-
1
-
-
84959254675
-
Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson's disease
-
[1] Deas, E., Cremades, N., Angelova, P.R., Ludtmann, M., Yao, Z., Chen, S., et al. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson's disease. Antioxid. Redox Signal. 24 (2016), 376–391.
-
(2016)
Antioxid. Redox Signal.
, vol.24
, pp. 376-391
-
-
Deas, E.1
Cremades, N.2
Angelova, P.R.3
Ludtmann, M.4
Yao, Z.5
Chen, S.6
-
2
-
-
0000466588
-
Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria
-
[2] Loschen, G., Flohe, L., Chance, B., Respiratory chain linked H(2)O(2) production in pigeon heart mitochondria. FEBS Lett. 18 (1971), 261–264.
-
(1971)
FEBS Lett.
, vol.18
, pp. 261-264
-
-
Loschen, G.1
Flohe, L.2
Chance, B.3
-
3
-
-
0015363173
-
The cellular production of hydrogen peroxide
-
[3] Boveris, A., Oshino, N., Chance, B., The cellular production of hydrogen peroxide. Biochem. J. 128 (1972), 617–630.
-
(1972)
Biochem. J.
, vol.128
, pp. 617-630
-
-
Boveris, A.1
Oshino, N.2
Chance, B.3
-
4
-
-
0016148483
-
Superoxide radicals as precursors of mitochondrial hydrogen peroxide
-
[4] Loschen, G., Azzi, A., Richter, C., Flohe, L., Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42 (1974), 68–72.
-
(1974)
FEBS Lett.
, vol.42
, pp. 68-72
-
-
Loschen, G.1
Azzi, A.2
Richter, C.3
Flohe, L.4
-
5
-
-
84862297475
-
Mechanism of oxidative stress in neurodegeneration
-
[5] Gandhi, S., Abramov, A.Y., Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012, 2012, 428010.
-
(2012)
Oxid. Med. Cell. Longev.
, vol.2012
, pp. 428010
-
-
Gandhi, S.1
Abramov, A.Y.2
-
6
-
-
84954311788
-
Aggregated alpha-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons
-
[6] Reeve, A.K., Ludtmann, M.H., Angelova, P.R., Simcox, E.M., Horrocks, M.H., Klenerman, D., et al. Aggregated alpha-synuclein and complex I deficiency: exploration of their relationship in differentiated neurons. Cell Death Dis., 6, 2015, e1820.
-
(2015)
Cell Death Dis.
, vol.6
, pp. e1820
-
-
Reeve, A.K.1
Ludtmann, M.H.2
Angelova, P.R.3
Simcox, E.M.4
Horrocks, M.H.5
Klenerman, D.6
-
7
-
-
1642499152
-
Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase
-
[7] Abramov, A.Y., Canevari, L., Duchen, M.R., Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24 (2004), 565–575.
-
(2004)
J. Neurosci.
, vol.24
, pp. 565-575
-
-
Abramov, A.Y.1
Canevari, L.2
Duchen, M.R.3
-
8
-
-
79960286223
-
Signal transduction by reactive oxygen species
-
[8] Finkel, T., Signal transduction by reactive oxygen species. J. Cell. Biol. 194 (2011), 7–15.
-
(2011)
J. Cell. Biol.
, vol.194
, pp. 7-15
-
-
Finkel, T.1
-
9
-
-
77952541558
-
The sites and topology of mitochondrial superoxide production
-
[9] Brand, M.D., The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45 (2010), 466–472.
-
(2010)
Exp. Gerontol.
, vol.45
, pp. 466-472
-
-
Brand, M.D.1
-
10
-
-
0034740585
-
DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria
-
[10] Votyakova, T.V., Reynolds, I.J., DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J. Neurochem. 79 (2001), 266–277.
-
(2001)
J. Neurochem.
, vol.79
, pp. 266-277
-
-
Votyakova, T.V.1
Reynolds, I.J.2
-
11
-
-
0042433242
-
2 production by membrane potential and NAD(P)H redox state
-
2 production by membrane potential and NAD(P)H redox state. J. Neurochem. 86 (2003), 1101–1107.
-
(2003)
J. Neurochem.
, vol.86
, pp. 1101-1107
-
-
Starkov, A.A.1
Fiskum, G.2
-
12
-
-
0036139856
-
The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology
-
[12] Lenaz, G., The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52 (2001), 159–164.
-
(2001)
IUBMB Life
, vol.52
, pp. 159-164
-
-
Lenaz, G.1
-
13
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
[13] Murphy, M.P., How mitochondria produce reactive oxygen species. Biochem. J. 417 (2009), 1–13.
-
(2009)
Biochem. J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
15
-
-
33846818524
-
Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation
-
[15] Abramov, A.Y., Scorziello, A., Duchen, M.R., Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 27 (2007), 1129–1138.
-
(2007)
J. Neurosci.
, vol.27
, pp. 1129-1138
-
-
Abramov, A.Y.1
Scorziello, A.2
Duchen, M.R.3
-
16
-
-
77950221314
-
Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations
-
[16] Abramov, A.Y., Smulders-Srinivasan, T.K., Kirby, D.M., Acin-Perez, R., Enriquez, J.A., Lightowlers, R.N., et al. Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain 133 (2010), 797–807.
-
(2010)
Brain
, vol.133
, pp. 797-807
-
-
Abramov, A.Y.1
Smulders-Srinivasan, T.K.2
Kirby, D.M.3
Acin-Perez, R.4
Enriquez, J.A.5
Lightowlers, R.N.6
-
17
-
-
84921814081
-
Nrf2 regulates ROS production by mitochondria and NADPH oxidase
-
[17] Kovac, S., Angelova, P.R., Holmstrom, K.M., Zhang, Y., Dinkova-Kostova, A.T., Abramov, A.Y., Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim. Biophys. Acta 1850 (2015), 794–801.
-
(2015)
Biochim. Biophys. Acta
, vol.1850
, pp. 794-801
-
-
Kovac, S.1
Angelova, P.R.2
Holmstrom, K.M.3
Zhang, Y.4
Dinkova-Kostova, A.T.5
Abramov, A.Y.6
-
18
-
-
0029765443
-
Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants
-
[18] Skulachev, V.P., Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q. Rev. Biophys. 29 (1996), 169–202.
-
(1996)
Q. Rev. Biophys.
, vol.29
, pp. 169-202
-
-
Skulachev, V.P.1
-
19
-
-
33749433230
-
Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation
-
[19] Brennan, J.P., Southworth, R., Medina, R.A., Davidson, S.M., Duchen, M.R., Shattock, M.J., Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc. Res. 72 (2006), 313–321.
-
(2006)
Cardiovasc. Res.
, vol.72
, pp. 313-321
-
-
Brennan, J.P.1
Southworth, R.2
Medina, R.A.3
Davidson, S.M.4
Duchen, M.R.5
Shattock, M.J.6
-
20
-
-
27144531055
-
Expression and modulation of an NADPH oxidase in mammalian astrocytes
-
[20] Abramov, A.Y., Jacobson, J., Wientjes, F., Hothersall, J., Canevari, L., Duchen, M.R., Expression and modulation of an NADPH oxidase in mammalian astrocytes. J. Neurosci. 25 (2005), 9176–9184.
-
(2005)
J. Neurosci.
, vol.25
, pp. 9176-9184
-
-
Abramov, A.Y.1
Jacobson, J.2
Wientjes, F.3
Hothersall, J.4
Canevari, L.5
Duchen, M.R.6
-
21
-
-
4544359913
-
Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species
-
[21] Starkov, A.A., Fiskum, G., Chinopoulos, C., Lorenzo, B.J., Browne, S.E., Patel, M.S., et al. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24 (2004), 7779–7788.
-
(2004)
J. Neurosci.
, vol.24
, pp. 7779-7788
-
-
Starkov, A.A.1
Fiskum, G.2
Chinopoulos, C.3
Lorenzo, B.J.4
Browne, S.E.5
Patel, M.S.6
-
22
-
-
79955973551
-
Inactivation and reactivation of the mitochondrial alpha-ketoglutarate dehydrogenase complex
-
[22] Shi, Q., Xu, H., Yu, H., Zhang, N., Ye, Y., Estevez, A.G., et al. Inactivation and reactivation of the mitochondrial alpha-ketoglutarate dehydrogenase complex. J. Biol. Chem. 286 (2011), 17640–17648.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 17640-17648
-
-
Shi, Q.1
Xu, H.2
Yu, H.3
Zhang, N.4
Ye, Y.5
Estevez, A.G.6
-
23
-
-
4544226082
-
Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase
-
[23] Tretter, L., Adam-Vizi, V., Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J. Neurosci. 24 (2004), 7771–7778.
-
(2004)
J. Neurosci.
, vol.24
, pp. 7771-7778
-
-
Tretter, L.1
Adam-Vizi, V.2
-
24
-
-
0034671429
-
Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress
-
[24] Tretter, L., Adam-Vizi, V., Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J. Neurosci. 20 (2000), 8972–8979.
-
(2000)
J. Neurosci.
, vol.20
, pp. 8972-8979
-
-
Tretter, L.1
Adam-Vizi, V.2
-
25
-
-
0344838535
-
Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson's disease
-
[25] Gibson, G.E., Kingsbury, A.E., Xu, H., Lindsay, J.G., Daniel, S., Foster, O.J., et al. Deficits in a tricarboxylic acid cycle enzyme in brains from patients with Parkinson's disease. Neurochem. Int. 43 (2003), 129–135.
-
(2003)
Neurochem. Int.
, vol.43
, pp. 129-135
-
-
Gibson, G.E.1
Kingsbury, A.E.2
Xu, H.3
Lindsay, J.G.4
Daniel, S.5
Foster, O.J.6
-
26
-
-
84859502164
-
Deficits in the mitochondrial enzyme alpha-ketoglutarate dehydrogenase lead to Alzheimer's disease-like calcium dysregulation
-
[26] Gibson, G.E., Chen, H.L., Xu, H., Qiu, L., Xu, Z., Denton, T.T., et al. Deficits in the mitochondrial enzyme alpha-ketoglutarate dehydrogenase lead to Alzheimer's disease-like calcium dysregulation. Neurobiol. Aging 33 (2012), 1121–1124.
-
(2012)
Neurobiol. Aging
, vol.33
, pp. 1121-1124
-
-
Gibson, G.E.1
Chen, H.L.2
Xu, H.3
Qiu, L.4
Xu, Z.5
Denton, T.T.6
-
27
-
-
23244435445
-
The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration
-
[27] Gibson, G.E., Blass, J.P., Beal, M.F., Bunik, V., The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol. Neurobiol. 31 (2005), 43–63.
-
(2005)
Mol. Neurobiol.
, vol.31
, pp. 43-63
-
-
Gibson, G.E.1
Blass, J.P.2
Beal, M.F.3
Bunik, V.4
-
28
-
-
0032545269
-
Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria
-
[28] Zhang, L., Yu, L., Yu, C.A., Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol. Chem. 273 (1998), 33972–33976.
-
(1998)
J Biol. Chem.
, vol.273
, pp. 33972-33976
-
-
Zhang, L.1
Yu, L.2
Yu, C.A.3
-
29
-
-
0001068044
-
Tyramine oxidase: a new enzyme system in liver
-
[29] Hare, M.L., Tyramine oxidase: a new enzyme system in liver. Biochem. J. 22 (1928), 968–979.
-
(1928)
Biochem. J.
, vol.22
, pp. 968-979
-
-
Hare, M.L.1
-
30
-
-
0000100480
-
Brain amines: response to physiological stress
-
[30] Barchas, J.D., Freedman, D.X., Brain amines: response to physiological stress. Biochem. Pharmacol. 12 (1963), 1232–1235.
-
(1963)
Biochem. Pharmacol.
, vol.12
, pp. 1232-1235
-
-
Barchas, J.D.1
Freedman, D.X.2
-
31
-
-
84894533962
-
Monoamine oxidase-A knockdown in human neuroblastoma cells reveals protection against mitochondrial toxins
-
[31] Fitzgerald, J.C., Ugun-Klusek, A., Allen, G., De Girolamo, L.A., Hargreaves, I., Ufer, C., et al. Monoamine oxidase-A knockdown in human neuroblastoma cells reveals protection against mitochondrial toxins. FASEB J. 28 (2014), 218–229.
-
(2014)
FASEB J.
, vol.28
, pp. 218-229
-
-
Fitzgerald, J.C.1
Ugun-Klusek, A.2
Allen, G.3
De Girolamo, L.A.4
Hargreaves, I.5
Ufer, C.6
-
32
-
-
2942696319
-
Activation of cytosolic phospholipase A2 in Her14 fibroblasts by hydrogen peroxide: a p42/44(MAPK)-dependent and phosphorylation-independent mechanism
-
[32] van Rossum, G.S., Drummen, G.P., Verkleij, A.J., Post, J.A., Boonstra, J., Activation of cytosolic phospholipase A2 in Her14 fibroblasts by hydrogen peroxide: a p42/44(MAPK)-dependent and phosphorylation-independent mechanism. Biochim. Biophys. Acta 1636 (2004), 183–195.
-
(2004)
Biochim. Biophys. Acta
, vol.1636
, pp. 183-195
-
-
van Rossum, G.S.1
Drummen, G.P.2
Verkleij, A.J.3
Post, J.A.4
Boonstra, J.5
-
33
-
-
34250087207
-
[Role of mitochondrial peroxidation of lipids in their hydrolysis by endogenous phospholipase A2]
-
[33] Marzoev, A., Mirtalipov, D., Almatov, K., [Role of mitochondrial peroxidation of lipids in their hydrolysis by endogenous phospholipase A2]. Biull. Eksp. Biol. Med. 104 (1987), 35–38.
-
(1987)
Biull. Eksp. Biol. Med.
, vol.104
, pp. 35-38
-
-
Marzoev, A.1
Mirtalipov, D.2
Almatov, K.3
-
34
-
-
0031769724
-
The role of membrane structure in the activation of mitochondrial phospholipases. 1. Activation of mitochondrial phospholipases by lipid peroxidation products
-
[34] Timusheva, Y.T., Mareninova, O.A., Vagina, O.N., Zamaraeva, M.V., Salakhutdinov, B.A., Aripov, T.F., et al. The role of membrane structure in the activation of mitochondrial phospholipases. 1. Activation of mitochondrial phospholipases by lipid peroxidation products. Membr. Cell Biol. 12 (1998), 41–49.
-
(1998)
Membr. Cell Biol.
, vol.12
, pp. 41-49
-
-
Timusheva, Y.T.1
Mareninova, O.A.2
Vagina, O.N.3
Zamaraeva, M.V.4
Salakhutdinov, B.A.5
Aripov, T.F.6
-
35
-
-
84917732449
-
Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment
-
[35] Hermann, P.M., Watson, S.N., Wildering, W.C., Phospholipase A2 - nexus of aging, oxidative stress, neuronal excitability, and functional decline of the aging nervous system? Insights from a snail model system of neuronal aging and age-associated memory impairment. Front. Genet., 5, 2014, 419.
-
(2014)
Front. Genet.
, vol.5
, pp. 419
-
-
Hermann, P.M.1
Watson, S.N.2
Wildering, W.C.3
-
36
-
-
0027471393
-
Agonist-induced activation of phospholipase D in bovine pulmonary artery endothelial cells: regulation by protein kinase C and calcium
-
[36] Natarajan, V., Garcia, J.G., Agonist-induced activation of phospholipase D in bovine pulmonary artery endothelial cells: regulation by protein kinase C and calcium. J. Lab. Clin. Med. 121 (1993), 337–347.
-
(1993)
J. Lab. Clin. Med.
, vol.121
, pp. 337-347
-
-
Natarajan, V.1
Garcia, J.G.2
-
37
-
-
0028005464
-
Activation of phosphoinositide-specific phospholipase C of rat neutrophils by the chemotactic aldehydes 4-hydroxy-2,3-trans-nonenal and 4-hydroxy-2,3-trans-octenal
-
[37] Rossi, M.A., Di, M.C., Esterbauer, H., Fidale, F., Dianzani, M.U., Activation of phosphoinositide-specific phospholipase C of rat neutrophils by the chemotactic aldehydes 4-hydroxy-2,3-trans-nonenal and 4-hydroxy-2,3-trans-octenal. Cell Biochem. Funct. 12 (1994), 275–280.
-
(1994)
Cell Biochem. Funct.
, vol.12
, pp. 275-280
-
-
Rossi, M.A.1
Di, M.C.2
Esterbauer, H.3
Fidale, F.4
Dianzani, M.U.5
-
38
-
-
84891374075
-
Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca(2)(+) signal
-
[38] Domijan, A.M., Kovac, S., Abramov, A.Y., Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca(2)(+) signal. J. Cell Sci. 127 (2014), 21–26.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 21-26
-
-
Domijan, A.M.1
Kovac, S.2
Abramov, A.Y.3
-
39
-
-
84936791921
-
Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction
-
[39] Kinghorn, K.J., Castillo-Quan, J.I., Bartolome, F., Angelova, P.R., Li, L., Pope, S., et al. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction. Brain 138 (2015), 1801–1816.
-
(2015)
Brain
, vol.138
, pp. 1801-1816
-
-
Kinghorn, K.J.1
Castillo-Quan, J.I.2
Bartolome, F.3
Angelova, P.R.4
Li, L.5
Pope, S.6
-
40
-
-
84927599056
-
Lipid peroxidation is essential for alpha-synuclein-induced cell death
-
[40] Angelova, P.R., Horrocks, M.H., Klenerman, D., Gandhi, S., Abramov, A.Y., Shchepinov, M.S., Lipid peroxidation is essential for alpha-synuclein-induced cell death. J. Neurochem. 133 (2015), 582–589.
-
(2015)
J. Neurochem.
, vol.133
, pp. 582-589
-
-
Angelova, P.R.1
Horrocks, M.H.2
Klenerman, D.3
Gandhi, S.4
Abramov, A.Y.5
Shchepinov, M.S.6
-
41
-
-
27744433524
-
Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors
-
[41] Kagan, V.E., Tyurin, V.A., Jiang, J., Tyurina, Y.Y., Ritov, V.B., Amoscato, A.A., et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1 (2005), 223–232.
-
(2005)
Nat. Chem. Biol.
, vol.1
, pp. 223-232
-
-
Kagan, V.E.1
Tyurin, V.A.2
Jiang, J.3
Tyurina, Y.Y.4
Ritov, V.B.5
Amoscato, A.A.6
-
43
-
-
0036198313
-
Mechanism of vascular smooth muscle cells activation by hydrogen peroxide: role of phospholipase C gamma
-
[43] Gonzalez-Pacheco, F.R., Caramelo, C., Castilla, M.A., Deudero, J.J., Arias, J., Yague, S., et al. Mechanism of vascular smooth muscle cells activation by hydrogen peroxide: role of phospholipase C gamma. Nephrol. Dial. Transplant. 17 (2002), 392–398.
-
(2002)
Nephrol. Dial. Transplant.
, vol.17
, pp. 392-398
-
-
Gonzalez-Pacheco, F.R.1
Caramelo, C.2
Castilla, M.A.3
Deudero, J.J.4
Arias, J.5
Yague, S.6
-
44
-
-
77955283617
-
2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase
-
2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase. J. Biol. Chem. 285 (2010), 25018–25023.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 25018-25023
-
-
Vaarmann, A.1
Gandhi, S.2
Abramov, A.Y.3
-
45
-
-
33646678415
-
Oxidative modulation of the transient potassium current IA by intracellular arachidonic acid in rat CA1 pyramidal neurons
-
[45] Angelova, P., Muller, W., Oxidative modulation of the transient potassium current IA by intracellular arachidonic acid in rat CA1 pyramidal neurons. Eur. J. Neurosci. 23 (2006), 2375–2384.
-
(2006)
Eur. J. Neurosci.
, vol.23
, pp. 2375-2384
-
-
Angelova, P.1
Muller, W.2
-
46
-
-
65749101289
-
Arachidonic acid potently inhibits both postsynaptic-type Kv4.2 and presynaptic-type Kv1.4 IA potassium channels
-
[46] Angelova, P.R., Muller, W.S., Arachidonic acid potently inhibits both postsynaptic-type Kv4.2 and presynaptic-type Kv1.4 IA potassium channels. Eur. J. Neurosci. 29 (2009), 1943–1950.
-
(2009)
Eur. J. Neurosci.
, vol.29
, pp. 1943-1950
-
-
Angelova, P.R.1
Muller, W.S.2
-
47
-
-
0036125211
-
Oxidative stress and potassium channel function
-
[47] Liu, Y., Gutterman, D.D., Oxidative stress and potassium channel function. Clin. Exp. Pharmacol. Physiol. 29 (2002), 305–311.
-
(2002)
Clin. Exp. Pharmacol. Physiol.
, vol.29
, pp. 305-311
-
-
Liu, Y.1
Gutterman, D.D.2
-
48
-
-
0035014014
-
Oxidative regulation of large conductance calcium-activated potassium channels
-
[48] Tang, X.D., Daggett, H., Hanner, M., Garcia, M.L., McManus, O.B., Brot, N., et al. Oxidative regulation of large conductance calcium-activated potassium channels. J. Gen. Physiol. 117 (2001), 253–274.
-
(2001)
J. Gen. Physiol.
, vol.117
, pp. 253-274
-
-
Tang, X.D.1
Daggett, H.2
Hanner, M.3
Garcia, M.L.4
McManus, O.B.5
Brot, N.6
-
49
-
-
33847232634
-
Redox control of calcium channels: from mechanisms to therapeutic opportunities
-
[49] Hool, L.C., Corry, B., Redox control of calcium channels: from mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 9 (2007), 409–435.
-
(2007)
Antioxid. Redox Signal.
, vol.9
, pp. 409-435
-
-
Hool, L.C.1
Corry, B.2
-
50
-
-
0742305296
-
Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing
-
[50] Tang, X.D., Garcia, M.L., Heinemann, S.H., Hoshi, T., Reactive oxygen species impair Slo1 BK channel function by altering cysteine-mediated calcium sensing. Nat. Struct. Mol. Biol. 11 (2004), 171–178.
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 171-178
-
-
Tang, X.D.1
Garcia, M.L.2
Heinemann, S.H.3
Hoshi, T.4
-
51
-
-
0030954860
-
Modulation of potassium channel function by methionine oxidation and reduction
-
[51] Ciorba, M.A., Heinemann, S.H., Weissbach, H., Brot, N., Hoshi, T., Modulation of potassium channel function by methionine oxidation and reduction. Proc. Natl. Acad. Sci. USA 94 (1997), 9932–9937.
-
(1997)
Proc. Natl. Acad. Sci. USA
, vol.94
, pp. 9932-9937
-
-
Ciorba, M.A.1
Heinemann, S.H.2
Weissbach, H.3
Brot, N.4
Hoshi, T.5
-
52
-
-
77955731294
-
Cysteine 723 in the C-linker segment confers oxidative inhibition of hERG1 potassium channels
-
[52] Kolbe, K., Schonherr, R., Gessner, G., Sahoo, N., Hoshi, T., Heinemann, S.H., Cysteine 723 in the C-linker segment confers oxidative inhibition of hERG1 potassium channels. J. Physiol. 588 (2010), 2999–3009.
-
(2010)
J. Physiol.
, vol.588
, pp. 2999-3009
-
-
Kolbe, K.1
Schonherr, R.2
Gessner, G.3
Sahoo, N.4
Hoshi, T.5
Heinemann, S.H.6
-
53
-
-
33745198418
-
Redox regulation of cardiac calcium channels and transporters
-
[53] Zima, A.V., Blatter, L.A., Redox regulation of cardiac calcium channels and transporters. Cardiovasc. Res. 71 (2006), 310–321.
-
(2006)
Cardiovasc. Res.
, vol.71
, pp. 310-321
-
-
Zima, A.V.1
Blatter, L.A.2
-
54
-
-
0031922201
-
Antioxidants inhibit ATP-sensitive potassium channels in cerebral arterioles
-
[54] Wei, E.P., Kontos, H.A., Beckman, J.S., Antioxidants inhibit ATP-sensitive potassium channels in cerebral arterioles. Stroke 29 (1998), 817–822.
-
(1998)
Stroke
, vol.29
, pp. 817-822
-
-
Wei, E.P.1
Kontos, H.A.2
Beckman, J.S.3
-
55
-
-
84905019726
-
Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling
-
[55] Uchi, J., Ryu, S.Y., Jhun, B.S., Hurst, S., Sheu, S.S., Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid. Redox Signal. 21 (2014), 987–1006.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, pp. 987-1006
-
-
Uchi, J.1
Ryu, S.Y.2
Jhun, B.S.3
Hurst, S.4
Sheu, S.S.5
-
56
-
-
84937700323
-
Functional oxygen sensitivity of astrocytes
-
[56] Angelova, P.R., Kasymov, V., Christie, I., Sheikhbahaei, S., Turovsky, E., Marina, N., et al. Functional oxygen sensitivity of astrocytes. J. Neurosci. 35 (2015), 10460–10473.
-
(2015)
J. Neurosci.
, vol.35
, pp. 10460-10473
-
-
Angelova, P.R.1
Kasymov, V.2
Christie, I.3
Sheikhbahaei, S.4
Turovsky, E.5
Marina, N.6
-
57
-
-
61649088435
-
PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death
-
[57] Gandhi, S., Wood-Kaczmar, A., Yao, Z., Plun-Favreau, H., Deas, E., Klupsch, K., et al. PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell. 33 (2009), 627–638.
-
(2009)
Mol. Cell.
, vol.33
, pp. 627-638
-
-
Gandhi, S.1
Wood-Kaczmar, A.2
Yao, Z.3
Plun-Favreau, H.4
Deas, E.5
Klupsch, K.6
-
58
-
-
80054765940
-
Bioenergetic consequences of PINK1 mutations in Parkinson disease
-
[58] Abramov, A.Y., Gegg, M., Grunewald, A., Wood, N.W., Klein, C., Schapira, A.H., Bioenergetic consequences of PINK1 mutations in Parkinson disease. PLoS One, 6, 2011, e25622.
-
(2011)
PLoS One
, vol.6
, pp. e25622
-
-
Abramov, A.Y.1
Gegg, M.2
Grunewald, A.3
Wood, N.W.4
Klein, C.5
Schapira, A.H.6
-
59
-
-
0035895888
-
Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties
-
[59] Kelso, G.F., Porteous, C.M., Coulter, C.V., Hughes, G., Porteous, W.K., Ledgerwood, E.C., et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. 276 (2001), 4588–4596.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 4588-4596
-
-
Kelso, G.F.1
Porteous, C.M.2
Coulter, C.V.3
Hughes, G.4
Porteous, W.K.5
Ledgerwood, E.C.6
|