메뉴 건너뛰기




Volumn , Issue , 2013, Pages 8614-8618

Deep convolutional neural networks for LVCSR

Author keywords

Neural Networks; Speech Recognition

Indexed keywords

CONVOLUTIONAL NEURAL NETWORK; DEEP NEURAL NETWORKS; INPUT FEATURES; LARGE VOCABULARY; NEURAL NETWORK FEATURES; SPECTRAL CORRELATION; SPECTRAL VARIATION; SPEECH SIGNALS;

EID: 84890525984     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2013.6639347     Document Type: Conference Paper
Times cited : (1069)

References (15)
  • 2
    • 84878379108 scopus 로고    scopus 로고
    • Scalable minimum bayes risk training of deep neural network acoustic models using distributed hessian-free optimization
    • B. Kingsbury, T. N. Sainath, and H. Soltau, "Scalable Minimum Bayes Risk Training of Deep Neural Network Acoustic Models Using Distributed Hessian-free Optimization," in Proc. Interspeech, 2012.
    • (2012) Proc. Interspeech
    • Kingsbury, B.1    Sainath, T.N.2    Soltau, H.3
  • 3
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • F. Seide, G. Li, and D. Yu, "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks," in Proc. Interspeech, 2011.
    • (2011) Proc. Interspeech
    • Seide, F.1    Li, G.2    Yu, D.3
  • 4
    • 84878539964 scopus 로고    scopus 로고
    • Application of pretrained deep neural networks to large vocabulary speech recognition
    • N. Jaitly, P. Nguyen, A. W. Senior, and V. Vanhoucke, "Application Of Pretrained Deep Neural Networks To Large Vocabulary Speech Recognition," in Proc. Interspeech, 2012.
    • (2012) Proc. Interspeech
    • Jaitly, N.1    Nguyen, P.2    Senior, A.W.3    Vanhoucke, V.4
  • 5
    • 84055222005 scopus 로고    scopus 로고
    • Context-dependent pre-trained deep neural networks for large vocabulary speech recognition
    • G.E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition," vol. 20, no. 1, pp. 30-42, 2012.
    • (2012) Vol. 20 , Issue.1 , pp. 30-42
    • Dahl, G.E.1    Yu, D.2    Deng, L.3    Acero, A.4
  • 8
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Y. LeCun, F. Huang, and L. Bottou, "Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting," in Proc. CVPR, 2004.
    • (2004) Proc. CVPR
    • Lecun, Y.1    Huang, F.2    Bottou, L.3
  • 9
    • 0030737097 scopus 로고    scopus 로고
    • Face recognition: A convolutional neural-network approach
    • S. Lawrence, "Face Recognition: A Convolutional Neural-Network Approach," IEEE Transactions on Neural Networks, vol. 8, no. 1, pp. 98-113, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 98-113
    • Lawrence, S.1
  • 10
    • 84867605836 scopus 로고    scopus 로고
    • Applying convolutional neural network concepts to hybrid nnhmmmodel for speech recognition
    • O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, "Applying Convolutional Neural Network Concepts to Hybrid NNHMMModel for Speech Recognition," in Proc. ICASSP, 2012.
    • (2012) Proc. ICASSP
    • Abdel-Hamid, O.1    Mohamed, A.2    Jiang, H.3    Penn, G.4
  • 12
    • 84867593213 scopus 로고    scopus 로고
    • Auto-encoder bottleneck features using deep belief networks
    • T. N. Sainath, B. Kingsbury, and B. Ramabhadran, "Auto-Encoder Bottleneck Features Using Deep Belief Networks," in Proc. ICASSP, 2012.
    • (2012) Proc. ICASSP
    • Sainath, T.N.1    Kingsbury, B.2    Ramabhadran, B.3
  • 13
    • 84867585919 scopus 로고    scopus 로고
    • Understanding how deep belief networks perform acoustic modelling
    • A. Mohamed, G. Hinton, and G. Penn, "Understanding how Deep Belief Networks Perform Acoustic Modelling," in ICASSP, 2012.
    • (2012) ICASSP
    • Mohamed, A.1    Hinton, G.2    Penn, G.3
  • 15
    • 70349213445 scopus 로고    scopus 로고
    • Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
    • B. Kingsbury, "Lattice-Based Optimization of Sequence Classification Criteria for Neural-Network Acoustic Modeling," in Proc. ICASSP, 2009.
    • (2009) Proc. ICASSP
    • Kingsbury, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.