-
1
-
-
84963520567
-
The amyloid hypothesis of Alzheimer’s disease at 25 years
-
Selkoe, D.J. and Hardy, J. (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 doi:10.15252/emmm. 201606210
-
(2016)
EMBO Mol. Med.
, vol.8
, pp. 595-608
-
-
Selkoe, D.J.1
Hardy, J.2
-
2
-
-
48249148310
-
Tau exon 10 alternative splicing and tauopathies
-
Liu, F. and Gong, C.-X. (2008) Tau exon 10 alternative splicing and tauopathies. Mol. Neurodegener. 3, 8 doi:10.1186/1750-1326-3-8
-
(2008)
Mol. Neurodegener.
, vol.3
, pp. 8
-
-
Liu, F.1
Gong, C.-X.2
-
3
-
-
84877906835
-
Tau pathology and neurodegeneration
-
Spillantini, M.G. and Goedert, M. (2013) Tau pathology and neurodegeneration. Lancet Neurol. 12, 609–622 doi:10.1016/S1474-4422(13)70090-5
-
(2013)
Lancet Neurol.
, vol.12
, pp. 609-622
-
-
Spillantini, M.G.1
Goedert, M.2
-
4
-
-
24944525045
-
Molecular pathogenesis of Parkinson’s disease
-
Gandhi, S. and Wood, N.W. (2005) Molecular pathogenesis of Parkinson’s disease. Hum. Mol. Genet. 4, 2749–2755 doi:10.1093/hmg/ddi308
-
(2005)
Hum. Mol. Genet.
, vol.4
, pp. 2749-2755
-
-
Gandhi, S.1
Wood, N.W.2
-
5
-
-
84960441124
-
The biology of huntingtin
-
Saudou, F. and Humbert, S. (2016) The biology of huntingtin. Neuron 89, 910–926 doi:10.1016/j.neuron.2016.02.003
-
(2016)
Neuron
, vol.89
, pp. 910-926
-
-
Saudou, F.1
Humbert, S.2
-
6
-
-
77949565639
-
Targeting mitochondrial dysfunction in neurodegenerative disease: Part I
-
Burchell, V.S., Gandhi, S., Deas, E., Wood, N.W., Abramov, A.Y. and Plun-Favreau, H. (2010) Targeting mitochondrial dysfunction in neurodegenerative disease: part I. Expert Opin. Ther. Targets 14, 369–385 doi:10.1517/14728221003652489
-
(2010)
Expert Opin. Ther. Targets
, vol.14
, pp. 369-385
-
-
Burchell, V.S.1
Gandhi, S.2
Deas, E.3
Wood, N.W.4
Abramov, A.Y.5
Plun-Favreau, H.6
-
7
-
-
84992650853
-
Functional role of mitochondrial reactive oxygen species in physiology
-
Angelova, P.R. and Abramov, A.Y. (2016) Functional role of mitochondrial reactive oxygen species in physiology. Free Radic. Biol. Med. 100, 81–85 doi:10.1016/j.freeradbiomed.2016.06.005
-
(2016)
Free Radic. Biol. Med.
, vol.100
, pp. 81-85
-
-
Angelova, P.R.1
Abramov, A.Y.2
-
8
-
-
13944278132
-
Mitochondria, oxidants, and aging
-
Balaban, R.S., Nemoto, S. and Finkel, T. (2005) Mitochondria, oxidants, and aging. Cell 120, 483–495 doi:10.1016/j.cell.2005.02.001
-
(2005)
Cell
, vol.120
, pp. 483-495
-
-
Balaban, R.S.1
Nemoto, S.2
Finkel, T.3
-
9
-
-
84902545188
-
Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: Focus on modulation of CNS monoamine neurotransmitter release
-
Finberg, J.P.M. (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther. 143, 133–152 doi:10.1016/j.pharmthera.2014.02.010
-
(2014)
Pharmacol. Ther.
, vol.143
, pp. 133-152
-
-
Finberg, J.P.M.1
-
10
-
-
77955283617
-
Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase
-
Vaarmann, A., Gandhi, S. and Abramov, A.Y. (2010) Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J. Biol. Chem. 285, 25018–25023 doi:10.1074/jbc.M110.111450
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 25018-25023
-
-
Vaarmann, A.1
Gandhi, S.2
Abramov, A.Y.3
-
11
-
-
85015714481
-
Cytosolic proteostasis through importing of misfolded proteins into mitochondria
-
Ruan, L., Zhou, C., Jin, E., Kucharavy, A., Zhang, Y., Wen, Z. et al. (2017) Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 443–446 doi:10.1038/nature21695
-
(2017)
Nature
, vol.543
, pp. 443-446
-
-
Ruan, L.1
Zhou, C.2
Jin, E.3
Kucharavy, A.4
Zhang, Y.5
Wen, Z.6
-
12
-
-
0025734299
-
The role of oxidative abnormalities in the pathophysiology of Alzheimer’s disease
-
PMID: 1962057
-
Blass, J.P. and Gibson, G.E. (1991) The role of oxidative abnormalities in the pathophysiology of Alzheimer’s disease. Rev. Neurol. 147, 513–525 PMID:1962057
-
(1991)
Rev. Neurol.
, vol.147
, pp. 513-525
-
-
Blass, J.P.1
Gibson, G.E.2
-
13
-
-
0036272650
-
Β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities
-
Casley, C.S., Canevari, L., Land, J.M., Clark, J.B. and Sharpe, M.A. (2002) β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91–100 doi:10.1046/j.0022-3042.2001.00681.x
-
(2002)
J. Neurochem.
, vol.80
, pp. 91-100
-
-
Casley, C.S.1
Canevari, L.2
Land, J.M.3
Clark, J.B.4
Sharpe, M.A.5
-
14
-
-
0033794593
-
Reversible inactivation of superoxide-sensitive aconitase in Aβ1-42-treated neuronal cell lines
-
Longo, V.D., Viola, K.L., Klein, W.L. and Finch, C.E. (2000) Reversible inactivation of superoxide-sensitive aconitase in Aβ1-42-treated neuronal cell lines. J. Neurochem. 75, 1977–1985 doi:10.1046/j.1471-4159.2000.0751977.x
-
(2000)
J. Neurochem.
, vol.75
, pp. 1977-1985
-
-
Longo, V.D.1
Viola, K.L.2
Klein, W.L.3
Finch, C.E.4
-
15
-
-
0032810909
-
Β-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria
-
Canevari, L., Clark, J.B. and Bates, T.E. (1999) β-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett. 457, 131–134 doi:10.1016/S0014-5793(99)01028-5
-
(1999)
FEBS Lett
, vol.457
, pp. 131-134
-
-
Canevari, L.1
Clark, J.B.2
Bates, T.E.3
-
16
-
-
0036403832
-
Β-amyloid fragment 25–35 causes mitochondrial dysfunction in primary cortical neurons
-
Casley, C.S., Land, J.M., Sharpe, M.A., Clark, J.B., Duchen, M.R. and Canevari, L. (2002) β-amyloid fragment 25–35 causes mitochondrial dysfunction in primary cortical neurons. Neurobiol. Dis. 10, 258–267 doi:10.1006/nbdi.2002.0516
-
(2002)
Neurobiol. Dis.
, vol.10
, pp. 258-267
-
-
Casley, C.S.1
Land, J.M.2
Sharpe, M.A.3
Clark, J.B.4
Duchen, M.R.5
Canevari, L.6
-
17
-
-
1642499152
-
Β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase
-
Abramov, A.Y., Canevari, L. and Duchen, M.R. (2004) β-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24, 565–575 doi:10.1523/JNEUROSCI.4042-03.2004
-
(2004)
J. Neurosci.
, vol.24
, pp. 565-575
-
-
Abramov, A.Y.1
Canevari, L.2
Duchen, M.R.3
-
18
-
-
79953193013
-
Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity
-
Ionov, M., Burchell, V., Klajnert, B., Bryszewska, M. and Abramov, A.Y. (2011) Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity. Neuroscience 180, 229–237 doi:10.1016/j.neuroscience.2011.02.045
-
(2011)
Neuroscience
, vol.180
, pp. 229-237
-
-
Ionov, M.1
Burchell, V.2
Klajnert, B.3
Bryszewska, M.4
Abramov, A.Y.5
-
19
-
-
0038452658
-
Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity
-
PMID: 12832532
-
Abramov, A.Y., Canevari, L. and Duchen, M.R. (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 23, 5088–5095 PMID:12832532
-
(2003)
J. Neurosci.
, vol.23
, pp. 5088-5095
-
-
Abramov, A.Y.1
Canevari, L.2
Duchen, M.R.3
-
20
-
-
10044244916
-
Calcium signals induced by amyloid β peptide and their consequences in neurons and astrocytes in culture
-
Abramov, A.Y., Canevari, L. and Duchen, M.R. (2004) Calcium signals induced by amyloid β peptide and their consequences in neurons and astrocytes in culture. Biochim. Biophys. Acta, Mol. Cell Res. 1742, 81–87 doi:10.1016/j.bbamcr.2004.09.006
-
(2004)
Biochim. Biophys. Acta, Mol. Cell Res.
, vol.1742
, pp. 81-87
-
-
Abramov, A.Y.1
Canevari, L.2
Duchen, M.R.3
-
21
-
-
33646380409
-
The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides
-
Abramov, A.Y. and Duchen, M.R. (2005) The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2309–2314 doi:10.1098/rstb.2005.1766
-
(2005)
Philos. Trans. R. Soc. Lond. B Biol. Sci.
, vol.360
, pp. 2309-2314
-
-
Abramov, A.Y.1
Duchen, M.R.2
-
22
-
-
0034745636
-
Neurotoxic Aβ peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro
-
Parks, J.K., Smith, T.S., Trimmer, P.A., Bennett, Jr, J.P. and Parker, Jr, W.D. (2001) Neurotoxic Aβ peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J. Neurochem. 76, 1050–1056 doi:10.1046/j.1471-4159.2001.00112.x
-
(2001)
J. Neurochem.
, vol.76
, pp. 1050-1056
-
-
Parks, J.K.1
Smith, T.S.2
Trimmer, P.A.3
Bennett, J.P.4
Parker, W.D.5
-
23
-
-
0036258363
-
Effect of β-amyloid peptide fragment 25-35 on nonselective permeability of mitochondria
-
Shevtzova, E.F., Kireeva, E.G. and Bachurin, S.O. (2001) Effect of β-amyloid peptide fragment 25-35 on nonselective permeability of mitochondria. Bull. Exp. Biol. Med. 132, 1173–1176 doi:10.1023/A:1014559331402
-
(2001)
Bull. Exp. Biol. Med.
, vol.132
, pp. 1173-1176
-
-
Shevtzova, E.F.1
Kireeva, E.G.2
Bachurin, S.O.3
-
24
-
-
27144531055
-
Expression and modulation of an NADPH oxidase in mammalian astrocytes
-
Abramov, A.Y., Jacobson, J., Wientjes, F., Hothersall, J., Canevari, L. and Duchen, M.R. (2005) Expression and modulation of an NADPH oxidase in mammalian astrocytes. J. Neurosci. 25, 9176–9184 doi:10.1523/JNEUROSCI.1632-05.2005
-
(2005)
J. Neurosci.
, vol.25
, pp. 9176-9184
-
-
Abramov, A.Y.1
Jacobson, J.2
Wientjes, F.3
Hothersall, J.4
Canevari, L.5
Duchen, M.R.6
-
25
-
-
33846818524
-
Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation
-
Abramov, A.Y., Scorziello, A. and Duchen, M.R. (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 27, 1129–1138 doi:10.1523/JNEUROSCI.4468-06.2007
-
(2007)
J. Neurosci.
, vol.27
, pp. 1129-1138
-
-
Abramov, A.Y.1
Scorziello, A.2
Duchen, M.R.3
-
26
-
-
53549129483
-
Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease
-
Du, H., Guo, L., Fang, F., Chen, D., Sosunov, A.A., McKhann, G.M. et al. (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat. Med. 14, 1097–1105 doi:10.1038/nm.1868
-
(2008)
Nat. Med.
, vol.14
, pp. 1097-1105
-
-
Du, H.1
Guo, L.2
Fang, F.3
Chen, D.4
Sosunov, A.A.5
McKhann, G.M.6
-
27
-
-
78649815388
-
Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model
-
Du, H., Guo, L., Yan, S., Sosunov, A.A., McKhann, G.M. and Yan, S.S. (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl Acad. Sci. U.S.A. 107, 18670–18675 doi:10.1073/pnas.1006586107
-
(2010)
Proc. Natl Acad. Sci. U.S.A.
, vol.107
, pp. 18670-18675
-
-
Du, H.1
Guo, L.2
Yan, S.3
Sosunov, A.A.4
McKhann, G.M.5
Yan, S.S.6
-
28
-
-
28744449206
-
Mitochondrial Aβ: A potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease
-
Caspersen, C., Wang, N., Yao, J., Sosunov, A., Chen, X., Lustbader, J.W. et al. (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 19, 2040–2041 doi:10.1096/fj.05-3735fje
-
(2005)
FASEB J
, vol.19
, pp. 2040-2041
-
-
Caspersen, C.1
Wang, N.2
Yao, J.3
Sosunov, A.4
Chen, X.5
Lustbader, J.W.6
-
29
-
-
79957871035
-
β-amyloid activates PARP causing astrocytic metabolic failure and neuronal death
-
Abeti, R., Abramov, A.Y. and Duchen, M.R. (2011) β-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 134, 1658–1672 doi:10.1093/brain/awr104
-
(2011)
Brain
, vol.134
, pp. 1658-1672
-
-
Abeti, R.1
Abramov, A.Y.2
Duchen, M.R.3
-
30
-
-
84907095844
-
Interaction of neurons and astrocytes underlies the mechanism of Aβ-induced neurotoxicity
-
Angelova, P.R. and Abramov, A.Y. (2014) Interaction of neurons and astrocytes underlies the mechanism of Aβ-induced neurotoxicity. Biochem. Soc. Trans. 42, 1286–1290 doi:10.1042/BST20140153
-
(2014)
Biochem. Soc. Trans.
, vol.42
, pp. 1286-1290
-
-
Angelova, P.R.1
Abramov, A.Y.2
-
31
-
-
58049218922
-
Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins
-
Wang, X., Su, B., Siedlak, S.L., Moreira, P.I., Fujioka, H., Wang, Y. et al. (2008) Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl Acad. Sci. U.S.A. 105, 19318–19323 doi:10.1073/pnas.0804871105
-
(2008)
Proc. Natl Acad. Sci. U.S.A.
, vol.105
, pp. 19318-19323
-
-
Wang, X.1
Su, B.2
Siedlak, S.L.3
Moreira, P.I.4
Fujioka, H.5
Wang, Y.6
-
32
-
-
84879132698
-
Signalling properties of inorganic polyphosphate in the mammalian brain
-
Holmström, K.M., Marina, N., Baev, A.Y., Wood, N.W., Gourine, A.V. and Abramov, A.Y. (2013) Signalling properties of inorganic polyphosphate in the mammalian brain. Nat. Commun. 4, 1362 doi:10.1038/ncomms2364
-
(2013)
Nat. Commun.
, vol.4
, pp. 1362
-
-
Holmström, K.M.1
Marina, N.2
Baev, A.Y.3
Wood, N.W.4
Gourine, A.V.5
Abramov, A.Y.6
-
33
-
-
84957989714
-
Role of inorganic polyphosphate in mammalian cells: From signal transduction and mitochondrial metabolism to cell death
-
Angelova, P.R., Baev, A.Y., Berezhnov, A.V. and Abramov, A.Y. (2016) Role of inorganic polyphosphate in mammalian cells: from signal transduction and mitochondrial metabolism to cell death. Biochem. Soc. Trans. 44, 40–45 doi:10.1042/BST20150223
-
(2016)
Biochem. Soc. Trans.
, vol.44
, pp. 40-45
-
-
Angelova, P.R.1
Baev, A.Y.2
Berezhnov, A.V.3
Abramov, A.Y.4
-
34
-
-
77951216423
-
Inorganic polyphosphate and energy metabolism in mammalian cells
-
Pavlov, E., Aschar-Sobbi, R., Campanella, M., Turner, R.J., Gómez-García, M.R. and Abramov, A.Y. (2010) Inorganic polyphosphate and energy metabolism in mammalian cells. J. Biol. Chem. 285, 9420–9428 doi:10.1074/jbc.M109.013011
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 9420-9428
-
-
Pavlov, E.1
Aschar-Sobbi, R.2
Campanella, M.3
Turner, R.J.4
Gómez-García, M.R.5
Abramov, A.Y.6
-
35
-
-
84992454902
-
Polyphosphate: A conserved modifier of amyloidogenic processes
-
Cremers, C.M., Knoefler, D., Gates, S., Martin, N., Dahl, J.-U., Lempart, J. et al. (2016) Polyphosphate: a conserved modifier of amyloidogenic processes. Mol. Cell 63, 768–780 doi:10.1016/j.molcel.2016.07.016
-
(2016)
Mol. Cell
, vol.63
, pp. 768-780
-
-
Cremers, C.M.1
Knoefler, D.2
Gates, S.3
Martin, N.4
Dahl, J.-U.5
Lempart, J.6
-
36
-
-
0022827447
-
Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2
-
Neve, R.L., Harris, P., Kosik, K.S., Kurnit, D.M. and Donlon, T.A. (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Mol. Brain Res. 387, 271–280 doi:10.1016/0169-328X(86) 90033-1
-
(1986)
Mol. Brain Res.
, vol.387
, pp. 271-280
-
-
Neve, R.L.1
Harris, P.2
Kosik, K.S.3
Kurnit, D.M.4
Donlon, T.A.5
-
37
-
-
0034792446
-
Developmental changes of tau protein and mRNA in cultured rat brain oligodendrocytes
-
Gorath, M., Stahnke, T., Mronga, T., Goldbaum, O. and Richter-Landsberg, C. (2001) Developmental changes of tau protein and mRNA in cultured rat brain oligodendrocytes. Glia 36, 89–101 doi:10.1002/glia.1098
-
(2001)
Glia
, vol.36
, pp. 89-101
-
-
Gorath, M.1
Stahnke, T.2
Mronga, T.3
Goldbaum, O.4
Richter-Landsberg, C.5
-
38
-
-
84911879504
-
Tau phosphorylation, molecular chaperones, and ubiquitin E3 ligase: Clinical relevance in Alzheimer’s disease
-
Kumar, P., Jha, N.K., Jha, S.K., Ramani, K. and Ambasta, R.K. (2015) Tau phosphorylation, molecular chaperones, and ubiquitin E3 ligase: clinical relevance in Alzheimer’s disease. J. Alzheimers. Dis. 43, 341–361 doi:10.3233/JAD-140933
-
(2015)
J. Alzheimers. Dis.
, vol.43
, pp. 341-361
-
-
Kumar, P.1
Jha, N.K.2
Jha, S.K.3
Ramani, K.4
Ambasta, R.K.5
-
39
-
-
0022896901
-
Tau protein function in living cells
-
Drubin, D.G. and Kirschner, M.W. (1986) Tau protein function in living cells. J. Cell Biol. 103, 2739–2746 doi:10.1083/jcb.103.6.2739
-
(1986)
J. Cell Biol.
, vol.103
, pp. 2739-2746
-
-
Drubin, D.G.1
Kirschner, M.W.2
-
40
-
-
84951567833
-
Tau in physiology and pathology
-
Wang, Y. and Mandelkow, E. (2016) Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 5–21 doi:10.1038/nrn.2015.1
-
(2016)
Nat. Rev. Neurosci.
, vol.17
, pp. 5-21
-
-
Wang, Y.1
Mandelkow, E.2
-
41
-
-
84959420326
-
Tau-driven neuronal and neurotrophic dysfunction in a mouse model of early tauopathy
-
Mazzaro, N., Barini, E., Spillantini, M.G., Goedert, M., Medini, P. and Gasparini, L. (2016) Tau-driven neuronal and neurotrophic dysfunction in a mouse model of early tauopathy. J. Neurosci. 36, 2086–2100 doi:10.1523/JNEUROSCI.0774-15.2016
-
(2016)
J. Neurosci.
, vol.36
, pp. 2086-2100
-
-
Mazzaro, N.1
Barini, E.2
Spillantini, M.G.3
Goedert, M.4
Medini, P.5
Gasparini, L.6
-
42
-
-
0003374626
-
Tau protein pathology in neurodegenerative diseases
-
Spillantini, M.G. and Goedert, M. (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21, 428–433 doi:10.1016/ S0166-2236(98)01337-X
-
(1998)
Trends Neurosci
, vol.21
, pp. 428-433
-
-
Spillantini, M.G.1
Goedert, M.2
-
43
-
-
20044385920
-
Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease
-
Stokin, G.B., Lillo, C., Falzone, T.L., Brusch, R.G., Rockenstein, E., Mount, S.L. et al. (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307, 1282–1288 doi:10.1126/science.1105681
-
(2005)
Science
, vol.307
, pp. 1282-1288
-
-
Stokin, G.B.1
Lillo, C.2
Falzone, T.L.3
Brusch, R.G.4
Rockenstein, E.5
Mount, S.L.6
-
44
-
-
0030049915
-
Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease
-
Praprotnik, D., Smith, M.A., Richey, P.L., Vinters, H.V. and Perry, G. (1996) Filament heterogeneity within the dystrophic neurites of senile plaques suggests blockage of fast axonal transport in Alzheimer’s disease. Acta Neuropathol. 91, 226–235 doi:10.1007/s004010050420
-
(1996)
Acta Neuropathol
, vol.91
, pp. 226-235
-
-
Praprotnik, D.1
Smith, M.A.2
Richey, P.L.3
Vinters, H.V.4
Perry, G.5
-
45
-
-
67650732998
-
Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease
-
Wang, X., Su, B., Lee, H.-G., Li, X., Perry, G., Smith, M.A. et al. (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci. 29, 9090–9103 doi:10.1523/JNEUROSCI.1357-09.2009
-
(2009)
J. Neurosci.
, vol.29
, pp. 9090-9103
-
-
Wang, X.1
Su, B.2
Lee, H.-G.3
Li, X.4
Perry, G.5
Smith, M.A.6
-
46
-
-
84865352799
-
Tau promotes neurodegeneration via DRP1 mislocalization in vivo
-
DuBoff, B., Götz, J. and Feany, M.B. (2012) Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75, 618–632 doi:10.1016/j. neuron.2012.06.026
-
(2012)
Neuron
, vol.75
, pp. 618-632
-
-
DuBoff, B.1
Götz, J.2
Feany, M.B.3
-
47
-
-
73949142307
-
Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice
-
Rhein, V., Song, X., Wiesner, A., Ittner, L.M., Baysang, G., Meier, F. et al. (2009) Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc. Natl Acad. Sci. U.S.A. 106, 20057–20062 doi:10.1073/pnas.0905529106
-
(2009)
Proc. Natl Acad. Sci. U.S.A.
, vol.106
, pp. 20057-20062
-
-
Rhein, V.1
Song, X.2
Wiesner, A.3
Ittner, L.M.4
Baysang, G.5
Meier, F.6
-
48
-
-
85015423137
-
Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration
-
Esteras, N., Rohrer, J.D., Hardy, J., Wray, S. and Abramov, A.Y. (2017) Mitochondrial hyperpolarization in iPSC-derived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration. Redox Biol. 12, 410–422 doi:10.1016/j.redox.2017.03.008
-
(2017)
Redox Biol.
, vol.12
, pp. 410-422
-
-
Esteras, N.1
Rohrer, J.D.2
Hardy, J.3
Wray, S.4
Abramov, A.Y.5
-
49
-
-
0242300619
-
Β-Synuclein locus triplication causes Parkinson’s disease
-
Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J. et al. (2003) β-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841 doi:10.1126/science.1090278
-
(2003)
Science
, vol.302
, pp. 841
-
-
Singleton, A.B.1
Farrer, M.2
Johnson, J.3
Singleton, A.4
Hague, S.5
Kachergus, J.6
-
50
-
-
77957347060
-
Β-synuclein promotes SNARE-complex assembly in vivo and in vitro
-
Burre, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M.R. and Sudhof, T.C. (2010) β-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667 doi:10.1126/science.1195227
-
(2010)
Science
, vol.329
, pp. 1663-1667
-
-
Burre, J.1
Sharma, M.2
Tsetsenis, T.3
Buchman, V.4
Etherton, M.R.5
Sudhof, T.C.6
-
51
-
-
84904006504
-
Synucleins regulate the kinetics of synaptic vesicle endocytosis
-
Vargas, K.J., Makani, S., Davis, T., Westphal, C.H., Castillo, P.E. and Chandra, S.S. (2014) Synucleins regulate the kinetics of synaptic vesicle endocytosis. J. Neurosci. 34, 9364–9376 doi:10.1523/JNEUROSCI.4787-13.2014
-
(2014)
J. Neurosci.
, vol.34
, pp. 9364-9376
-
-
Vargas, K.J.1
Makani, S.2
Davis, T.3
Westphal, C.H.4
Castillo, P.E.5
Chandra, S.S.6
-
52
-
-
84991490229
-
Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase
-
Ludtmann, M.H.R., Angelova, P.R., Ninkina, N.N., Gandhi, S., Buchman, V.L. and Abramov, A.Y. (2016) Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase. J. Neurosci. 36, 10510–10521 doi:10.1523/JNEUROSCI.1659-16.2016
-
(2016)
J. Neurosci.
, vol.36
, pp. 10510-10521
-
-
Ludtmann, M.H.R.1
Angelova, P.R.2
Ninkina, N.N.3
Gandhi, S.4
Buchman, V.L.5
Abramov, A.Y.6
-
53
-
-
58149379599
-
Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria
-
Nakamura, K., Nemani, V.M., Wallender, E.K., Kaehlcke, K., Ott, M. and Edwards, R.H. (2008) Optical reporters for the conformation of α-synuclein reveal a specific interaction with mitochondria. J. Neurosci. 28, 12305–12317 doi:10.1523/JNEUROSCI.3088-08.2008
-
(2008)
J. Neurosci.
, vol.28
, pp. 12305-12317
-
-
Nakamura, K.1
Nemani, V.M.2
Wallender, E.K.3
Kaehlcke, K.4
Ott, M.5
Edwards, R.H.6
-
54
-
-
84861563520
-
Direct observation of the interconversion of normal and toxic forms of α-synuclein
-
Cremades, N., Cohen, S.I.A., Deas, E., Abramov, A.Y., Chen, A.Y., Orte, A. et al. (2012) Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149, 1048–1059 doi:10.1016/j.cell.2012.03.037
-
(2012)
Cell
, vol.149
, pp. 1048-1059
-
-
Cremades, N.1
Cohen, S.I.A.2
Deas, E.3
Abramov, A.Y.4
Chen, A.Y.5
Orte, A.6
-
55
-
-
0032540327
-
Stabilization of α-synuclein secondary structure upon binding to synthetic membranes
-
Davidson, W.S., Jonas, A., Clayton, D.F. and George, J.M. (1998) Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449 doi:10.1074/jbc.273.16.9443
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 9443-9449
-
-
Davidson, W.S.1
Jonas, A.2
Clayton, D.F.3
George, J.M.4
-
56
-
-
84855444970
-
Biophysics of α-synuclein membrane interactions
-
Pfefferkorn, C.M., Jiang, Z. and Lee, J.C. (2012) Biophysics of α-synuclein membrane interactions. Biochim. Biophys. Acta, Biomembr. 1818, 162–171 doi:10.1016/j.bbamem.2011.07.032
-
(2012)
Biochim. Biophys. Acta, Biomembr.
, vol.1818
, pp. 162-171
-
-
Pfefferkorn, C.M.1
Jiang, Z.2
Lee, J.C.3
-
57
-
-
84937677511
-
Α-Synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease
-
Rostovtseva, T.K., Gurnev, P.A., Protchenko, O., Hoogerheide, D.P., Yap, T.L., Philpott, C.C. et al. (2015) α-Synuclein shows high affinity interaction with voltage-dependent anion channel, suggesting mechanisms of mitochondrial regulation and toxicity in Parkinson disease. J. Biol. Chem. 290, 18467–18477 doi:10.1074/jbc.M115.641746
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 18467-18477
-
-
Rostovtseva, T.K.1
Gurnev, P.A.2
Protchenko, O.3
Hoogerheide, D.P.4
Yap, T.L.5
Philpott, C.C.6
-
58
-
-
80855144163
-
The mode of α-synuclein binding to membranes depends on lipid composition and lipid to protein ratio
-
Shvadchak, V.V., Yushchenko, D.A., Pievo, R. and Jovin, T.M. (2011) The mode of α-synuclein binding to membranes depends on lipid composition and lipid to protein ratio. FEBS Lett. 585, 3513–3519 doi:10.1016/j.febslet.2011.10.006
-
(2011)
FEBS Lett.
, vol.585
, pp. 3513-3519
-
-
Shvadchak, V.V.1
Yushchenko, D.A.2
Pievo, R.3
Jovin, T.M.4
-
59
-
-
30644471051
-
Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death
-
Martin, L.J., Pan, Y., Price, A.C., Sterling, W., Copeland, N.G., Jenkins, N.A. et al. (2006) Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26, 41–50 doi:10.1523/JNEUROSCI.4308-05.2006
-
(2006)
J. Neurosci.
, vol.26
, pp. 41-50
-
-
Martin, L.J.1
Pan, Y.2
Price, A.C.3
Sterling, W.4
Copeland, N.G.5
Jenkins, N.A.6
-
60
-
-
77951239770
-
The transgenic overexpression of α-synuclein and not its related pathology associates with complex I inhibition
-
Loeb, V., Yakunin, E., Saada, A. and Sharon, R. (2010) The transgenic overexpression of α-synuclein and not its related pathology associates with complex I inhibition. J. Biol. Chem. 285, 7334–7343 doi:10.1074/jbc.M109.061051
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7334-7343
-
-
Loeb, V.1
Yakunin, E.2
Saada, A.3
Sharon, R.4
-
61
-
-
84905372211
-
Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction
-
Luth, E.S., Stavrovskaya, I.G., Bartels, T., Kristal, B.S. and Selkoe, D.J. (2014) Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J. Biol. Chem. 289, 21490–21507 doi:10.1074/jbc.M113.545749
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 21490-21507
-
-
Luth, E.S.1
Stavrovskaya, I.G.2
Bartels, T.3
Kristal, B.S.4
Selkoe, D.J.5
-
62
-
-
44049099669
-
Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain
-
Devi, L., Raghavendran, V., Prabhu, B.M., Avadhani, N.G. and Anandatheerthavarada, H.K. (2008) Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283, 9089–9100 doi:10.1074/jbc. M710012200
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 9089-9100
-
-
Devi, L.1
Raghavendran, V.2
Prabhu, B.M.3
Avadhani, N.G.4
Anandatheerthavarada, H.K.5
-
63
-
-
84954311788
-
Aggregated α-synuclein and complex I deficiency: Exploration of their relationship in differentiated neurons
-
Reeve, A.K., Ludtmann, M.H.R., Angelova, P.R., Simcox, E.M., Horrocks, M.H., Klenerman, D. et al. (2015) Aggregated α-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis. 6, e1820 doi:10.1038/cddis.2015.166
-
(2015)
Cell Death Dis.
, vol.6
, pp. e1820
-
-
Reeve, A.K.1
Ludtmann, M.H.R.2
Angelova, P.R.3
Simcox, E.M.4
Horrocks, M.H.5
Klenerman, D.6
-
64
-
-
79953191736
-
Α-Synuclein overexpression impairs mitochondrial function by associating with adenylate translocator
-
Zhu, Y., Duan, C., Lü, L., Gao, H., Zhao, C., Yu, S. et al. (2011) α-Synuclein overexpression impairs mitochondrial function by associating with adenylate translocator. Int. J. Biochem. Cell Biol. 43, 732–741 doi:10.1016/j.biocel.2011.01.014
-
(2011)
Int. J. Biochem. Cell Biol.
, vol.43
, pp. 732-741
-
-
Zhu, Y.1
Duan, C.2
Lü, L.3
Gao, H.4
Zhao, C.5
Yu, S.6
-
65
-
-
79957974579
-
Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein
-
Nakamura, K., Nemani, V.M., Azarbal, F., Skibinski, G., Levy, J.M., Egami, K. et al. (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J. Biol. Chem. 286, 20710–20726 doi:10.1074/jbc.M110.213538
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 20710-20726
-
-
Nakamura, K.1
Nemani, V.M.2
Azarbal, F.3
Skibinski, G.4
Levy, J.M.5
Egami, K.6
-
66
-
-
84894291922
-
Α-Synuclein and mitochondrial dysfunction in Parkinson’s disease
-
Mullin, S. and Schapira, A. (2013) α-Synuclein and mitochondrial dysfunction in Parkinson’s disease. Mol. Neurobiol. 47, 587–597 doi:10.1007/ s12035-013-8394-x
-
(2013)
Mol. Neurobiol.
, vol.47
, pp. 587-597
-
-
Mullin, S.1
Schapira, A.2
-
67
-
-
84940720205
-
Mitochondrial Ca2+ in neurodegenerative disorders
-
Abeti, R. and Abramov, A.Y. (2015) Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol. Res. 99, 377–381 doi:10.1016/j.phrs.2015.05.007
-
(2015)
Pharmacol. Res.
, vol.99
, pp. 377-381
-
-
Abeti, R.1
Abramov, A.Y.2
-
68
-
-
84968831207
-
Ca2+ is a key factor in α-synuclein-induced neurotoxicity
-
Angelova, P.R., Ludtmann, M.H.R., Horrocks, M.H., Negoda, A., Cremades, N., Klenerman, D. et al. (2016) Ca2+ is a key factor in α-synuclein-induced neurotoxicity. J. Cell Sci. 129, 1792–1801 doi:10.1242/jcs.180737
-
(2016)
J. Cell Sci.
, vol.129
, pp. 1792-1801
-
-
Angelova, P.R.1
Ludtmann, M.H.R.2
Horrocks, M.H.3
Negoda, A.4
Cremades, N.5
Klenerman, D.6
-
69
-
-
37249003742
-
Helical α-synuclein forms highly conductive ion channels
-
Zakharov, S.D., Hulleman, J.D., Dutseva, E.A., Antonenko, Y.N., Rochet, J.-C. and Cramer, W.A. (2007) Helical α-synuclein forms highly conductive ion channels. Biochemistry 46, 14369–14379 doi:10.1021/bi701275p
-
(2007)
Biochemistry
, vol.46
, pp. 14369-14379
-
-
Zakharov, S.D.1
Hulleman, J.D.2
Dutseva, E.A.3
Antonenko, Y.N.4
Rochet, J.-C.5
Cramer, W.A.6
-
70
-
-
84939248947
-
The mitochondrial permeability transition pore: Channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology
-
Bernardi, P., Rasola, A., Forte, M. and Lippe, G. (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol. Rev. 95, 1111–1155 doi:10.1152/physrev.00001.2015
-
(2015)
Physiol. Rev.
, vol.95
, pp. 1111-1155
-
-
Bernardi, P.1
Rasola, A.2
Forte, M.3
Lippe, G.4
-
71
-
-
84959254675
-
Α-Synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease
-
Deas, E., Cremades, N., Angelova, P.R., Ludtmann, M.H.R., Yao, Z., Chen, S. et al. (2016) α-Synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid. Redox Signal. 24, 376–391 doi:10.1089/ars.2015.6343
-
(2016)
Antioxid. Redox Signal.
, vol.24
, pp. 376-391
-
-
Deas, E.1
Cremades, N.2
Angelova, P.R.3
Ludtmann, M.H.R.4
Yao, Z.5
Chen, S.6
-
72
-
-
84927599056
-
Lipid peroxidation is essential for α-synuclein-induced cell death
-
Angelova, P.R., Horrocks, M.H., Klenerman, D., Gandhi, S., Abramov, A.Y. and Shchepinov, M.S. (2015) Lipid peroxidation is essential for α-synuclein-induced cell death. J. Neurochem. 133, 582–589 doi:10.1111/jnc.13024
-
(2015)
J. Neurochem.
, vol.133
, pp. 582-589
-
-
Angelova, P.R.1
Horrocks, M.H.2
Klenerman, D.3
Gandhi, S.4
Abramov, A.Y.5
Shchepinov, M.S.6
-
73
-
-
59449097391
-
MAM: More than just a housekeeper
-
Hayashi, T., Rizzuto, R., Hajnoczky, G. and Su, T.-P. (2009) MAM: more than just a housekeeper. Trends Cell Biol. 19, 81–88 doi:10.1016/j.tcb.2008. 12.002
-
(2009)
Trends Cell Biol
, vol.19
, pp. 81-88
-
-
Hayashi, T.1
Rizzuto, R.2
Hajnoczky, G.3
Su, T.-P.4
-
74
-
-
77950284301
-
Detergent-resistant microdomains determine the localization of σ-1 receptors to the endoplasmic reticulum-mitochondria junction
-
Hayashi, T. and Fujimoto, M. (2010) Detergent-resistant microdomains determine the localization of σ-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol. Pharmacol. 77, 517–528 doi:10.1124/mol.109.062539
-
(2010)
Mol. Pharmacol.
, vol.77
, pp. 517-528
-
-
Hayashi, T.1
Fujimoto, M.2
-
75
-
-
84861554724
-
Α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions
-
Calì, T., Ottolini, D., Negro, A. and Brini, M. (2012) α-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 287, 17914–17929 doi:10.1074/jbc.M111.302794
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 17914-17929
-
-
Calì, T.1
Ottolini, D.2
Negro, A.3
Brini, M.4
-
76
-
-
84925408526
-
Assessing the function of mitochondria-associated ER membranes
-
Area-Gomez, E. (2014) Assessing the function of mitochondria-associated ER membranes. Methods Enzymol. 547, 181–197 doi:10.1016/ B978-0-12-801415-8.00011-4
-
(2014)
Methods Enzymol
, vol.547
, pp. 181-197
-
-
Area-Gomez, E.1
-
77
-
-
84973895577
-
Α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease
-
Di Maio, R., Barrett, P.J., Hoffman, E.K., Barrett, C.W., Zharikov, A., Borah, A. et al. (2016) α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Transl. Med. 8, 342ra78 doi:10.1126/scitranslmed.aaf3634
-
(2016)
Sci. Transl. Med.
, vol.8
, pp. 342ra78
-
-
Di Maio, R.1
Barrett, P.J.2
Hoffman, E.K.3
Barrett, C.W.4
Zharikov, A.5
Borah, A.6
-
78
-
-
0027759564
-
Characterization and localization of the Huntington disease gene product
-
Hoogeveen, A.T., Willemsen, R., Meyer, N., de Rooij, K.E., Roos, R.A.C., van Ommen, G.-J.B. et al. (1993) Characterization and localization of the Huntington disease gene product. Hum. Mol. Genet. 2, 2069–2073 doi:10.1093/hmg/2.12.2069
-
(1993)
Hum. Mol. Genet.
, vol.2
, pp. 2069-2073
-
-
Hoogeveen, A.T.1
Willemsen, R.2
Meyer, N.3
De Rooij, K.E.4
Roos, R.A.C.5
Van Ommen, G.-J.B.6
-
79
-
-
33846540080
-
The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis
-
Rockabrand, E., Slepko, N., Pantalone, A., Nukala, V.N., Kazantsev, A., Marsh, J.L. et al. (2007) The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum. Mol. Genet. 16, 61–77 doi:10.1093/hmg/ddl440
-
(2007)
Hum. Mol. Genet.
, vol.16
, pp. 61-77
-
-
Rockabrand, E.1
Slepko, N.2
Pantalone, A.3
Nukala, V.N.4
Kazantsev, A.5
Marsh, J.L.6
-
80
-
-
84919619341
-
Huntingtin is required for ER-to-Golgi transport and for secretory vesicle fusion at the plasma membrane
-
Brandstaetter, H., Kruppa, A.J. and Buss, F. (2014) Huntingtin is required for ER-to-Golgi transport and for secretory vesicle fusion at the plasma membrane. Dis. Models Mech. 7, 1335–1340 doi:10.1242/dmm.017368
-
(2014)
Dis. Models Mech.
, vol.7
, pp. 1335-1340
-
-
Brandstaetter, H.1
Kruppa, A.J.2
Buss, F.3
-
81
-
-
0034657112
-
Wild-type huntingtin protects from apoptosis upstream of caspase-3
-
PMID: 10804212
-
Rigamonti, D., Bauer, J.H., De-Fraja, C., Conti, L., Sipione, S., Sciorati, C. et al. (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J. Neurosci. 20, 3705–3713 PMID:10804212
-
(2000)
J. Neurosci.
, vol.20
, pp. 3705-3713
-
-
Rigamonti, D.1
Bauer, J.H.2
De-Fraja, C.3
Conti, L.4
Sipione, S.5
Sciorati, C.6
-
82
-
-
0029055717
-
Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes
-
Nasir, J., Floresco, S.B., O’Kusky, J.R., Diewert, V.M., Richman, J.M., Zeisler, J. et al. (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823 doi:10.1016/0092-8674(95)90542-1
-
(1995)
Cell
, vol.81
, pp. 811-823
-
-
Nasir, J.1
Floresco, S.B.2
O’Kusky, J.R.3
Diewert, V.M.4
Richman, J.M.5
Zeisler, J.6
-
83
-
-
21544450545
-
P53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease
-
Bae, B.-I., Xu, H., Igarashi, S., Fujimuro, M., Agrawal, N., Taya, Y. et al. (2005) p53 mediates cellular dysfunction and behavioral abnormalities in Huntington’s disease. Neuron 47, 29–41 doi:10.1016/j.neuron.2005.06.005
-
(2005)
Neuron
, vol.47
, pp. 29-41
-
-
Bae, B.-I.1
Xu, H.2
Igarashi, S.3
Fujimuro, M.4
Agrawal, N.5
Taya, Y.6
-
84
-
-
33745392939
-
Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin
-
Benchoua, A., Trioulier, Y., Zala, D., Gaillard, M.-C., Lefort, N., Dufour, N. et al. (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol. Biol. Cell 17, 1652–1663 doi:10.1091/mbc.E05-07-0607
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 1652-1663
-
-
Benchoua, A.1
Trioulier, Y.2
Zala, D.3
Gaillard, M.-C.4
Lefort, N.5
Dufour, N.6
-
85
-
-
43049085555
-
Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex, II
-
Benchoua, A., Trioulier, Y., Diguet, E., Malgorn, C., Gaillard, M.-C., Dufour, N. et al. (2008) Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex, II. Hum. Mol. Genet. 17, 1446–1456 doi:10.1093/hmg/ ddn033
-
(2008)
Hum. Mol. Genet.
, vol.17
, pp. 1446-1456
-
-
Benchoua, A.1
Trioulier, Y.2
Diguet, E.3
Malgorn, C.4
Gaillard, M.-C.5
Dufour, N.6
-
86
-
-
0036327065
-
Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines
-
Panov, A.V., Gutekunst, C.-A., Leavitt, B.R., Hayden, M.R., Burke, J.R., Strittmatter, W.J. et al. (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat. Neurosci. 5, 731–736 doi:10.1038/nn884
-
(2002)
Nat. Neurosci.
, vol.5
, pp. 731-736
-
-
Panov, A.V.1
Gutekunst, C.-A.2
Leavitt, B.R.3
Hayden, M.R.4
Burke, J.R.5
Strittmatter, W.J.6
-
87
-
-
41949126549
-
Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease
-
Lim, D., Fedrizzi, L., Tartari, M., Zuccato, C., Cattaneo, E., Brini, M. et al. (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J. Biol. Chem. 283, 5780–5789 doi:10.1074/jbc.M704704200
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 5780-5789
-
-
Lim, D.1
Fedrizzi, L.2
Tartari, M.3
Zuccato, C.4
Cattaneo, E.5
Brini, M.6
|