2008) Proc. VLDB Endow , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 5
    • 84960076541 scopus 로고    scopus 로고
    • Time series classification under more realistic assumptions
    • Hu, B., Chen, Y., Keogh, E.: Time series classification under more realistic assumptions. In: SIAM Int. Conf. Data Min., p. 578 (2013)
    • (2013) SIAM Int. Conf. Data Min , pp. 578
    • Hu, B.1    Chen, Y.2    Keogh, E.3
  • 6
    • 0042711018 scopus 로고    scopus 로고
    • On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration
    • Keogh, E., Kasetty, S.: On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. DMKD 7(4), 349–371 (2003)
    • (2003) DMKD , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 8
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS, vol. 25, pp. 1106–1114 (2012)
    • (2012) NIPS , vol.25 , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 9
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series. Handb
    • LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Networks 3361 (1995)
    • (1995) Brain Theory Neural Networks , pp. 3361
    • Lecun, Y.1    Bengio, Y.2
  • 10
    • 0001857994 scopus 로고    scopus 로고
    • Efficient backprop
    • Orr, G.B., Muller, K.-R. (eds.), Springer, Heidelberg
    • LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Orr, G.B., Muller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998)
    • (1998) NIPS-WS 1996. LNCS , vol.1524 , pp. 9-50
    • Lecun, Y.1    Bottou, L.2    Orr, G.B.3    Müller, K.-R.4
  • 11
    • 77955998889 scopus 로고    scopus 로고
    • Convolutional networks and applications in vision
    • LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: IEEE ISCS, pp. 253–256, May 2010
    • (2010) IEEE ISCS , pp. 253-256
    • Lecun, Y.1    Kavukcuoglu, K.2    Farabet, C.3
  • 12
    • 84879996400 scopus 로고    scopus 로고
    • A metric learning based approach to evaluate task-specific time series similarity
    • In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.), Springer, Heidelberg
    • Lu, Y., Zhao, W.X., Yan, H., Li, X.: A metric learning based approach to evaluate task-specific time series similarity. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds.) WAIM 2013. LNCS, vol. 7923, pp. 314–325. Springer, Heidelberg (2013)
    • (2013) WAIM 2013. LNCS , vol.7923 , pp. 314-325
    • Lu, Y.1    Zhao, W.X.2    Yan, H.3    Li, X.4
  • 13
    • 84857496797 scopus 로고    scopus 로고
    • Max-pooling convolutional neural networks for visionbased hand gesture recognition
    • Nagi, J., Ducatelle, F., et al.: Max-pooling convolutional neural networks for visionbased hand gesture recognition. In: IEEE ICSIPA, pp. 342–347 (2011)
    • (2011) IEEE ICSIPA , pp. 342-347
    • Nagi, J.1    Ducatelle, F.2
  • 14
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • Omnipress Madison, WI
    • Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML, vol. (3), pp. 807–814. Omnipress Madison, WI (2010)
    • (2010) ICML , vol.3 , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 15
    • 84867034964 scopus 로고    scopus 로고
    • Time series classification by class-specific Mahalanobis distance measures
    • Prekopcsák, Z., Lemire, D.: Time series classification by class-specific Mahalanobis distance measures. ADAC 6(3), 185–200 (2012)
    • (2012) ADAC , vol.6 , Issue.3 , pp. 185-200
    • Prekopcsák, Z.1    Lemire, D.2
  • 17
    • 2942525700 scopus 로고    scopus 로고
    • Making time-series classification more accurate using learned constraints
    • Ratanamahatana, C., Keogh, E.: Making time-series classification more accurate using learned constraints. In: SIAM Int. Conf. Data Min., p. 11 (2004)
    • (2004) SIAM Int. Conf. Data Min , pp. 11
    • Ratanamahatana, C.1    Keogh, E.2
  • 18
    • 34250727441 scopus 로고    scopus 로고
    • Three Myths about Dynamic Time Warping Data Mining
    • Ratanamahatana, C.A.: Three Myths about Dynamic Time Warping Data Mining. In: SIAM Int. Conf. Data Min., pp. 506–510 (2005)
    • (2005) SIAM Int. Conf. Data Min , pp. 506-510
    • Ratanamahatana, C.A.1
  • 19
    • 80455158726 scopus 로고    scopus 로고
    • Learning a nonlinear embedding by preserving class neighbourhood structure
    • Salakhutdinov, R., Hinton, G.E.: Learning a nonlinear embedding by preserving class neighbourhood structure. In: ICAIS, pp. 412–419 (2007)
    • (2007) ICAIS , pp. 412-419
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 20
    • 78049408551 scopus 로고    scopus 로고
    • Evaluation of pooling operations in convolutional architectures for object recognition
    • In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.), Springer, Heidelberg
    • Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 92–101. Springer, Heidelberg (2010)
    • (2010) ICANN 2010, Part III. LNCS , vol.6354 , pp. 92-101
    • Scherer, D.1    Müller, A.2    Behnke, S.3
  • 21
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: ICML, p. 28 (2013)
    • (2013) ICML , pp. 28
    • Sutskever, I.1    Martens, J.2    Dahl, G.3    Hinton, G.4
  • 22
    • 33749260341 scopus 로고    scopus 로고
    • Fast time series classification using numerosity reduction
    • Xi, X., Keogh, E.J., Shelton, C.R., Wei, L., Ratanamahatana, C.A.: Fast time series classification using numerosity reduction. In: ICML, pp. 1033–1040 (2006)
    • (2006) ICML , pp. 1033-1040
    • Xi, X.1    Keogh, E.J.2    Shelton, C.R.3    Wei, L.4    Ratanamahatana, C.A.5
  • 23
    • 84890471125 scopus 로고    scopus 로고
    • On rectified linear units for speech processing
    • Zeiler, M.D., Ranzato, M., Monga, R., et al.: On rectified linear units for speech processing. In: IEEE ICASSP, pp. 3517–3521 (2013)
    • (2013) IEEE ICASSP , pp. 3517-3521
    • Zeiler, M.D.1    Ranzato, M.2    Monga, R.3
  • 24
    • 84958543676 scopus 로고    scopus 로고
    • Time series classification using multi-channels deep convolutional neural networks
    • In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.), Springer, Heidelberg
    • Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang, Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298–310. Springer, Heidelberg (2014)
    • (2014) WAIM 2014. LNCS , vol.8485 , pp. 298-310
    • Zheng, Y.1    Liu, Q.2    Chen, E.3    Ge, Y.4    Zhao, J.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.