-
2
-
-
84928379010
-
Nutrients, foods, and colorectal cancer prevention
-
COI: 1:CAS:528:DC%2BC2MXntVersLY%3D, PID: 25575572, A comprehensive review of epidemiologic and mechanistic evidence supporting the importance of nutritional factors in colorectal cancer prevention
-
•• Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology. 2015;148:1244–1260 e16. A comprehensive review of epidemiologic and mechanistic evidence supporting the importance of nutritional factors in colorectal cancer prevention
-
(2015)
Gastroenterology
, vol.148
, pp. 1240-1244
-
-
Song, M.1
Garrett, W.S.2
Chan, A.T.3
-
3
-
-
38549107462
-
Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis
-
COI: 1:CAS:528:DC%2BD1cXjtVygsLk%3D, PID: 18237311
-
Scanlan PD, Shanahan F, Clune Y, et al. Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol. 2008;10:789–98.
-
(2008)
Environ Microbiol
, vol.10
, pp. 789-798
-
-
Scanlan, P.D.1
Shanahan, F.2
Clune, Y.3
-
4
-
-
79551571717
-
Microbial dysbiosis in colorectal cancer (CRC) patients
-
COI: 1:CAS:528:DC%2BC3MXhslyit7k%3D, PID: 21297998
-
Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011;6:e16393.
-
(2011)
PLoS One
, vol.6
-
-
Sobhani, I.1
Tap, J.2
Roudot-Thoraval, F.3
-
5
-
-
84855923925
-
Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers
-
COI: 1:CAS:528:DC%2BC38XhtVCgtbk%3D, PID: 21850056
-
Wang T, Cai G, Qiu Y, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320–9.
-
(2012)
ISME J
, vol.6
, pp. 320-329
-
-
Wang, T.1
Cai, G.2
Qiu, Y.3
-
6
-
-
84891473723
-
Human gut microbiome and risk for colorectal cancer
-
COI: 1:CAS:528:DC%2BC2cXhs1yrsQ%3D%3D, PID: 24316595
-
Ahn J, Sinha R, Pei Z, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105:1907–11.
-
(2013)
J Natl Cancer Inst
, vol.105
, pp. 1907-1911
-
-
Ahn, J.1
Sinha, R.2
Pei, Z.3
-
7
-
-
84910116215
-
The human gut microbiome as a screening tool for colorectal cancer
-
COI: 1:CAS:528:DC%2BC2cXhvVyjur3J
-
Zackular JP, Rogers MA, Ruffin MT, et al. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res (Phila). 2014;7:1112–21.
-
(2014)
Cancer Prev Res (Phila)
, vol.7
, pp. 1112-1121
-
-
Zackular, J.P.1
Rogers, M.A.2
Ruffin, M.T.3
-
8
-
-
84924026956
-
Potential of fecal microbiota for early-stage detection of colorectal cancer
-
PID: 25432777
-
Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014;10:766.
-
(2014)
Mol Syst Biol
, vol.10
, pp. 766
-
-
Zeller, G.1
Tap, J.2
Voigt, A.Y.3
-
9
-
-
84924690678
-
Gut microbiome development along the colorectal adenoma-carcinoma sequence
-
COI: 1:CAS:528:DC%2BC2MXotlGksrs%3D, PID: 25758642
-
Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.
-
(2015)
Nat Commun
, vol.6
, pp. 6528
-
-
Feng, Q.1
Liang, S.2
Jia, H.3
-
10
-
-
84969888744
-
Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing
-
PID: 27171425
-
Vogtmann E, Hua X, Zeller G, et al. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS One. 2016;11:e0155362.
-
(2016)
PLoS One
, vol.11
-
-
Vogtmann, E.1
Hua, X.2
Zeller, G.3
-
11
-
-
84942693814
-
Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer
-
PID: 26408641
-
Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70–8.
-
(2017)
Gut
, vol.66
, pp. 70-78
-
-
Yu, J.1
Feng, Q.2
Wong, S.H.3
-
12
-
-
85032430837
-
Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer
-
Shah MS, DeSantis TZ, Weinmaier T, et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut. 2017.
-
(2017)
Gut
-
-
Shah, M.S.1
DeSantis, T.Z.2
Weinmaier, T.3
-
13
-
-
85018799210
-
Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer
-
COI: 1:CAS:528:DC%2BC2sXlvFOqsb0%3D, PID: 27697996
-
Liang Q, Chiu J, Chen Y, et al. Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res. 2017;23:2061–70.
-
(2017)
Clin Cancer Res
, vol.23
, pp. 2061-2070
-
-
Liang, Q.1
Chiu, J.2
Chen, Y.3
-
14
-
-
84964320754
-
Tumour-associated and non-tumour-associated microbiota in colorectal cancer
-
PID: 26992426
-
Flemer B, Lynch DB, Brown JM, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2017;66:633–43.
-
(2017)
Gut
, vol.66
, pp. 633-643
-
-
Flemer, B.1
Lynch, D.B.2
Brown, J.M.3
-
15
-
-
84962419838
-
Inflammatory networks underlying colorectal cancer
-
COI: 1:CAS:528:DC%2BC28Xislemtrw%3D, PID: 26882261, An updated review of the inmportance of inflammatory components in colorectal cancer
-
• Lasry A, Zinger A, Ben-Neriah Y. Inflammatory networks underlying colorectal cancer. Nat Immunol. 2016;17:230–40. An updated review of the inmportance of inflammatory components in colorectal cancer
-
(2016)
Nat Immunol
, vol.17
, pp. 230-240
-
-
Lasry, A.1
Zinger, A.2
Ben-Neriah, Y.3
-
16
-
-
79952757721
-
Composition, variability, and temporal stability of the intestinal microbiota of the elderly
-
COI: 1:CAS:528:DC%2BC3MXjvVCkurg%3D, PID: 20571116
-
Claesson MJ, Cusack S, O'Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–91.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4586-4591
-
-
Claesson, M.J.1
Cusack, S.2
O'Sullivan, O.3
-
17
-
-
84879744885
-
The long-term stability of the human gut microbiota
-
PID: 23828941
-
Faith JJ, Guruge JL, Charbonneau M, et al. The long-term stability of the human gut microbiota. Science. 2013;341:1237439.
-
(2013)
Science
, vol.341
, pp. 1237439
-
-
Faith, J.J.1
Guruge, J.L.2
Charbonneau, M.3
-
18
-
-
20544444045
-
Diversity of the human intestinal microbial flora
-
PID: 15831718
-
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.
-
(2005)
Science
, vol.308
, pp. 1635-1638
-
-
Eckburg, P.B.1
Bik, E.M.2
Bernstein, C.N.3
-
19
-
-
72949091232
-
Bacterial community variation in human body habitats across space and time
-
COI: 1:CAS:528:DC%2BD1MXhsFGmsL7K, PID: 19892944
-
Costello EK, Lauber CL, Hamady M, et al. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7.
-
(2009)
Science
, vol.326
, pp. 1694-1697
-
-
Costello, E.K.1
Lauber, C.L.2
Hamady, M.3
-
20
-
-
79960854386
-
Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms
-
COI: 1:CAS:528:DC%2BC3MXhtVOrt73P, PID: 21829582
-
Jalanka-Tuovinen J, Salonen A, Nikkila J, et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One. 2011;6:e23035.
-
(2011)
PLoS One
, vol.6
-
-
Jalanka-Tuovinen, J.1
Salonen, A.2
Nikkila, J.3
-
22
-
-
84892828465
-
Diet rapidly and reproducibly alters the human gut microbiome
-
COI: 1:CAS:528:DC%2BC2cXhtFOls78%3D, PID: 24336217, A landmark study indicating that the gut microbiome can rapidly respond to altered diet
-
• David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. A landmark study indicating that the gut microbiome can rapidly respond to altered diet
-
(2014)
Nature
, vol.505
, pp. 559-563
-
-
David, L.A.1
Maurice, C.F.2
Carmody, R.N.3
-
23
-
-
80053618114
-
Linking long-term dietary patterns with gut microbial enterotypes
-
COI: 1:CAS:528:DC%2BC3MXht1Gms77K, PID: 21885731
-
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.
-
(2011)
Science
, vol.334
, pp. 105-108
-
-
Wu, G.D.1
Chen, J.2
Hoffmann, C.3
-
24
-
-
84904014790
-
Tipping elements in the human intestinal ecosystem
-
COI: 1:CAS:528:DC%2BC2cXitVWgsLjJ, PID: 25003530
-
Lahti L, Salojarvi J, Salonen A, et al. Tipping elements in the human intestinal ecosystem. Nat Commun. 2014;5:4344.
-
(2014)
Nat Commun
, vol.5
, pp. 4344
-
-
Lahti, L.1
Salojarvi, J.2
Salonen, A.3
-
25
-
-
84920928124
-
Murine gut microbiota-diet trumps genes
-
COI: 1:CAS:528:DC%2BC2MXmtlKksg%3D%3D, PID: 25590753
-
Walter J. Murine gut microbiota-diet trumps genes. Cell Host Microbe. 2015;17:3–5.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 3-5
-
-
Walter, J.1
-
26
-
-
84929094853
-
Fat, fibre and cancer risk in African Americans and rural Africans
-
PID: 25919227, The study provides strong eivdence for the role of the gut microbiome in mediating the relationship between dietary factors and cancer risk
-
•• O'Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. The study provides strong eivdence for the role of the gut microbiome in mediating the relationship between dietary factors and cancer risk
-
(2015)
Nat Commun
, vol.6
, pp. 6342
-
-
O'Keefe, S.J.1
Li, J.V.2
Lahti, L.3
-
27
-
-
84947812071
-
Personalized nutrition by prediction of glycemic responses
-
COI: 1:CAS:528:DC%2BC2MXhvVyqtbvM, PID: 26590418, The study suggests that the gut microbiome is an important determinant for the inter-individual variation in the metabolic response to dietary intervention
-
•• Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163:1079–94. The study suggests that the gut microbiome is an important determinant for the inter-individual variation in the metabolic response to dietary intervention
-
(2015)
Cell
, vol.163
, pp. 1079-1094
-
-
Zeevi, D.1
Korem, T.2
Zmora, N.3
-
28
-
-
84959523025
-
Taking it personally: personalized utilization of the human microbiome in health and disease
-
COI: 1:CAS:528:DC%2BC28XhvFCltA%3D%3D, PID: 26764593
-
Zmora N, Zeevi D, Korem T, et al. Taking it personally: personalized utilization of the human microbiome in health and disease. Cell Host Microbe. 2016;19:12–20.
-
(2016)
Cell Host Microbe
, vol.19
, pp. 12-20
-
-
Zmora, N.1
Zeevi, D.2
Korem, T.3
-
29
-
-
77952000691
-
Dietary patterns and colorectal adenoma and cancer risk: a review of the epidemiological evidence
-
PID: 20432162
-
Miller PE, Lesko SM, Muscat JE, et al. Dietary patterns and colorectal adenoma and cancer risk: a review of the epidemiological evidence. Nutr Cancer. 2010;62:413–24.
-
(2010)
Nutr Cancer
, vol.62
, pp. 413-424
-
-
Miller, P.E.1
Lesko, S.M.2
Muscat, J.E.3
-
30
-
-
82555191404
-
Dietary patterns and colorectal cancer: systematic review and meta-analysis
-
COI: 1:CAS:528:DC%2BC3MXhsFGqur3M, PID: 21946864
-
Magalhaes B, Peleteiro B, Lunet N. Dietary patterns and colorectal cancer: systematic review and meta-analysis. Eur J Cancer Prev. 2012;21:15–23.
-
(2012)
Eur J Cancer Prev
, vol.21
, pp. 15-23
-
-
Magalhaes, B.1
Peleteiro, B.2
Lunet, N.3
-
31
-
-
84857729398
-
Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota
-
COI: 1:CAS:528:DC%2BC38XmsFOis70%3D, PID: 22110050
-
Serino M, Luche E, Gres S, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61:543–53.
-
(2012)
Gut
, vol.61
, pp. 543-553
-
-
Serino, M.1
Luche, E.2
Gres, S.3
-
32
-
-
84889681706
-
Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation
-
PID: 23598352
-
Martinez-Medina M, Denizot J, Dreux N, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut. 2014;63:116–24.
-
(2014)
Gut
, vol.63
, pp. 116-124
-
-
Martinez-Medina, M.1
Denizot, J.2
Dreux, N.3
-
33
-
-
84893426343
-
Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women
-
COI: 1:CAS:528:DC%2BC2cXhs1Wlt7o%3D, PID: 24284436
-
Ley SH, Sun Q, Willett WC, et al. Associations between red meat intake and biomarkers of inflammation and glucose metabolism in women. Am J Clin Nutr. 2014;99:352–60.
-
(2014)
Am J Clin Nutr
, vol.99
, pp. 352-360
-
-
Ley, S.H.1
Sun, Q.2
Willett, W.C.3
-
34
-
-
27244452482
-
Dietary pattern, inflammation, and incidence of type 2 diabetes in women
-
COI: 1:CAS:528:DC%2BD2MXhtVaksL3I, PID: 16155283, quiz 714-5
-
Schulze MB, Hoffmann K, Manson JE, et al. Dietary pattern, inflammation, and incidence of type 2 diabetes in women. Am J Clin Nutr. 2005;82:675–84. quiz 714-5
-
(2005)
Am J Clin Nutr
, vol.82
, pp. 675-684
-
-
Schulze, M.B.1
Hoffmann, K.2
Manson, J.E.3
-
35
-
-
84872701905
-
Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress
-
COI: 1:CAS:528:DC%2BC3sXhsVemu7w%3D, PID: 22426755
-
Montonen J, Boeing H, Fritsche A, et al. Consumption of red meat and whole-grain bread in relation to biomarkers of obesity, inflammation, glucose metabolism and oxidative stress. Eur J Nutr. 2013;52:337–45.
-
(2013)
Eur J Nutr
, vol.52
, pp. 337-345
-
-
Montonen, J.1
Boeing, H.2
Fritsche, A.3
-
36
-
-
34247160735
-
Dietary patterns and markers of systemic inflammation among Iranian women
-
COI: 1:CAS:528:DC%2BD2sXktVSlur4%3D, PID: 17374666
-
Esmaillzadeh A, Kimiagar M, Mehrabi Y, et al. Dietary patterns and markers of systemic inflammation among Iranian women. J Nutr. 2007;137:992–8.
-
(2007)
J Nutr
, vol.137
, pp. 992-998
-
-
Esmaillzadeh, A.1
Kimiagar, M.2
Mehrabi, Y.3
-
37
-
-
5144234279
-
Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction
-
COI: 1:CAS:528:DC%2BD2cXotFeit7w%3D, PID: 15447916
-
Lopez-Garcia E, Schulze MB, Fung TT, et al. Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 2004;80:1029–35.
-
(2004)
Am J Clin Nutr
, vol.80
, pp. 1029-1035
-
-
Lopez-Garcia, E.1
Schulze, M.B.2
Fung, T.T.3
-
38
-
-
84870374152
-
Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease
-
COI: 1:CAS:528:DC%2BC38Xht1KhtrnI, PID: 23016134
-
Brown K, DeCoffe D, Molcan E, et al. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4:1095–119.
-
(2012)
Nutrients
, vol.4
, pp. 1095-1119
-
-
Brown, K.1
DeCoffe, D.2
Molcan, E.3
-
39
-
-
84902302408
-
Fast food fever: reviewing the impacts of the Western diet on immunity
-
PID: 24939238
-
Myles IA. Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr J. 2014;13:61.
-
(2014)
Nutr J
, vol.13
, pp. 61
-
-
Myles, I.A.1
-
41
-
-
77957075815
-
Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa
-
PID: 20679230
-
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 14691-14696
-
-
De Filippo, C.1
Cavalieri, D.2
Di Paola, M.3
-
42
-
-
84879456755
-
Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans
-
COI: 1:CAS:528:DC%2BC3sXhtVChtbzK, PID: 23719549
-
Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98:111–20.
-
(2013)
Am J Clin Nutr
, vol.98
, pp. 111-120
-
-
Ou, J.1
Carbonero, F.2
Zoetendal, E.G.3
-
43
-
-
85017381640
-
Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue
-
Mehta RS, Nishihara R, Cao Y, et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017;
-
(2017)
JAMA Oncol
-
-
Mehta, R.S.1
Nishihara, R.2
Cao, Y.3
-
44
-
-
84991644107
-
Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc
-
COI: 1:CAS:528:DC%2BC28Xht1KlsrbO, PID: 27512904
-
Abed J, Emgard JE, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe. 2016;20:215–25.
-
(2016)
Cell Host Microbe
, vol.20
, pp. 215-225
-
-
Abed, J.1
Emgard, J.E.2
Zamir, G.3
-
45
-
-
84856534859
-
Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma
-
COI: 1:CAS:528:DC%2BC38XhsFygtrk%3D, PID: 22009989
-
Castellarin M, Warren RL, Freeman JD, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306.
-
(2012)
Genome Res
, vol.22
, pp. 299-306
-
-
Castellarin, M.1
Warren, R.L.2
Freeman, J.D.3
-
46
-
-
84863022950
-
Genomic analysis identifies association of Fusobacterium with colorectal carcinoma
-
COI: 1:CAS:528:DC%2BC38XhsFygtrg%3D, PID: 22009990
-
Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–8.
-
(2012)
Genome Res
, vol.22
, pp. 292-298
-
-
Kostic, A.D.1
Gevers, D.2
Pedamallu, C.S.3
-
47
-
-
84896527392
-
Fusobacterium in colonic flora and molecular features of colorectal carcinoma
-
COI: 1:CAS:528:DC%2BC2cXktF2rs7w%3D, PID: 24385213
-
Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014;74:1311–8.
-
(2014)
Cancer Res
, vol.74
, pp. 1311-1318
-
-
Tahara, T.1
Yamamoto, E.2
Suzuki, H.3
-
48
-
-
84862997111
-
Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer
-
COI: 1:CAS:528:DC%2BC38XpvVWrtr4%3D, PID: 22761885
-
Chen W, Liu F, Ling Z, et al. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One. 2012;7:e39743.
-
(2012)
PLoS One
, vol.7
-
-
Chen, W.1
Liu, F.2
Ling, Z.3
-
49
-
-
84872387623
-
Fusobacterium is associated with colorectal adenomas
-
COI: 1:CAS:528:DC%2BC3sXhsFWqurw%3D, PID: 23335968
-
McCoy AN, Araujo-Perez F, Azcarate-Peril A, et al. Fusobacterium is associated with colorectal adenomas. PLoS One. 2013;8:e53653.
-
(2013)
PLoS One
, vol.8
-
-
McCoy, A.N.1
Araujo-Perez, F.2
Azcarate-Peril, A.3
-
50
-
-
84944459484
-
Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain
-
Allali I, Delgado S, Marron PI, et al. Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain. Gut Microbes. 2015:0.
-
(2015)
Gut Microbes
-
-
Allali, I.1
Delgado, S.2
Marron, P.I.3
-
51
-
-
84946144999
-
Gut mucosal microbiome across stages of colorectal carcinogenesis
-
COI: 1:CAS:528:DC%2BC2MXhslCmtb3J, PID: 26515465
-
Nakatsu G, Li X, Zhou H, et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015;6:8727.
-
(2015)
Nat Commun
, vol.6
, pp. 8727
-
-
Nakatsu, G.1
Li, X.2
Zhou, H.3
-
52
-
-
84940055522
-
Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis
-
PID: 26311717, The study indicates that high abundance ofFusobacterium nucleatumin the tumor tissue is associated with worse survival of colorectal cancer, providing further support for the pro-colorectal cancer effect of this bacteria
-
• Mima K, Nishihara R, Qian ZR, et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut. 2016;65:1973–80. The study indicates that high abundance of Fusobacterium nucleatum in the tumor tissue is associated with worse survival of colorectal cancer, providing further support for the pro-colorectal cancer effect of this bacteria.
-
(2016)
Gut
, vol.65
, pp. 1973-1980
-
-
Mima, K.1
Nishihara, R.2
Qian, Z.R.3
-
53
-
-
84882354326
-
Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment
-
COI: 1:CAS:528:DC%2BC3sXht1yhsLfE, PID: 23954159
-
Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14:207–15.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 207-215
-
-
Kostic, A.D.1
Chun, E.2
Robertson, L.3
-
54
-
-
84923053706
-
Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack
-
COI: 1:CAS:528:DC%2BC2MXisVygt7o%3D, PID: 25680274
-
Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–55.
-
(2015)
Immunity
, vol.42
, pp. 344-355
-
-
Gur, C.1
Ibrahim, Y.2
Isaacson, B.3
-
55
-
-
84882334105
-
Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin
-
COI: 1:CAS:528:DC%2BC3sXht1yhsr3N, PID: 23954158
-
Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 195-206
-
-
Rubinstein, M.R.1
Wang, X.2
Liu, W.3
-
56
-
-
85037984655
-
American Institute for Cancer Research. Continuous Update Project report: food, nutrition, physical activity, and the prevention of
-
World Cancer Research Fund
-
World Cancer Research Fund / American Institute for Cancer Research. Continuous Update Project report: food, nutrition, physical activity, and the prevention of colorectal cancer. 2011. http://www.wcrf.org/sites/default/files/Colorectal-Cancer-2011-Report.pdf.
-
(2011)
colorectal cancer
-
-
-
57
-
-
67649889132
-
Health benefits of dietary fiber
-
PID: 19335713
-
Anderson JW, Baird P, Davis RH Jr, et al. Health benefits of dietary fiber. Nutr Rev. 2009;67:188–205.
-
(2009)
Nutr Rev
, vol.67
, pp. 188-205
-
-
Anderson, J.W.1
Baird, P.2
Davis, R.H.3
-
58
-
-
84857640868
-
The insulin and insulin-like growth factor receptor family in neoplasia: an update
-
COI: 1:CAS:528:DC%2BC38Xit12jsrs%3D, PID: 22337149
-
Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer. 2012;12:159–69.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 159-169
-
-
Pollak, M.1
-
59
-
-
34247869042
-
The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas
-
COI: 1:CAS:528:DC%2BD2sXmsVyns7Y%3D, PID: 17498513
-
Giovannucci E, Michaud D. The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology. 2007;132:2208–25.
-
(2007)
Gastroenterology
, vol.132
, pp. 2208-2225
-
-
Giovannucci, E.1
Michaud, D.2
-
61
-
-
0015098728
-
Epidemiology of cancer of the colon and rectum
-
COI: 1:STN:280:DyaE38%2FhsF2ltQ%3D%3D, PID: 5165022
-
Burkitt DP. Epidemiology of cancer of the colon and rectum. Cancer. 1971;28:3–13.
-
(1971)
Cancer
, vol.28
, pp. 3-13
-
-
Burkitt, D.P.1
-
62
-
-
84876920542
-
Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma
-
COI: 1:CAS:528:DC%2BC3sXmvFSmtrY%3D, PID: 23553152
-
Chen HM, Yu YN, Wang JL, et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr. 2013;97:1044–52.
-
(2013)
Am J Clin Nutr
, vol.97
, pp. 1044-1052
-
-
Chen, H.M.1
Yu, Y.N.2
Wang, J.L.3
-
63
-
-
79955579989
-
The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon
-
COI: 1:CAS:528:DC%2BC3MXlsFalsro%3D, PID: 21531334
-
Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517–26.
-
(2011)
Cell Metab
, vol.13
, pp. 517-526
-
-
Donohoe, D.R.1
Garge, N.2
Zhang, X.3
-
64
-
-
84942195592
-
Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment
-
COI: 1:CAS:528:DC%2BC2MXht1Kgt7fI, PID: 26224132
-
Encarnacao JC, Abrantes AM, Pires AS, et al. Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 2015;34:465–78.
-
(2015)
Cancer Metastasis Rev
, vol.34
, pp. 465-478
-
-
Encarnacao, J.C.1
Abrantes, A.M.2
Pires, A.S.3
-
65
-
-
84911993839
-
A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner
-
COI: 1:CAS:528:DC%2BC2cXitVOhsbvN, PID: 25266735, The study suggests a model of mechanisms by which dietary fiber may protect against colorectal cancer in a gut microbiota- and butyrate-dependent manner, and provides a potential explanation for inconsistent findings about the relationship of fiber intake and colorectal cancer risk reported in epidemiologic studies
-
•• Donohoe DR, Holley D, Collins LB, et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 2014;4:1387–97. The study suggests a model of mechanisms by which dietary fiber may protect against colorectal cancer in a gut microbiota- and butyrate-dependent manner, and provides a potential explanation for inconsistent findings about the relationship of fiber intake and colorectal cancer risk reported in epidemiologic studies.
-
(2014)
Cancer Discov.
, vol.4
, pp. 1387-1397
-
-
Donohoe, D.R.1
Holley, D.2
Collins, L.B.3
-
66
-
-
78650618692
-
G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer
-
COI: 1:CAS:528:DC%2BC3cXhsF2rtrjP, PID: 20979106
-
Tang Y, Chen Y, Jiang H, et al. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int J Cancer. 2011;128:847–56.
-
(2011)
Int J Cancer
, vol.128
, pp. 847-856
-
-
Tang, Y.1
Chen, Y.2
Jiang, H.3
-
67
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
COI: 1:CAS:528:DC%2BC2cXnt1OktQ%3D%3D, PID: 24412617
-
Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–39.
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
Gurav, A.2
Sivaprakasam, S.3
-
68
-
-
66149084058
-
GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon
-
COI: 1:CAS:528:DC%2BD1MXjvVWisrc%3D, PID: 19276343
-
Thangaraju M, Cresci GA, Liu K, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69:2826–32.
-
(2009)
Cancer Res
, vol.69
, pp. 2826-2832
-
-
Thangaraju, M.1
Cresci, G.A.2
Liu, K.3
-
69
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
COI: 1:CAS:528:DC%2BC3sXhvFOmtrrJ, PID: 24226773
-
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
Campbell, C.2
Fan, X.3
-
70
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
COI: 1:CAS:528:DC%2BC3sXhvFOltr3F, PID: 24226770
-
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
-
71
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
COI: 1:CAS:528:DC%2BC3sXhtFyjsr3P, PID: 23828891
-
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
-
72
-
-
84893859801
-
The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
-
COI: 1:CAS:528:DC%2BC2cXisFyisL4%3D, PID: 24390544
-
Chang PV, Hao L, Offermanns S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111:2247–52.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 2247-2252
-
-
Chang, P.V.1
Hao, L.2
Offermanns, S.3
-
73
-
-
84963615071
-
Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats
-
COI: 1:CAS:528:DC%2BC28Xht12itL7F, PID: 26905582
-
Hu Y, Le Leu RK, Christophersen CT, et al. Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis. 2016;37:366–75.
-
(2016)
Carcinogenesis
, vol.37
, pp. 366-375
-
-
Hu, Y.1
Le Leu, R.K.2
Christophersen, C.T.3
-
74
-
-
30344476415
-
Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas
-
COI: 1:CAS:528:DC%2BD2MXhtlCnsrvF, PID: 16373710
-
Entin-Meer M, Rephaeli A, Yang X, et al. Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol Cancer Ther. 2005;4:1952–61.
-
(2005)
Mol Cancer Ther
, vol.4
, pp. 1952-1961
-
-
Entin-Meer, M.1
Rephaeli, A.2
Yang, X.3
-
75
-
-
1342323490
-
Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer
-
COI: 1:CAS:528:DC%2BD2cXksl2msA%3D%3D, PID: 14735205
-
Kuefer R, Hofer MD, Altug V, et al. Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. Br J Cancer. 2004;90:535–41.
-
(2004)
Br J Cancer
, vol.90
, pp. 535-541
-
-
Kuefer, R.1
Hofer, M.D.2
Altug, V.3
-
76
-
-
0035123710
-
Synergistic efficacy of 3n-butyrate and 5-fluorouracil in human colorectal cancer xenografts via modulation of DNA synthesis
-
COI: 1:CAS:528:DC%2BD3MXitlert7g%3D, PID: 11231942
-
Bras-Goncalves RA, Pocard M, Formento JL, et al. Synergistic efficacy of 3n-butyrate and 5-fluorouracil in human colorectal cancer xenografts via modulation of DNA synthesis. Gastroenterology. 2001;120:874–88.
-
(2001)
Gastroenterology
, vol.120
, pp. 874-888
-
-
Bras-Goncalves, R.A.1
Pocard, M.2
Formento, J.L.3
-
78
-
-
8944262831
-
MSH2 deficiency contributes to accelerated APC-mediated intestinal tumorigenesis
-
COI: 1:CAS:528:DyaK28XjvFCksb0%3D, PID: 8674041
-
Reitmair AH, Cai JC, Bjerknes M, et al. MSH2 deficiency contributes to accelerated APC-mediated intestinal tumorigenesis. Cancer Res. 1996;56:2922–6.
-
(1996)
Cancer Res
, vol.56
, pp. 2922-2926
-
-
Reitmair, A.H.1
Cai, J.C.2
Bjerknes, M.3
-
80
-
-
77950215241
-
A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association
-
COI: 1:CAS:528:DC%2BC3cXjtFygtLY%3D, PID: 20215514
-
Cross AJ, Ferrucci LM, Risch A, et al. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 2010;70:2406–14.
-
(2010)
Cancer Res
, vol.70
, pp. 2406-2414
-
-
Cross, A.J.1
Ferrucci, L.M.2
Risch, A.3
-
81
-
-
77951630296
-
Primary prevention of colorectal cancer
-
COI: 1:CAS:528:DC%2BC3cXms1yitLk%3D, PID: 20420944, e10
-
Chan AT, Giovannucci EL. Primary prevention of colorectal cancer. Gastroenterology. 2010;138:2029–43. e10
-
(2010)
Gastroenterology
, vol.138
, pp. 2029-2043
-
-
Chan, A.T.1
Giovannucci, E.L.2
-
82
-
-
0033653461
-
Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans
-
COI: 1:CAS:528:DC%2BD3cXosl2mtrk%3D, PID: 11101476
-
Magee EA, Richardson CJ, Hughes R, et al. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr. 2000;72:1488–94.
-
(2000)
Am J Clin Nutr
, vol.72
, pp. 1488-1494
-
-
Magee, E.A.1
Richardson, C.J.2
Hughes, R.3
-
83
-
-
4644290608
-
Diet and relapsing ulcerative colitis: take off the meat?
-
COI: 1:STN:280:DC%2BD2cvlt1GhsA%3D%3D, PID: 15361484
-
Tilg H, Kaser A. Diet and relapsing ulcerative colitis: take off the meat? Gut. 2004;53:1399–401.
-
(2004)
Gut
, vol.53
, pp. 1399-1401
-
-
Tilg, H.1
Kaser, A.2
-
84
-
-
0030799019
-
Colonic sulfide in pathogenesis and treatment of ulcerative colitis
-
COI: 1:STN:280:DyaK2svjt1ehsg%3D%3D, PID: 9286219
-
Roediger WE, Moore J, Babidge W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci. 1997;42:1571–9.
-
(1997)
Dig Dis Sci
, vol.42
, pp. 1571-1579
-
-
Roediger, W.E.1
Moore, J.2
Babidge, W.3
-
85
-
-
60049100513
-
Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis
-
COI: 1:CAS:528:DC%2BD1MXjsVeqtbg%3D, PID: 19160346
-
Rowan FE, Docherty NG, Coffey JC, et al. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg. 2009;96:151–8.
-
(2009)
Br J Surg
, vol.96
, pp. 151-158
-
-
Rowan, F.E.1
Docherty, N.G.2
Coffey, J.C.3
-
86
-
-
3042712911
-
Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models
-
COI: 1:CAS:528:DC%2BD2cXlslWqsLw%3D
-
Huycke MM, Gaskins HR. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med. 2004;229:586–97.
-
(2004)
Exp Biol Med
, vol.229
, pp. 586-597
-
-
Huycke, M.M.1
Gaskins, H.R.2
-
87
-
-
0037927972
-
Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells
-
COI: 1:CAS:528:DC%2BD3sXltFersb8%3D, PID: 12738807
-
Deplancke B, Gaskins HR. Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J. 2003;17:1310–2.
-
(2003)
FASEB J
, vol.17
, pp. 1310-1312
-
-
Deplancke, B.1
Gaskins, H.R.2
-
88
-
-
34250184585
-
Hydrogen sulfide induces direct radical-associated DNA damage
-
COI: 1:CAS:528:DC%2BD2sXmtVOisr4%3D, PID: 17475672
-
Attene-Ramos MS, Wagner ED, Gaskins HR, et al. Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res. 2007;5:455–9.
-
(2007)
Mol Cancer Res
, vol.5
, pp. 455-459
-
-
Attene-Ramos, M.S.1
Wagner, E.D.2
Gaskins, H.R.3
-
89
-
-
33745778247
-
Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation
-
COI: 1:CAS:528:DC%2BD28XovVWgur0%3D, PID: 16500920
-
Ramasamy S, Singh S, Taniere P, et al. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am J Physiol Gastrointest Liver Physiol. 2006;291:G288–96.
-
(2006)
Am J Physiol Gastrointest Liver Physiol
, vol.291
, pp. G288-G296
-
-
Ramasamy, S.1
Singh, S.2
Taniere, P.3
-
90
-
-
77955065696
-
Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21
-
COI: 1:CAS:528:DC%2BC3cXlslyhs7s%3D, PID: 20184555
-
Cai WJ, Wang MJ, Ju LH, et al. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. Cell Biol Int. 2010;34:565–72.
-
(2010)
Cell Biol Int
, vol.34
, pp. 565-572
-
-
Cai, W.J.1
Wang, M.J.2
Ju, L.H.3
-
92
-
-
84861551934
-
Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells
-
COI: 1:CAS:528:DC%2BC38Xot12rsb8%3D, PID: 22679478
-
Wu YC, Wang XJ, Yu L, et al. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells. PLoS One. 2012;7:e37572.
-
(2012)
PLoS One
, vol.7
-
-
Wu, Y.C.1
Wang, X.J.2
Yu, L.3
-
93
-
-
0027456925
-
Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis
-
COI: 1:CAS:528:DyaK3sXksVKltb8%3D, PID: 8440437
-
Roediger WE, Duncan A, Kapaniris O, et al. Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology. 1993;104:802–9.
-
(1993)
Gastroenterology
, vol.104
, pp. 802-809
-
-
Roediger, W.E.1
Duncan, A.2
Kapaniris, O.3
-
94
-
-
0034027081
-
The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis
-
COI: 1:CAS:528:DC%2BD3cXnsVKqsQ%3D%3D, PID: 10601057
-
Pitcher MC, Beatty ER, Cummings JH. The contribution of sulphate reducing bacteria and 5-aminosalicylic acid to faecal sulphide in patients with ulcerative colitis. Gut. 2000;46:64–72.
-
(2000)
Gut
, vol.46
, pp. 64-72
-
-
Pitcher, M.C.1
Beatty, E.R.2
Cummings, J.H.3
-
95
-
-
70350141417
-
Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites
-
COI: 1:CAS:528:DC%2BD1MXhtVygsr%2FE, PID: 19335337
-
Vinolo MA, Rodrigues HG, Hatanaka E, et al. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin Sci. 2009;117:331–8.
-
(2009)
Clin Sci
, vol.117
, pp. 331-338
-
-
Vinolo, M.A.1
Rodrigues, H.G.2
Hatanaka, E.3
-
96
-
-
36749004377
-
Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion
-
PID: 17588734
-
Zeng H, Combs GF Jr. Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J Nutr Biochem. 2008;19:1–7.
-
(2008)
J Nutr Biochem
, vol.19
, pp. 1-7
-
-
Zeng, H.1
Combs, G.F.2
-
97
-
-
84856755771
-
Hydrogen sulfide is an endogenous potentiator of T cell activation
-
COI: 1:CAS:528:DC%2BC38XhvVSjurg%3D, PID: 22167178
-
Miller TW, Wang EA, Gould S, et al. Hydrogen sulfide is an endogenous potentiator of T cell activation. J Biol Chem. 2012;287:4211–21.
-
(2012)
J Biol Chem
, vol.287
, pp. 4211-4221
-
-
Miller, T.W.1
Wang, E.A.2
Gould, S.3
-
98
-
-
70350310104
-
Products of the colonic microbiota mediate the effects of diet on colon cancer risk
-
PID: 19741203
-
O'Keefe SJ, Ou J, Aufreiter S, et al. Products of the colonic microbiota mediate the effects of diet on colon cancer risk. J Nutr. 2009;139:2044–8.
-
(2009)
J Nutr
, vol.139
, pp. 2044-2048
-
-
O'Keefe, S.J.1
Ou, J.2
Aufreiter, S.3
-
99
-
-
7544240239
-
Isothiocyanates in cancer prevention
-
COI: 1:CAS:528:DC%2BD2cXptV2itbs%3D, PID: 15554241
-
Bianchini F, Vainio H. Isothiocyanates in cancer prevention. Drug Metab Rev. 2004;36:655–67.
-
(2004)
Drug Metab Rev
, vol.36
, pp. 655-667
-
-
Bianchini, F.1
Vainio, H.2
-
100
-
-
84870916445
-
Microbial pathways in colonic sulfur metabolism and links with health and disease
-
COI: 1:CAS:528:DC%2BC3sXht1ejtLbF, PID: 23226130
-
Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, et al. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol. 2012;3:448.
-
(2012)
Front Physiol
, vol.3
, pp. 448
-
-
Carbonero, F.1
Benefiel, A.C.2
Alizadeh-Ghamsari, A.H.3
-
101
-
-
3042767902
-
Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms
-
COI: 1:CAS:528:DC%2BD2cXksVyqtLc%3D, PID: 15159222
-
Larsson SC, Kumlin M, Ingelman-Sundberg M, et al. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr. 2004;79:935–45.
-
(2004)
Am J Clin Nutr
, vol.79
, pp. 935-945
-
-
Larsson, S.C.1
Kumlin, M.2
Ingelman-Sundberg, M.3
-
102
-
-
83555176443
-
Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer
-
COI: 1:CAS:528:DC%2BC38XitFWnurk%3D, PID: 21490374
-
Cockbain AJ, Toogood GJ, Hull MA. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut. 2012;61:135–49.
-
(2012)
Gut
, vol.61
, pp. 135-149
-
-
Cockbain, A.J.1
Toogood, G.J.2
Hull, M.A.3
-
103
-
-
42649089790
-
Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators
-
COI: 1:CAS:528:DC%2BD1cXltFejsbw%3D, PID: 18437155
-
Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8:349–61.
-
(2008)
Nat Rev Immunol
, vol.8
, pp. 349-361
-
-
Serhan, C.N.1
Chiang, N.2
Van Dyke, T.E.3
-
104
-
-
84893021314
-
Anticolorectal cancer activity of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid
-
COI: 1:CAS:528:DC%2BC2cXitVeiur3I, PID: 24470281, This randomized controlled study supports the chemopreventive effect of omega-3 fatty acid supplementation on colorectal cancer
-
•• Cockbain AJ, Volpato M, Race AD, et al. Anticolorectal cancer activity of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid. Gut. 2014;63:1760–8. This randomized controlled study supports the chemopreventive effect of omega-3 fatty acid supplementation on colorectal cancer.
-
(2014)
Gut
, vol.63
, pp. 1760-1768
-
-
Cockbain, A.J.1
Volpato, M.2
Race, A.D.3
-
105
-
-
84922817862
-
Trends in the use of complementary health approaches among adults: United States, 2002–2012
-
Clarke TC, Black LI, Stussman BJ, et al. Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl. Health Stat. Rep. 2015:1–16.
-
(2015)
Natl. Health Stat. Rep
, pp. 1-16
-
-
Clarke, T.C.1
Black, L.I.2
Stussman, B.J.3
-
106
-
-
77953969298
-
Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis
-
COI: 1:CAS:528:DC%2BC3cXhtVWmtLnM, PID: 20348368
-
West NJ, Clark SK, Phillips RK, et al. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut. 2010;59:918–25.
-
(2010)
Gut
, vol.59
, pp. 918-925
-
-
West, N.J.1
Clark, S.K.2
Phillips, R.K.3
-
107
-
-
84922553466
-
Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance
-
Calder PC. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta. 1851;2015:469–84.
-
(1851)
Biochim Biophys Acta
, vol.2015
, pp. 469-484
-
-
Calder, P.C.1
-
108
-
-
84906266448
-
Eicosapentaenoic acid free fatty acid prevents and suppresses colonic neoplasia in colitis-associated colorectal cancer acting on Notch signaling and gut microbiota
-
COI: 1:CAS:528:DC%2BC2cXltVSksrk%3D
-
Piazzi G, D'Argenio G, Prossomariti A, et al. Eicosapentaenoic acid free fatty acid prevents and suppresses colonic neoplasia in colitis-associated colorectal cancer acting on Notch signaling and gut microbiota. J Int Cancer. 2014;135:2004–13.
-
(2014)
J Int Cancer
, vol.135
, pp. 2004-2013
-
-
Piazzi, G.1
D'Argenio, G.2
Prossomariti, A.3
-
109
-
-
84907523707
-
Biomarkers for personalizing omega-3 fatty acid dosing
-
COI: 1:CAS:528:DC%2BC2cXhslajsL7P
-
Jiang Y, Djuric Z, Sen A, et al. Biomarkers for personalizing omega-3 fatty acid dosing. Cancer Prev Res (Phila). 2014;7:1011–22.
-
(2014)
Cancer Prev Res (Phila)
, vol.7
, pp. 1011-1022
-
-
Jiang, Y.1
Djuric, Z.2
Sen, A.3
-
110
-
-
10344263374
-
n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway
-
COI: 1:CAS:528:DC%2BD2cXhtVCrsrrL, PID: 15358633
-
Calviello G, Di Nicuolo F, Gragnoli S, et al. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis. 2004;25:2303–10.
-
(2004)
Carcinogenesis
, vol.25
, pp. 2303-2310
-
-
Calviello, G.1
Di Nicuolo, F.2
Gragnoli, S.3
-
111
-
-
0027368152
-
Effects of fish oil on rectal cell proliferation, mucosal fatty acids, and prostaglandin E2 release in healthy subjects
-
COI: 1:CAS:528:DyaK2cXivF2mtQ%3D%3D, PID: 8224635
-
Bartram HP, Gostner A, Scheppach W, et al. Effects of fish oil on rectal cell proliferation, mucosal fatty acids, and prostaglandin E2 release in healthy subjects. Gastroenterology. 1993;105:1317–22.
-
(1993)
Gastroenterology
, vol.105
, pp. 1317-1322
-
-
Bartram, H.P.1
Gostner, A.2
Scheppach, W.3
-
112
-
-
34848875143
-
Colitis-associated colon tumorigenesis is suppressed in transgenic mice rich in endogenous n-3 fatty acids
-
COI: 1:CAS:528:DC%2BD2sXhtFWhu77J, PID: 17634405
-
Nowak J, Weylandt KH, Habbel P, et al. Colitis-associated colon tumorigenesis is suppressed in transgenic mice rich in endogenous n-3 fatty acids. Carcinogenesis. 2007;28:1991–5.
-
(2007)
Carcinogenesis
, vol.28
, pp. 1991-1995
-
-
Nowak, J.1
Weylandt, K.H.2
Habbel, P.3
-
113
-
-
85010641654
-
Marine omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer characterized by tumor-infiltrating T cells
-
PID: 27148825, This study suggests that the beneficial effect of high omega-3 fatty acid intake may be partly mediated by modulation of regulatory T cells in the tumor microenvironment
-
• Song M, Nishihara R, Cao Y, et al. Marine omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer characterized by tumor-infiltrating T cells. JAMA Oncol. 2016;2:1197–206. This study suggests that the beneficial effect of high omega-3 fatty acid intake may be partly mediated by modulation of regulatory T cells in the tumor microenvironment.
-
(2016)
JAMA Oncol
, vol.2
, pp. 1197-1206
-
-
Song, M.1
Nishihara, R.2
Cao, Y.3
-
114
-
-
84943454450
-
Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling
-
COI: 1:CAS:528:DC%2BC2MXhsVajs73I, PID: 26321659
-
Caesar R, Tremaroli V, Kovatcheva-Datchary P, et al. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22:658–68.
-
(2015)
Cell Metab
, vol.22
, pp. 658-668
-
-
Caesar, R.1
Tremaroli, V.2
Kovatcheva-Datchary, P.3
-
116
-
-
84873563309
-
Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis
-
COI: 1:CAS:528:DC%2BC3sXivFGqurw%3D, PID: 23405155
-
Ghosh S, DeCoffe D, Brown K, et al. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS One. 2013;8:e55468.
-
(2013)
PLoS One
, vol.8
-
-
Ghosh, S.1
DeCoffe, D.2
Brown, K.3
-
117
-
-
84907300697
-
Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice
-
Patterson E, RM OD, Murphy EF, et al. Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br J Nutr. 2014;1–13.
-
(2014)
Br J Nutr
, pp. 1-13
-
-
Patterson, E.1
Od, R.M.2
Murphy, E.F.3
-
118
-
-
84880171148
-
Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice
-
COI: 1:CAS:528:DC%2BC3sXht1Wks7fE, PID: 23302605
-
Mujico JR, Baccan GC, Gheorghe A, et al. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br J Nutr. 2013;110:711–20.
-
(2013)
Br J Nutr
, vol.110
, pp. 711-720
-
-
Mujico, J.R.1
Baccan, G.C.2
Gheorghe, A.3
-
119
-
-
84893613597
-
Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes
-
COI: 1:CAS:528:DC%2BC3sXhvFOhtbfO, PID: 24355793
-
Shen W, Gaskins HR, McIntosh MK. Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J Nutr Biochem. 2014;25:270–80.
-
(2014)
J Nutr Biochem
, vol.25
, pp. 270-280
-
-
Shen, W.1
Gaskins, H.R.2
McIntosh, M.K.3
-
120
-
-
84880850297
-
Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice
-
COI: 1:CAS:528:DC%2BC3sXhtFChsLvE, PID: 23298440
-
Ghosh S, Molcan E, DeCoffe D, et al. Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice. Br J Nutr. 2013;110:515–23.
-
(2013)
Br J Nutr
, vol.110
, pp. 515-523
-
-
Ghosh, S.1
Molcan, E.2
DeCoffe, D.3
-
121
-
-
84960154838
-
Omega-3 fatty acids prevent early-life antibiotic exposure-induced gut microbiota dysbiosis and later-life obesity
-
Kaliannan K, Wang B, Li XY, et al. Omega-3 fatty acids prevent early-life antibiotic exposure-induced gut microbiota dysbiosis and later-life obesity. Int J Obes (Lond). 2016.
-
(2016)
Int J Obes (Lond)
-
-
Kaliannan, K.1
Wang, B.2
Li, X.Y.3
-
122
-
-
84861539347
-
Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation
-
COI: 1:CAS:528:DC%2BC38Xmsl2itLo%3D, PID: 22547653
-
Jenq RR, Ubeda C, Taur Y, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012;209:903–11.
-
(2012)
J Exp Med
, vol.209
, pp. 903-911
-
-
Jenq, R.R.1
Ubeda, C.2
Taur, Y.3
-
123
-
-
33847109825
-
A comparative study of the preventative effects exerted by two probiotics, Lactobacillus reuteri and Lactobacillus fermentum, in the trinitrobenzenesulfonic acid model of rat colitis
-
COI: 1:CAS:528:DC%2BD2sXhsFGktr0%3D, PID: 17217564
-
Peran L, Sierra S, Comalada M, et al. A comparative study of the preventative effects exerted by two probiotics, Lactobacillus reuteri and Lactobacillus fermentum, in the trinitrobenzenesulfonic acid model of rat colitis. Br J Nutr. 2007;97:96–103.
-
(2007)
Br J Nutr
, vol.97
, pp. 96-103
-
-
Peran, L.1
Sierra, S.2
Comalada, M.3
-
124
-
-
84862992817
-
Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid
-
COI: 1:CAS:528:DC%2BC38XhtFWgt7jJ, PID: 22689992
-
Khazaie K, Zadeh M, Khan MW, et al. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A. 2012;109:10462–7.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 10462-10467
-
-
Khazaie, K.1
Zadeh, M.2
Khan, M.W.3
-
125
-
-
84948451779
-
Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy
-
COI: 1:CAS:528:DC%2BC2MXhvFamtL3K, PID: 26541606, The study indicates that the efficacy of cancer immunotherapy may depend on the abundance ofBifidobacteriumin the gut
-
• Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–9. The study indicates that the efficacy of cancer immunotherapy may depend on the abundance of Bifidobacterium in the gut.
-
(2015)
Science
, vol.350
, pp. 1084-1089
-
-
Sivan, A.1
Corrales, L.2
Hubert, N.3
-
126
-
-
84888049920
-
Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
-
COI: 1:CAS:528:DC%2BC3sXhsl2htL3M, PID: 24264989
-
Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342:967–70.
-
(2013)
Science
, vol.342
, pp. 967-970
-
-
Iida, N.1
Dzutsev, A.2
Stewart, C.A.3
-
127
-
-
84887122496
-
Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition
-
COI: 1:CAS:528:DC%2BC3sXhvVWmtbbO, PID: 24127592
-
Kishino S, Takeuchi M, Park SB, et al. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl Acad Sci U S A. 2013;110:17808–13.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 17808-17813
-
-
Kishino, S.1
Takeuchi, M.2
Park, S.B.3
-
128
-
-
68349109648
-
Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production
-
COI: 1:CAS:528:DC%2BD1MXovVOhsbo%3D, PID: 19319523
-
Kishino S, Ogawa J, Yokozeki K, et al. Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production. Appl Microbiol Biotechnol. 2009;84:87–97.
-
(2009)
Appl Microbiol Biotechnol
, vol.84
, pp. 87-97
-
-
Kishino, S.1
Ogawa, J.2
Yokozeki, K.3
-
129
-
-
84937137486
-
A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus
-
COI: 1:CAS:528:DC%2BC2MXhtFWntr%2FF, PID: 25966711
-
Hirata A, Kishino S, Park SB, et al. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus. J Lipid Res. 2015;56:1340–50.
-
(2015)
J Lipid Res
, vol.56
, pp. 1340-1350
-
-
Hirata, A.1
Kishino, S.2
Park, S.B.3
-
130
-
-
76849111851
-
Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential
-
COI: 1:CAS:528:DC%2BC3cXhtVaqu7s%3D, PID: 19956944
-
Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85:1629–42.
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, pp. 1629-1642
-
-
Desbois, A.P.1
Smith, V.J.2
-
131
-
-
84906879162
-
Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria
-
COI: 1:CAS:528:DC%2BC2cXhsVGjurnP, PID: 25002034
-
Sakurama H, Kishino S, Mihara K, et al. Biohydrogenation of C20 polyunsaturated fatty acids by anaerobic bacteria. J Lipid Res. 2014;55:1855–63.
-
(2014)
J Lipid Res
, vol.55
, pp. 1855-1863
-
-
Sakurama, H.1
Kishino, S.2
Mihara, K.3
-
132
-
-
84938552069
-
Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: proof of concept in germ-free versus conventionalized mice
-
COI: 1:CAS:528:DC%2BC2MXotFeju7k%3D, PID: 25820326
-
Druart C, Bindels LB, Schmaltz R, et al. Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: proof of concept in germ-free versus conventionalized mice. Mol Nutr Food Res. 2015;59:1603–13.
-
(2015)
Mol Nutr Food Res
, vol.59
, pp. 1603-1613
-
-
Druart, C.1
Bindels, L.B.2
Schmaltz, R.3
-
133
-
-
84900304172
-
Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites
-
PID: 24475308
-
Druart C, Neyrinck AM, Vlaeminck B, et al. Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS One. 2014;9:e87560.
-
(2014)
PLoS One
, vol.9
-
-
Druart, C.1
Neyrinck, A.M.2
Vlaeminck, B.3
-
134
-
-
84960874589
-
10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress
-
COI: 1:CAS:528:DC%2BC28XivFyhu7o%3D, PID: 26879219
-
Furumoto H, Nanthirudjanar T, Kume T, et al. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress. Toxicol Appl Pharmacol. 2016;296:1–9.
-
(2016)
Toxicol Appl Pharmacol
, vol.296
, pp. 1-9
-
-
Furumoto, H.1
Nanthirudjanar, T.2
Kume, T.3
-
135
-
-
84921841372
-
A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway
-
COI: 1:CAS:528:DC%2BC2MXhvVers74%3D, PID: 25505251
-
Miyamoto J, Mizukure T, Park SB, et al. A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem. 2015;290:2902–18.
-
(2015)
J Biol Chem
, vol.290
, pp. 2902-2918
-
-
Miyamoto, J.1
Mizukure, T.2
Park, S.B.3
-
136
-
-
84921454304
-
Links between diet, gut microbiota composition and gut metabolism
-
COI: 1:CAS:528:DC%2BC2MXhsVCnu74%3D, PID: 25268552
-
Flint HJ, Duncan SH, Scott KP, et al. Links between diet, gut microbiota composition and gut metabolism. Proc Nutr Soc. 2015;74:13–22.
-
(2015)
Proc Nutr Soc
, vol.74
, pp. 13-22
-
-
Flint, H.J.1
Duncan, S.H.2
Scott, K.P.3
-
137
-
-
33646585117
-
Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut
-
COI: 1:CAS:528:DC%2BD28XkvFWjtr8%3D, PID: 16672507
-
Belenguer A, Duncan SH, Calder AG, et al. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol. 2006;72:3593–9.
-
(2006)
Appl Environ Microbiol
, vol.72
, pp. 3593-3599
-
-
Belenguer, A.1
Duncan, S.H.2
Calder, A.G.3
-
138
-
-
8144224956
-
Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product
-
COI: 1:CAS:528:DC%2BD2cXosl2itb8%3D, PID: 15466518
-
Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol. 2004;70:5810–7.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 5810-5817
-
-
Duncan, S.H.1
Louis, P.2
Flint, H.J.3
-
139
-
-
84893849403
-
Microbial metabolites control gut inflammatory responses
-
COI: 1:CAS:528:DC%2BC2cXisFOrsL0%3D, PID: 24434557
-
Arpaia N, Rudensky AY. Microbial metabolites control gut inflammatory responses. Proc Natl Acad Sci U S A. 2014;111:2058–9.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 2058-2059
-
-
Arpaia, N.1
Rudensky, A.Y.2
-
140
-
-
84995414949
-
Diet, microorganisms and their metabolites, and colon cancer
-
PID: 27848961
-
O'Keefe SJ. Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol. 2016;13:691–706.
-
(2016)
Nat Rev Gastroenterol Hepatol
, vol.13
, pp. 691-706
-
-
O'Keefe, S.J.1
-
141
-
-
84957801112
-
Serum endotoxins and flagellin and risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort
-
COI: 1:CAS:528:DC%2BC28XisVyisr0%3D
-
Kong SY, Tran HQ, Gewirtz AT, et al. Serum endotoxins and flagellin and risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Cancer Epidemiol Biomark Prev. 2016;25:291–301.
-
(2016)
Cancer Epidemiol Biomark Prev
, vol.25
, pp. 291-301
-
-
Kong, S.Y.1
Tran, H.Q.2
Gewirtz, A.T.3
-
142
-
-
84931287751
-
A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia
-
COI: 1:CAS:528:DC%2BC2MXhtFyhsr%2FO, PID: 26062993, The study proposes a model of mechanisms by which omega-3 fatty acid may influence the gut microbial composition through the influence on epithelial production of intestinal alkaline phosphatase
-
•• Kaliannan K, Wang B, Li XY, et al. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;5:11276. The study proposes a model of mechanisms by which omega-3 fatty acid may influence the gut microbial composition through the influence on epithelial production of intestinal alkaline phosphatase.
-
(2015)
Sci Rep
, vol.5
, pp. 11276
-
-
Kaliannan, K.1
Wang, B.2
Li, X.Y.3
-
143
-
-
77956293963
-
Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification
-
COI: 1:CAS:528:DC%2BC3cXhtVCkt7zE, PID: 20660763
-
Campbell EL, MacManus CF, Kominsky DJ, et al. Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. Proc Natl Acad Sci U S A. 2010;107:14298–303.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 14298-14303
-
-
Campbell, E.L.1
MacManus, C.F.2
Kominsky, D.J.3
-
144
-
-
0001679413
-
Biohydrogenation of unsaturated fatty acids by rumen bacteria
-
COI: 1:CAS:528:DyaF2cXkslSrtrc%3D, PID: 14219019
-
Polan CE, McNeill JJ, Tove SB. Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol. 1964;88:1056–64.
-
(1964)
J Bacteriol
, vol.88
, pp. 1056-1064
-
-
Polan, C.E.1
McNeill, J.J.2
Tove, S.B.3
-
145
-
-
84928381097
-
Food, immunity, and the microbiome
-
PID: 25575570
-
Tilg H, Moschen AR. Food, immunity, and the microbiome. Gastroenterology. 2015;148:1107–19.
-
(2015)
Gastroenterology
, vol.148
, pp. 1107-1119
-
-
Tilg, H.1
Moschen, A.R.2
-
146
-
-
79951558318
-
National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants
-
PID: 21295846
-
Finucane MM, Stevens GA, Cowan MJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377:557–67.
-
(2011)
Lancet
, vol.377
, pp. 557-567
-
-
Finucane, M.M.1
Stevens, G.A.2
Cowan, M.J.3
-
147
-
-
80052236883
-
The global obesity pandemic: shaped by global drivers and local environments
-
PID: 21872749
-
Swinburn BA, Sacks G, Hall KD, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804–14.
-
(2011)
Lancet
, vol.378
, pp. 804-814
-
-
Swinburn, B.A.1
Sacks, G.2
Hall, K.D.3
-
148
-
-
84871090162
-
Global obesity: trends, risk factors and policy implications
-
PID: 23165161
-
Malik VS, Willett WC, Hu FB. Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 2013;9:13–27.
-
(2013)
Nat. Rev. Endocrinol.
, vol.9
, pp. 13-27
-
-
Malik, V.S.1
Willett, W.C.2
Hu, F.B.3
-
149
-
-
84984697654
-
Body fatness and cancer—viewpoint of the IARC Working Group
-
PID: 27557308
-
Lauby-Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med. 2016;375:794–8.
-
(2016)
N Engl J Med
, vol.375
, pp. 794-798
-
-
Lauby-Secretan, B.1
Scoccianti, C.2
Loomis, D.3
-
150
-
-
84856263295
-
Visceral obesity, metabolic syndrome, insulin resistance and cancer
-
COI: 1:CAS:528:DC%2BC38XhsVOltbg%3D, PID: 22051112
-
Doyle SL, Donohoe CL, Lysaght J, et al. Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc. 2012;71:181–9.
-
(2012)
Proc Nutr Soc
, vol.71
, pp. 181-189
-
-
Doyle, S.L.1
Donohoe, C.L.2
Lysaght, J.3
-
151
-
-
84937842901
-
Adiposity and cancer risk: new mechanistic insights from epidemiology
-
COI: 1:CAS:528:DC%2BC2MXht1ensLnP, PID: 26205341
-
Renehan AG, Zwahlen M, Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer. 2015;15:484–98.
-
(2015)
Nat Rev Cancer
, vol.15
, pp. 484-498
-
-
Renehan, A.G.1
Zwahlen, M.2
Egger, M.3
-
152
-
-
33845901507
-
Microbial ecology: human gut microbes associated with obesity
-
COI: 1:CAS:528:DC%2BD28XhtlemtLvM, PID: 17183309
-
Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.
-
(2006)
Nature
, vol.444
, pp. 1022-1023
-
-
Ley, R.E.1
Turnbaugh, P.J.2
Klein, S.3
-
153
-
-
78650037263
-
Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers
-
COI: 1:CAS:528:DC%2BC3MXlsVamtg%3D%3D, PID: 20876719
-
Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–57.
-
(2010)
Diabetes
, vol.59
, pp. 3049-3057
-
-
Furet, J.P.1
Kong, L.C.2
Tap, J.3
-
154
-
-
23344442120
-
Obesity alters gut microbial ecology
-
COI: 1:CAS:528:DC%2BD2MXnvVWju7g%3D, PID: 16033867
-
Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 11070-11075
-
-
Ley, R.E.1
Backhed, F.2
Turnbaugh, P.3
-
155
-
-
56549122798
-
Human colonic microbiota associated with diet, obesity and weight loss
-
COI: 1:STN:280:DC%2BD1cjktFGjuw%3D%3D
-
Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32:1720–4.
-
(2008)
Int J Obes
, vol.32
, pp. 1720-1724
-
-
Duncan, S.H.1
Lobley, G.E.2
Holtrop, G.3
-
156
-
-
8144226856
-
The gut microbiota as an environmental factor that regulates fat storage
-
PID: 15505215
-
Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 15718-15723
-
-
Backhed, F.1
Ding, H.2
Wang, T.3
-
157
-
-
33845874101
-
An obesity-associated gut microbiome with increased capacity for energy harvest
-
PID: 17183312
-
Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.
-
(2006)
Nature
, vol.444
, pp. 1027-1031
-
-
Turnbaugh, P.J.1
Ley, R.E.2
Mahowald, M.A.3
-
158
-
-
41849127118
-
Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome
-
COI: 1:CAS:528:DC%2BD1cXmtlejur0%3D, PID: 18407065
-
Turnbaugh PJ, Backhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23.
-
(2008)
Cell Host Microbe
, vol.3
, pp. 213-223
-
-
Turnbaugh, P.J.1
Backhed, F.2
Fulton, L.3
-
159
-
-
84923654518
-
Antibiotics in early life and obesity
-
PID: 25488483
-
Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 2015;11:182–90.
-
(2015)
Nat. Rev. Endocrinol
, vol.11
, pp. 182-190
-
-
Cox, L.M.1
Blaser, M.J.2
-
160
-
-
84907563983
-
Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences
-
COI: 1:CAS:528:DC%2BC2cXhtlymtLjP, PID: 25126780, The study suggests that disturbances of the gut microbiome in early life may contribute to subsequent development of obesity in later life
-
• Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158:705–21. The study suggests that disturbances of the gut microbiome in early life may contribute to subsequent development of obesity in later life.
-
(2014)
Cell
, vol.158
, pp. 705-721
-
-
Cox, L.M.1
Yamanishi, S.2
Sohn, J.3
-
161
-
-
85026481901
-
Long-term use of antibiotics and risk of colorectal adenoma
-
Cao Y, Wu K, Mehta R, et al. Long-term use of antibiotics and risk of colorectal adenoma. Gut. 2017.
-
(2017)
Gut
-
-
Cao, Y.1
Wu, K.2
Mehta, R.3
-
162
-
-
51649114847
-
Antibiotic use predicts an increased risk of cancer
-
COI: 1:CAS:528:DC%2BD1cXht1Chs7nN, PID: 18704945
-
Kilkkinen A, Rissanen H, Klaukka T, et al. Antibiotic use predicts an increased risk of cancer. Int J Cancer. 2008;123:2152–5.
-
(2008)
Int J Cancer
, vol.123
, pp. 2152-2155
-
-
Kilkkinen, A.1
Rissanen, H.2
Klaukka, T.3
-
163
-
-
84928183077
-
Impact of antibiotic exposure on the risk of colorectal cancer
-
COI: 1:CAS:528:DC%2BC2MXntFSnsb4%3D, PID: 25808540
-
Boursi B, Haynes K, Mamtani R, et al. Impact of antibiotic exposure on the risk of colorectal cancer. Pharmacoepidemiol Drug Saf. 2015;24:534–42.
-
(2015)
Pharmacoepidemiol Drug Saf
, vol.24
, pp. 534-542
-
-
Boursi, B.1
Haynes, K.2
Mamtani, R.3
-
164
-
-
84952975031
-
Frequent use of antibiotics is associated with colorectal cancer risk: results of a nested case-control study
-
COI: 1:CAS:528:DC%2BC2MXhsVSjs7nN, PID: 26289256
-
Dik VK, van Oijen MG, Smeets HM, et al. Frequent use of antibiotics is associated with colorectal cancer risk: results of a nested case-control study. Dig Dis Sci. 2016;61:255–64.
-
(2016)
Dig Dis Sci
, vol.61
, pp. 255-264
-
-
Dik, V.K.1
van Oijen, M.G.2
Smeets, H.M.3
-
165
-
-
79951683913
-
Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?
-
PID: 20876708
-
Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care. 2010;33:2277–84.
-
(2010)
Diabetes Care
, vol.33
, pp. 2277-2284
-
-
Musso, G.1
Gambino, R.2
Cassader, M.3
-
166
-
-
84908545853
-
Gut microbiota, nutrient sensing and energy balance
-
PID: 25200299
-
Duca FA, Lam TK. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes Metab. 2014;16(Suppl 1):68–76.
-
(2014)
Diabetes Obes Metab
, vol.16
, pp. 68-76
-
-
Duca, F.A.1
Lam, T.K.2
-
167
-
-
84878810790
-
Pathways in microbe-induced obesity
-
COI: 1:CAS:528:DC%2BC3sXptV2ntr0%3D, PID: 23747247
-
Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab. 2013;17:883–94.
-
(2013)
Cell Metab
, vol.17
, pp. 883-894
-
-
Cox, L.M.1
Blaser, M.J.2
-
168
-
-
84959868156
-
Trajectory of body shape across the lifespan and cancer risk
-
COI: 1:CAS:528:DC%2BC28XitFCms7k%3D, PID: 26704725
-
Song M, Willett WC, Hu FB, et al. Trajectory of body shape across the lifespan and cancer risk. Int J Cancer. 2016;138:2383–95.
-
(2016)
Int J Cancer
, vol.138
, pp. 2383-2395
-
-
Song, M.1
Willett, W.C.2
Hu, F.B.3
-
169
-
-
84879888338
-
Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome
-
COI: 1:CAS:528:DC%2BC3sXhtVWgurvK, PID: 23803760
-
Yoshimoto S, Loo TM, Atarashi K, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101.
-
(2013)
Nature
, vol.499
, pp. 97-101
-
-
Yoshimoto, S.1
Loo, T.M.2
Atarashi, K.3
-
170
-
-
84897438156
-
Obesity and cancer: a gut microbial connection
-
COI: 1:CAS:528:DC%2BC2cXlt1eitro%3D, PID: 24638983
-
Ohtani N, Yoshimoto S, Hara E. Obesity and cancer: a gut microbial connection. Cancer Res. 2014;74:1885–9.
-
(2014)
Cancer Res
, vol.74
, pp. 1885-1889
-
-
Ohtani, N.1
Yoshimoto, S.2
Hara, E.3
-
171
-
-
85030675034
-
-
TM, Kamachi F, Watanabe Y, Cancer Discov, The study provides new evidence about how obesity may promote liver cancer through an influence on the functionality of the gut microbiota
-
•• Loo TM, Kamachi F, Watanabe Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov. 2017. The study provides new evidence about how obesity may promote liver cancer through an influence on the functionality of the gut microbiota.
-
(2017)
Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity
-
-
Loo, T.M.1
-
172
-
-
84889023629
-
An inflammatory mediator, prostaglandin E2, in colorectal cancer
-
COI: 1:CAS:528:DC%2BC3sXhvVehsLbP, PID: 24270349
-
Wang D, DuBois RN. An inflammatory mediator, prostaglandin E2, in colorectal cancer. Cancer J. 2013;19:502–10.
-
(2013)
Cancer J
, vol.19
, pp. 502-510
-
-
Wang, D.1
DuBois, R.N.2
-
173
-
-
84969854193
-
PPARdelta and PGE2 signaling pathways communicate and connect inflammation to colorectal cancer
-
Wang D, DuBois RN. PPARdelta and PGE2 signaling pathways communicate and connect inflammation to colorectal cancer. Inflamm Cell Signal. 2014;1.
-
(2014)
Inflamm Cell Signal
, vol.1
-
-
Wang, D.1
DuBois, R.N.2
-
174
-
-
84901846653
-
Secondary bile acids: an underrecognized cause of colon cancer
-
PID: 24884764
-
Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J. Surg. Oncol. 2014;12:164.
-
(2014)
World J. Surg. Oncol.
, vol.12
, pp. 164
-
-
Ajouz, H.1
Mukherji, D.2
Shamseddine, A.3
|