메뉴 건너뛰기




Volumn 51, Issue 1, 2014, Pages 1-16

Research and development on Boltzmann machine

Author keywords

Boltzmann machine; Expected value; Gibbs sampling; Hidden unit; Markov chain; Probability distribution; Simulated annealing; Visible unit

Indexed keywords

ALGORITHMS; COMPLEX NETWORKS; MARKOV PROCESSES; NETWORK LAYERS; PROBABILITY DISTRIBUTIONS; SIMULATED ANNEALING;

EID: 84896028793     PISSN: 10001239     EISSN: None     Source Type: Journal    
DOI: 10.7544/issn1000-1239.2014.20121044     Document Type: Review
Times cited : (25)

References (46)
  • 4
    • 0003641781 scopus 로고    scopus 로고
    • The copycat project: An experiment in nondeterminism and creative analogies
    • MIT Artificial Intelligence Laboratory Memo 755. 1984-01-01. 2004-10-01
    • Hofstadter D R. The copycat project: An experiment in nondeterminism and creative analogies [DB/OL]. MIT Artificial Intelligence Laboratory Memo 755. (1984-01-01) [2004-10-01]. http://hdl.handle.net/1721.1/5648
    • Hofstadter, D.R.1
  • 5
    • 55849107893 scopus 로고
    • A non-deterministic approach to analogy, involving the ising model of ferromagnetism
    • Hackensack: World Scientific
    • Hofstadter D R. A Non-Deterministic Approach to Analogy, Involving the Ising Model of Ferromagnetism [M]//The Physics of Cognitive Processes. Hackensack: World Scientific, 1987
    • (1987) The Physics of Cognitive Processes
    • Hofstadter, D.R.1
  • 6
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • Cambridge: MIT Press
    • Smolensky P. Information Processing in Dynamical Systems: Foundations of Harmony Theory [M]//Parallel Distributed Processing, Vol 1: Foundations. Cambridge: MIT Press, 1986: 194-281
    • (1986) Parallel Distributed Processing, Foundations , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 8
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G E. Training products of experts by minimizing contrastive divergence [J]. Neural Computation, 2002, 14(8): 1771-1800
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 9
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220(4598): 671-680
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 11
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Berlin: Springer
    • Hinton G E. A practical guide to training restricted Boltzmann machines [G]//LNCS 7700: Neural Networks: Tricks of the Trade. Berlin: Springer, 2012: 599-619
    • (2012) LNCS 7700: Neural Networks: Tricks of the Trade , pp. 599-619
    • Hinton, G.E.1
  • 13
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan M I, Ghahramani Z, Jaakkola T S, et al. An introduction to variational methods for graphical models [J]. Machine Learning, 1999, 37(2): 183-233
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3
  • 14
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal R M. Connectionist learning of belief networks [J]. Artificial Intelligence, 1992, 56(1): 71-113
    • (1992) Artificial Intelligence , vol.56 , Issue.1 , pp. 71-113
    • Neal, R.M.1
  • 15
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines using approximations to the likelihood gradient
    • New York: ACM
    • Tieleman T. Training restricted Boltzmann machines using approximations to the likelihood gradient [C]//Proc of the 25th Int Conf on Machine Learning. New York: ACM, 2008: 1064-1071
    • (2008) Proc of the 25th Int Conf on Machine Learning , pp. 1064-1071
    • Tieleman, T.1
  • 16
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G E. Training products of experts by minimizing contrastive divergence [J]. Neural Computation, 2002, 14(8): 1711-1800
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1711-1800
    • Hinton, G.E.1
  • 19
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G E, Salakhutdinov R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 24
    • 84863380535 scopus 로고    scopus 로고
    • Unsupervised feature learning for audio classification using convolutional deep belief networks
    • New York: ACM
    • Pham P, Lee H, Largman Y, et al. Unsupervised feature learning for audio classification using convolutional deep belief networks [C]//Proc of the 2009 Neural Information Processing Systems. New York: ACM, 2009: 1096-1104
    • (2009) Proc of the 2009 Neural Information Processing Systems , pp. 1096-1104
    • Pham, P.1    Lee, H.2    Largman, Y.3
  • 25
    • 84874125782 scopus 로고    scopus 로고
    • An efficient learning procedure for deep Boltzmann machines
    • Salakhutdinov R, Hinton G E. An efficient learning procedure for deep Boltzmann machines [J]. Neural Computation, 2012, 24(8): 1967-2006
    • (2012) Neural Computation , vol.24 , Issue.8 , pp. 1967-2006
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 26
  • 28
    • 79959388970 scopus 로고    scopus 로고
    • Parallel tempering is efficient for learning restricted Boltzmann machines
    • New York: ACM
    • Cho K, Raiko T, Ilin A. Parallel tempering is efficient for learning restricted Boltzmann machines [C]//Proc of the 2010 Int Joint Conf on Neural Networks. New York: ACM, 2010: 1-8
    • (2010) Proc of the 2010 Int Joint Conf on Neural Networks , pp. 1-8
    • Cho, K.1    Raiko, T.2    Ilin, A.3
  • 30
    • 80053444761 scopus 로고    scopus 로고
    • Enhanced gradient and adaptive learning rate for training restricted Boltzmann machines
    • New York: ACM
    • Cho K, Raiko T, Ilin A. Enhanced gradient and adaptive learning rate for training restricted Boltzmann machines [C]//Proc of the 28th Int Conf on Machine Learning. New York: ACM, 2011: 105-112
    • (2011) Proc of the 28th Int Conf on Machine Learning , pp. 105-112
    • Cho, K.1    Raiko, T.2    Ilin, A.3
  • 31
    • 77956509090 scopus 로고    scopus 로고
    • Restified linear units improve restricted Boltzmann machines
    • New York: ACM
    • Nair V, Hinton G E. Restified linear units improve restricted Boltzmann machines [C]//Proc of the 27th Int Conf on Machine Learning. New York: ACM, 2010: 807-814
    • (2010) Proc of the 27th Int Conf on Machine Learning , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 35
    • 84867091530 scopus 로고    scopus 로고
    • Feature extraction using restricted Boltzmann machine for stock price prediction
    • Los Alamitos, CA: IEEE Computer Society
    • Cai X, Hu S, Lin X. Feature extraction using restricted Boltzmann machine for stock price prediction [C]//Proc of the 2012 IEEE Int Conf on Computer Science and Automation Engineering. Los Alamitos, CA: IEEE Computer Society, 2012, 3: 80-83
    • (2012) Proc of the 2012 IEEE Int Conf on Computer Science and Automation Engineering , vol.3 , pp. 80-83
    • Cai, X.1    Hu, S.2    Lin, X.3
  • 36
    • 77955989954 scopus 로고    scopus 로고
    • Modeling pixel means and convariances using factorized third-order Boltzmann machines
    • Los Alamitos, CA: IEEE Computer Society
    • Ranzato M A, Hinton G E. Modeling pixel means and convariances using factorized third-order Boltzmann machines [C]//Proc of the 2010 IEEE Conf on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2010: 2551-2558
    • (2010) Proc of the 2010 IEEE Conf on Computer Vision and Pattern Recognition , pp. 2551-2558
    • Ranzato, M.A.1    Hinton, G.E.2
  • 37
    • 84865770736 scopus 로고    scopus 로고
    • Accelerated parallelizable neural network learning algorithm for speech recognition
    • Piscataway, NJ: IEEE
    • Yu D, Deng L. Accelerated parallelizable neural network learning algorithm for speech recognition [C]//Proc of Interspeech 2011. Piscataway, NJ: IEEE, 2011: 2281-2284
    • (2011) Proc of Interspeech 2011 , pp. 2281-2284
    • Yu, D.1    Deng, L.2
  • 38
    • 79959840616 scopus 로고    scopus 로고
    • Investigation of full-sequence training of deep belief networks for speech recognition
    • Piscataway, NJ: IEEE
    • Mohamed A, Yu D, Deng L. Investigation of full-sequence training of deep belief networks for speech recognition [C]//Proc of Interspeech 2010. Piscataway, NJ: IEEE, 2010: 2846-2849
    • (2010) Proc of Interspeech 2010 , pp. 2846-2849
    • Mohamed, A.1    Yu, D.2    Deng, L.3
  • 41
    • 79959842828 scopus 로고    scopus 로고
    • Binary coding of speech spectrograms using a deep auto-encoder
    • Piscataway, NJ: IEEE
    • Deng L, Seltzer M, Yu D, et al. Binary coding of speech spectrograms using a deep auto-encoder [C]//Proc of Interspeech 2010. Piscataway, NJ: IEEE, 2010: 1692-1695
    • (2010) Proc of Interspeech 2010 , pp. 1692-1695
    • Deng, L.1    Seltzer, M.2    Yu, D.3
  • 45
    • 84896043490 scopus 로고    scopus 로고
    • Chinese documents classification based on restricted Boltzmann machines
    • Chinese source
    • Yang Ying, Wu Chengwei, Hu Su. Chinese documents classification based on restricted Boltzmann machines [J]. Science and Technology Innovation Herald, 2012, 26(16): 35-36 (in Chinese)
    • (2012) Science and Technology Innovation Herald , vol.26 , Issue.16 , pp. 35-36
    • Yang, Y.1    Wu, C.2    Hu, S.3
  • 46
    • 33645988196 scopus 로고    scopus 로고
    • From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel hilbert space
    • Zhou S K, Chellappa R. From sample similarity to ensemble similarity: Probabilistic distance measures in reproducing kernel hilbert space [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28(6): 917-929
    • (2006) IEEE Trans on Pattern Analysis and Machine Intelligence , vol.28 , Issue.6 , pp. 917-929
    • Zhou, S.K.1    Chellappa, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.