-
1
-
-
81055156693
-
A brief survey on sequence classification
-
Xing Z, Pei J, Keogh E. A brief survey on sequence classification. ACM SIGKDD Explorations Newsletter, 2010, 12(1): 40–48
-
(2010)
ACM SIGKDD Explorations Newsletter
, vol.12
, Issue.1
, pp. 40-48
-
-
Xing, Z.1
Pei, J.2
Keogh, E.3
-
2
-
-
84867136666
-
Querying and mining of time series data: experimental comparison of representations and distance measures
-
Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E. Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment, 2008, 1(2): 1542–1552
-
(2008)
Proceedings of the VLDB Endowment
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
3
-
-
78049352590
-
Combining discrete svm and fixed cardinality warping distances for multivariate time series classification
-
Orsenigo C, Vercellis C. Combining discrete svm and fixed cardinality warping distances for multivariate time series classification. Pattern Recognition, 2010, 43(11): 3787–3794
-
(2010)
Pattern Recognition
, vol.43
, Issue.11
, pp. 3787-3794
-
-
Orsenigo, C.1
Vercellis, C.2
-
6
-
-
67749108627
-
Heartbeat time series classification with support vector machines
-
Kampouraki A, Manis G, Nikou C. Heartbeat time series classification with support vector machines. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(4): 512–518
-
(2009)
IEEE Transactions on Information Technology in Biomedicine
, vol.13
, Issue.4
, pp. 512-518
-
-
Kampouraki, A.1
Manis, G.2
Nikou, C.3
-
9
-
-
84866037385
-
Searching and mining trillions of time series subsequences under dynamic time warping
-
Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E. Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2012, 262–270
-
(2012)
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 262-270
-
-
Rakthanmanon, T.1
Campana, B.2
Mueen, A.3
Batista, G.4
Westover, B.5
Zhu, Q.6
Zakaria, J.7
Keogh, E.8
-
10
-
-
33749260341
-
Fast time series classification using numerosity reduction
-
Xi X, Keogh E J, Shelton C R, Wei L, Ratanamahatana C A. Fast time series classification using numerosity reduction. In: Proceedings of the 23rd International Conference on Machine Learning. 2006, 1033–1040
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 1033-1040
-
-
Xi, X.1
Keogh, E.J.2
Shelton, C.R.3
Wei, L.4
Ratanamahatana, C.A.5
-
11
-
-
84879854889
-
Representation learning: a review and new perspectives
-
Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798–1828
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
12
-
-
0002263996
-
Convolutional networks for images, speech, and time series
-
LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks, 1995, 3361(10)
-
(1995)
The Handbook of Brain Theory and Neural Networks
, vol.3361
, pp. 10
-
-
LeCun, Y.1
Bengio, Y.2
-
14
-
-
84958543676
-
Time series classification using multi-channels deep convolutional neural networks
-
Zheng Y, Liu Q, Chen E, Ge Y, Zhao J. Time series classification using multi-channels deep convolutional neural networks. In: Proceedings of the 15th International Conference on Web-Age Information Management. 2014, 298–310
-
(2014)
Proceedings of the 15th International Conference on Web-Age Information Management
, pp. 298-310
-
-
Zheng, Y.1
Liu, Q.2
Chen, E.3
Ge, Y.4
Zhao, J.5
-
16
-
-
14844283547
-
Physiobank, Physiotoolkit, and Physionet omponents of a new research resource for complex physiologic signals
-
Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K, Stanley H E. Physiobank, Physiotoolkit, and Physionet omponents of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): e215–e220
-
(2000)
Circulation
, vol.101
, Issue.23
, pp. e215-e220
-
-
Goldberger, A.L.1
Amaral, L.A.N.2
Glass, L.3
Hausdorff, J.M.4
Ivanov, P.C.5
Mark, R.G.6
Mietus, J.E.7
Moody, G.B.8
Peng, C.K.9
Stanley, H.E.10
-
20
-
-
79953906169
-
Dynamic time warping constraint learning for large margin nearest neighbor classification
-
Yu D, Yu X, Hu Q, Liu J, Wu A. Dynamic time warping constraint learning for large margin nearest neighbor classification. Information Sciences, 2011, 181(13): 2787–2796
-
(2011)
Information Sciences
, vol.181
, Issue.13
, pp. 2787-2796
-
-
Yu, D.1
Yu, X.2
Hu, Q.3
Liu, J.4
Wu, A.5
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278–2324
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
24
-
-
84890471125
-
On rectified linear units for speech processing
-
Zeiler M D, Ranzato M, Monga R, Mao M, Yang K, Le Q, Nguyen P, Senior A, Vanhoucke V, Dean J, Hinton G E. On rectified linear units for speech processing. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2013, 3517–3521
-
(2013)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 3517-3521
-
-
Zeiler, M.D.1
Ranzato, M.2
Monga, R.3
Mao, M.4
Yang, K.5
Le, Q.6
Nguyen, P.7
Senior, A.8
Vanhoucke, V.9
Dean, J.10
Hinton, G.E.11
-
26
-
-
84857496797
-
Max-pooling convolutional neural networks for vision-based hand gesture recognition
-
Nagi J, Ducatelle F, Di Caro G A, Ciresan D, Meier U, Giusti A, Nagi F, Schmidhuber J, Gambardella L M. Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: Proceedings of IEEE International Conference on Signal and Image Processing Applications. 2011, 342–347
-
(2011)
Proceedings of IEEE International Conference on Signal and Image Processing Applications
, pp. 342-347
-
-
Nagi, J.1
Ducatelle, F.2
Di Caro, G.A.3
Ciresan, D.4
Meier, U.5
Giusti, A.6
Nagi, F.7
Schmidhuber, J.8
Gambardella, L.M.9
-
27
-
-
84872543023
-
Efficient backprop
-
LeCun Y, Bottou L, Orr G B, Müller K R. Efficient backprop. Lecture Notes in Computer Science, 2012, 7700: 9–48
-
(2012)
Lecture Notes in Computer Science
, vol.7700
, pp. 9-48
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.B.3
Müller, K.R.4
-
31
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan D, Bengio Y, Courville A, Manzagol P A, Vincent P, Bengio S. Why does unsupervised pre-training help deep learning? The Journal of Machine Learning Research, 2010, 11: 625–660
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.A.4
Vincent, P.5
Bengio, S.6
-
32
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507
-
(2006)
Science
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
33
-
-
79959353548
-
Stacked convolutional auto-encoders for hierarchical feature extraction
-
Masci J, Meier U, Cireşan D, Schmidhuber J. Stacked convolutional auto-encoders for hierarchical feature extraction. Lecture Notes in Computer Science, 2011, 6791: 52–59
-
(2011)
Lecture Notes in Computer Science
, vol.6791
, pp. 52-59
-
-
Masci, J.1
Meier, U.2
Cireşan, D.3
Schmidhuber, J.4
-
34
-
-
38949193299
-
Why is real-world visual object recognition hard?
-
Pinto N, Cox D D, DiCarlo J J. Why is real-world visual object recognition hard? PLoS Computational Biology, 2008, 4(1): e27
-
(2008)
PLoS Computational Biology
, vol.4
, Issue.1
, pp. e27
-
-
Pinto, N.1
Cox, D.D.2
DiCarlo, J.J.3
-
35
-
-
84881039921
-
Flexible, high performance convolutional neural networks for image classification
-
Cireşan D C, Meier U, Masci J, Gambardella L M, Schmidhuber J. Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence. 2011, 1237–1242
-
(2011)
Proceedings of the 22nd International Joint Conference on Artificial Intelligence
, pp. 1237-1242
-
-
Cireşan, D.C.1
Meier, U.2
Masci, J.3
Gambardella, L.M.4
Schmidhuber, J.5
-
36
-
-
84861776914
-
Multi-column deep neural network for traffic sign classification
-
Cireşan D, Meier U, Masci J, Schmidhuber J. Multi-column deep neural network for traffic sign classification. Neural Networks, 2012, 32: 333–338
-
(2012)
Neural Networks
, vol.32
, pp. 333-338
-
-
Cireşan, D.1
Meier, U.2
Masci, J.3
Schmidhuber, J.4
-
41
-
-
0024634603
-
Phoneme recognition using time-delay neural networks
-
Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K J. Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(3): 328–339
-
(1989)
IEEE Transactions on Acoustics, Speech and Signal Processing
, vol.37
, Issue.3
, pp. 328-339
-
-
Waibel, A.1
Hanazawa, T.2
Hinton, G.3
Shikano, K.4
Lang, K.J.5
|