-
1
-
-
84937509643
-
Anisotropic temperature sensitive chitosanbased injectable hydrogels mimicking cartilage matrix
-
Walker KJ, Madihally SV. Anisotropic temperature sensitive chitosanbased injectable hydrogels mimicking cartilage matrix. J Biomed Mater Res B Appl Biomater 2015; 103: 1149-1160.
-
(2015)
J Biomed Mater Res B Appl Biomater
, vol.103
, pp. 1149-1160
-
-
Walker, K.J.1
Madihally, S.V.2
-
2
-
-
31544453046
-
Biodendrimer-based hydrogel scaffolds for cartilage tissue repair
-
S?ntjens SHM, Nettles DL, Carnahan MA et al. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules 2006; 7: 310-316.
-
(2006)
Biomacromolecules
, vol.7
, pp. 310-316
-
-
Shm, S.1
Nettles, D.L.2
Carnahan, M.A.3
-
3
-
-
84924864632
-
Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering
-
Ren K, He C, Xiao C et al. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials 2015; 51: 238-249.
-
(2015)
Biomaterials
, vol.51
, pp. 238-249
-
-
Ren, K.1
He, C.2
Xiao, C.3
-
4
-
-
0037358343
-
Tissue engineering and cell therapy of cartilage and bone
-
Cancedda R, Dozin B, Giannoni P et al. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 2003; 22: 81-91.
-
(2003)
Matrix Biol
, vol.22
, pp. 81-91
-
-
Cancedda, R.1
Dozin, B.2
Giannoni, P.3
-
5
-
-
0036766881
-
Articular cartilage defects in 1,000 knee arthroscopies
-
Hjelle K, Solheim E, Strand T et al. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18: 730-734.
-
(2002)
Arthroscopy
, vol.18
, pp. 730-734
-
-
Hjelle, K.1
Solheim, E.2
Strand, T.3
-
6
-
-
84969244006
-
Cartilage repair using hydrogels: A critical review of in vivo experimental designs
-
Vilela CA, Correia C, Oliveira JM et al. Cartilage repair using hydrogels: a critical review of in vivo experimental designs. ACS Biomater Sci Eng 2015; 1: 726-739.
-
(2015)
ACS Biomater Sci Eng
, vol.1
, pp. 726-739
-
-
Vilela, C.A.1
Correia, C.2
Oliveira, J.M.3
-
7
-
-
84905649950
-
Recent developments in scaffold-guided cartilage tissue regeneration
-
Liao J, Shi K, Ding Q et al. Recent developments in scaffold-guided cartilage tissue regeneration. J Biomed Nanotechnol 2014; 10: 3085-3104.
-
(2014)
J Biomed Nanotechnol
, vol.10
, pp. 3085-3104
-
-
Liao, J.1
Shi, K.2
Ding, Q.3
-
8
-
-
84892434742
-
Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering
-
Yuan T, Zhang L, Li K et al. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2014; 102: 337-344.
-
(2014)
J Biomed Mater Res B Appl Biomater
, vol.102
, pp. 337-344
-
-
Yuan, T.1
Zhang, L.2
Li, K.3
-
9
-
-
0031661022
-
Articular cartilage: Injuries and potential for healing
-
Buckwalter J. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 1998; 28: 192-202.
-
(1998)
J Orthop Sports Phys Ther
, vol.28
, pp. 192-202
-
-
Buckwalter, J.1
-
10
-
-
84869110610
-
Unlike bone, cartilage regeneration remains elusive
-
Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012; 338: 917-921.
-
(2012)
Science
, vol.338
, pp. 917-921
-
-
Huey, D.J.1
Hu, J.C.2
Athanasiou, K.A.3
-
11
-
-
84926339363
-
Current progress in stem cellbased gene therapy for articular cartilage repair
-
Frisch J, Venkatesan J, Rey-Rico A et al. Current progress in stem cellbased gene therapy for articular cartilage repair. Curr Stem Cell Res Ther 2015; 10: 121-131.
-
(2015)
Curr Stem Cell Res Ther
, vol.10
, pp. 121-131
-
-
Frisch, J.1
Venkatesan, J.2
Rey-Rico, A.3
-
12
-
-
84959260064
-
Current research on pharmacologic and regenerative therapies for osteoarthritis
-
Zhang W, Ouyang H, Dass CR et al. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 2016; 4: 15040.
-
(2016)
Bone Res
, vol.4
, pp. 15040
-
-
Zhang, W.1
Ouyang, H.2
Dass, C.R.3
-
13
-
-
85030322118
-
Skeletal blood flow in bone repair and maintenance
-
Tomlinson RE, Silva MJ. Skeletal blood flow in bone repair and maintenance. Bone Res 2013; 1: 311-322.
-
(2013)
Bone Res
, vol.1
, pp. 311-322
-
-
Tomlinson, R.E.1
Silva, M.J.2
-
14
-
-
84883626117
-
Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: A retrospective cohort study in 182 patients
-
Flierl MA, Smith WR, Mauffrey C et al. Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: A retrospective cohort study in 182 patients. J Orthop Surg Res 2013; 8: 33.
-
(2013)
J Orthop Surg Res
, vol.8
, pp. 33
-
-
Flierl, M.A.1
Smith, W.R.2
Mauffrey, C.3
-
16
-
-
33947323908
-
Autologous iliac crest bone graft: Should it still be the gold standard for treating nonunions?
-
Sen MK, Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 2007; 38 (Suppl 1): S75-S80.
-
(2007)
Injury
, vol.38
, pp. S75-S80
-
-
Sen, M.K.1
Miclau, T.2
-
17
-
-
85007110829
-
The key role of the blood supply to bone
-
Marenzana M, Arnett TR. The key role of the blood supply to bone. Bone Res 2013; 1: 203-215.
-
(2013)
Bone Res
, vol.1
, pp. 203-215
-
-
Marenzana, M.1
Arnett, T.R.2
-
18
-
-
84928484351
-
Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells
-
Wang P, Zhao L, Liu J et al. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2014; 2: 14017.
-
(2014)
Bone Res
, vol.2
, pp. 14017
-
-
Wang, P.1
Zhao, L.2
Liu, J.3
-
19
-
-
84862027776
-
Biomimetic scaffolds for tissue engineering
-
Kim TG, Shin H, Lim D W. Biomimetic scaffolds for tissue engineering. Adv Funct Mater 2012; 22: 2446-2468.
-
(2012)
Adv Funct Mater
, vol.22
, pp. 2446-2468
-
-
Kim, T.G.1
Shin, H.2
Lim, D.W.3
-
20
-
-
84862623506
-
Stem cell therapy and tissue engineering applications for cartilage regeneration
-
Khan WS, Malik A. Stem cell therapy and tissue engineering applications for cartilage regeneration. Curr Stem Cell Res Ther 2012; 7: 241-242.
-
(2012)
Curr Stem Cell Res Ther
, vol.7
, pp. 241-242
-
-
Khan, W.S.1
Malik, A.2
-
21
-
-
84900030868
-
Osteogenesis of adipose-derived stem cells
-
Grottkau BE, Lin Y. Osteogenesis of adipose-derived stem cells. Bone Res 2013; 1: 133-145.
-
(2013)
Bone Res
, vol.1
, pp. 133-145
-
-
Grottkau, B.E.1
Lin, Y.2
-
22
-
-
84957598906
-
Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration
-
Bush Jr., Liang H, Dickinson M et al. Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration. Polym Adv Technol 2016; 27: 1050-1055.
-
(2016)
Polym Adv Technol
, vol.27
, pp. 1050-1055
-
-
Bush, J.R.1
Liang, H.2
Dickinson, M.3
-
23
-
-
84989244239
-
The role of tissue engineering in achilles tendon repair: A review
-
Sahni V, Tibrewal S, Bissell L et al. The role of tissue engineering in achilles tendon repair: a revie W. Curr Stem Cell Res Ther 2015; 10: 31-36.
-
(2015)
Curr Stem Cell Res Ther
, vol.10
, pp. 31-36
-
-
Sahni, V.1
Tibrewal, S.2
Bissell, L.3
-
24
-
-
84959354785
-
Aligned biomimetic scaffolds as a new tendency in tissue engineering
-
Wang Y, Shang S, Li C. Aligned biomimetic scaffolds as a new tendency in tissue engineering. Curr Stem Cell Res Ther 2016; 11: 3-18.
-
(2016)
Curr Stem Cell Res Ther
, vol.11
, pp. 3-18
-
-
Wang, Y.1
Shang, S.2
Li, C.3
-
25
-
-
84884903697
-
25th anniversary article: Engineering hydrogels for biofabrication
-
Malda J, Visser J, Melchels FP et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 2013; 25: 5011-5028.
-
(2013)
Adv Mater
, vol.25
, pp. 5011-5028
-
-
Malda, J.1
Visser, J.2
Melchels, F.P.3
-
26
-
-
80051739587
-
Biopolymer-based hydrogels for cartilage tissue engineering
-
Balakrishnan B, Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 2011; 111: 4453-4474.
-
(2011)
Chem Rev
, vol.111
, pp. 4453-4474
-
-
Balakrishnan, B.1
Banerjee, R.2
-
27
-
-
84899475906
-
3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering
-
Huang CC, Ravindran S, Yin Z et al. 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering. Biomaterials 2014; 35: 5316-5326.
-
(2014)
Biomaterials
, vol.35
, pp. 5316-5326
-
-
Huang, C.C.1
Ravindran, S.2
Yin, Z.3
-
28
-
-
21844438003
-
Porous scaffold design for tissue engineering
-
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4: 518-524.
-
(2005)
Nat Mater
, vol.4
, pp. 518-524
-
-
Hollister, S.J.1
-
29
-
-
84861714640
-
Designing cell-compatible hydrogels for biomedical applications
-
Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science 2012; 336: 1124-1128.
-
(2012)
Science
, vol.336
, pp. 1124-1128
-
-
Seliktar, D.1
-
30
-
-
84900643756
-
Efficient and facile synthesis of gold nanorods with finely tunable plasmonic peaks from visible to near-IR range
-
Zhang L, Xia K, Lu Z et al. Efficient and facile synthesis of gold nanorods with finely tunable plasmonic peaks from visible to near-IR range. Chem Mater 2014; 26: 1794-1798.
-
(2014)
Chem Mater
, vol.26
, pp. 1794-1798
-
-
Zhang, L.1
Xia, K.2
Lu, Z.3
-
31
-
-
84877795821
-
A comparison of extracellular excitatory amino acids release inhibition of acute lamotrigine and topiramate treatment in the hippocampus of ptz-kindled epileptic rats
-
Deng Y, Wang M, Jiang L et al. A comparison of extracellular excitatory amino acids release inhibition of acute lamotrigine and topiramate treatment in the hippocampus of ptz-kindled epileptic rats. J Biomed Nanotechnol 2013; 9: 1123-1128.
-
(2013)
J Biomed Nanotechnol
, vol.9
, pp. 1123-1128
-
-
Deng, Y.1
Wang, M.2
Jiang, L.3
-
32
-
-
84990878216
-
Graphene-based materials for tissue engineering
-
Shin SR, Li YC, Jang HL et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 2016; 105: 255-274.
-
(2016)
Adv Drug Deliv Rev
, vol.105
, pp. 255-274
-
-
Shin, S.R.1
Li, Y.C.2
Jang, H.L.3
-
33
-
-
84868699470
-
Methoxy poly(ethylene glycol) conjugated denatured bovine serum albumin micelles for effective delivery of camptothecin
-
Zhang L, Lu Z, Li X et al. Methoxy poly(ethylene glycol) conjugated denatured bovine serum albumin micelles for effective delivery of camptothecin. Polym Chem 2012; 3: 1958.
-
(2012)
Polym Chem
, vol.3
, pp. 1958
-
-
Zhang, L.1
Lu, Z.2
Li, X.3
-
34
-
-
84945478297
-
A biodegradable PEG-based micro-cavitary hydrogel as scaffold for cartilage tissue engineering
-
Fan C, Wang D-A. A biodegradable PEG-based micro-cavitary hydrogel as scaffold for cartilage tissue engineering. Eur Polym J 2015; 72: 651-660.
-
(2015)
Eur Polym J
, vol.72
, pp. 651-660
-
-
Fan, C.1
Wang, D.-A.2
-
35
-
-
0042061223
-
Hydrogels for tissue engineering: Scaffold design variables and applications
-
Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003; 24: 4337-4351.
-
(2003)
Biomaterials
, vol.24
, pp. 4337-4351
-
-
Drury, J.L.1
Mooney, D.J.2
-
36
-
-
84948708559
-
A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO
-
Fan J, He N, He Q et al. A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. Nanoscale 2015; 7: 20055-20062.
-
(2015)
Nanoscale
, vol.7
, pp. 20055-20062
-
-
Fan, J.1
He, N.2
He, Q.3
-
37
-
-
84920747242
-
Preparation of gold nanorods using 1 2,4-trihydroxybenzene as a reducing agent
-
Lu Z, Huang Y, Zhang L et al. Preparation of gold nanorods using 1,2,4-trihydroxybenzene as a reducing agent. J Nanosci Nanotechnol 2015; 15: 6230-6235.
-
(2015)
J Nanosci Nanotechnol
, vol.15
, pp. 6230-6235
-
-
Lu, Z.1
Huang, Y.2
Zhang, L.3
-
38
-
-
55749100987
-
Nanotechnology and nanomaterials: Promises for improved tissue regeneration
-
Zhang L, Webster TJ. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009; 4: 66-80.
-
(2009)
Nano Today
, vol.4
, pp. 66-80
-
-
Zhang, L.1
Webster, T.J.2
-
40
-
-
84914703749
-
Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering
-
Choi B, Kim S, Lin B et al. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 2014; 6: 20110-20121.
-
(2014)
ACS Appl Mater Interfaces
, vol.6
, pp. 20110-20121
-
-
Choi, B.1
Kim, S.2
Lin, B.3
-
41
-
-
79955793532
-
Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review
-
Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a revie W. Biomacromolecules 2011; 12: 1387-1408.
-
(2011)
Biomacromolecules
, vol.12
, pp. 1387-1408
-
-
Van Vlierberghe, S.1
Dubruel, P.2
Schacht, E.3
-
42
-
-
84896486539
-
Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering
-
Yazdimamaghani M, Vashaee D, Assefa S et al. Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering. J Biomed Nanotechnol 2014; 10: 911-931.
-
(2014)
J Biomed Nanotechnol
, vol.10
, pp. 911-931
-
-
Yazdimamaghani, M.1
Vashaee, D.2
Assefa, S.3
-
43
-
-
61349111323
-
Injectable chitosan-based hydrogels for cartilage tissue engineering
-
Jin R, Moreira Teixeira LS, Dijkstra PJ et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 2009; 30: 2544-2551.
-
(2009)
Biomaterials
, vol.30
, pp. 2544-2551
-
-
Jin, R.1
Moreira Teixeira, L.S.2
Dijkstra, P.J.3
-
44
-
-
84945442240
-
An overview of injectable polymeric hydrogels for tissue engineering
-
Sivashanmugam A, Arun Kumar R, Vishnu Priya M et al. An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J 2015; 72: 543-565.
-
(2015)
Eur Polym J
, vol.72
, pp. 543-565
-
-
Sivashanmugam, A.1
Arun Kumar, R.2
Vishnu Priya, M.3
-
45
-
-
80054758233
-
Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy
-
Tan H, Li H, Rubin JP et al. Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J Tissue Eng Regen Med 2011; 5: 790-797.
-
(2011)
J Tissue Eng Regen Med
, vol.5
, pp. 790-797
-
-
Tan, H.1
Li, H.2
Rubin, J.P.3
-
46
-
-
63049109223
-
An improved injectable polysaccharide hydrogel: Modified gellan gum for long-term cartilage regeneration in vitro
-
Gong Y, Wang C, Lai RC et al. An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem 2009; 19: 1968-1977.
-
(2009)
J Mater Chem
, vol.19
, pp. 1968-1977
-
-
Gong, Y.1
Wang, C.2
Lai, R.C.3
-
47
-
-
38049048712
-
A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells
-
Wei Y, Hu Y, HaoWet al. A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells. J Orthop Res 2008; 26: 27-33.
-
(2008)
J Orthop Res
, vol.26
, pp. 27-33
-
-
Wei, Y.1
Hu, Y.2
Hao, W.3
-
48
-
-
84936931503
-
Tough biodegradable chitosan-gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering
-
Shen Z-S, Cui X, Hou R-X et al. Tough biodegradable chitosan-gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering. RSC Adv 2015; 5: 55640-55647.
-
(2015)
RSC Adv
, vol.5
, pp. 55640-55647
-
-
Shen, Z.-S.1
Cui, X.2
Hou, R.-X.3
-
49
-
-
43049141936
-
Collagen-coated polylactide microcarriers/chitosan hydrogel composite: Injectable scaffold for cartilage regeneration
-
Hong Y, Gong Y, Gao C et al. Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. J Biomed Mater Res A 2008; 85: 628-637.
-
(2008)
J Biomed Mater Res A
, vol.85
, pp. 628-637
-
-
Hong, Y.1
Gong, Y.2
Gao, C.3
-
50
-
-
84896403229
-
Injectable alginate hydrogels for cell delivery in tissue engineering
-
Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 2014; 10: 1646-1662.
-
(2014)
Acta Biomater
, vol.10
, pp. 1646-1662
-
-
Bidarra, S.J.1
Barrias, C.C.2
Granja, P.L.3
-
51
-
-
84940765292
-
MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction
-
Dorsey SM, McGarvey Jr., Wang H et al. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 2015; 69: 65-75.
-
(2015)
Biomaterials
, vol.69
, pp. 65-75
-
-
Dorsey, S.M.1
McGarvey, J.R.2
Wang, H.3
-
52
-
-
84946944019
-
Heparin-based temperature-sensitive injectable hydrogels for protein delivery
-
Sim HJ, Thambi T, Lee DS. Heparin-based temperature-sensitive injectable hydrogels for protein delivery. J Mater Chem B 2015; 3: 8892-8901.
-
(2015)
J Mater Chem B
, vol.3
, pp. 8892-8901
-
-
Sim, H.J.1
Thambi, T.2
Lee, D.S.3
-
53
-
-
77956621279
-
Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers
-
Wang F, Li Z, Khan M et al. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater 2010; 6: 1978-1991.
-
(2010)
Acta Biomater
, vol.6
, pp. 1978-1991
-
-
Wang, F.1
Li, Z.2
Khan, M.3
-
54
-
-
84887134441
-
Poly(ethylene glycol)-poly(lacticco- glycolic acid) based thermosensitive injectable hydrogels for biomedical applications
-
Alexander A, Ajazuddin, Khan J et al. Poly(ethylene glycol)-poly(lacticco- glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J Control Release 2013; 172: 715-729.
-
(2013)
J Control Release
, vol.172
, pp. 715-729
-
-
Alexander, A.1
Ajazuddin Khan, J.2
-
55
-
-
45849133813
-
Poly(vinyl alcohol) cross-linkers for in vivo injectable hydrogels
-
Ossipov DA, Piskounova S, Hilborn J. Poly(vinyl alcohol) cross-linkers for in vivo injectable hydrogels. Macromolecules 2008; 41: 3971-3982.
-
(2008)
Macromolecules
, vol.41
, pp. 3971-3982
-
-
Ossipov, D.A.1
Piskounova, S.2
Hilborn, J.3
-
57
-
-
84859397983
-
Injectable hydrogels for bone and cartilage repair
-
Amini AA, Nair LS. Injectable hydrogels for bone and cartilage repair. Biomed Mater 2012; 7: 024105.
-
(2012)
Biomed Mater
, vol.7
, pp. 024105
-
-
Amini, A.A.1
Nair, L.S.2
-
58
-
-
84904480212
-
Evaluation of two chemical crosslinking methods of poly(vinyl alcohol) hydrogels for injectable nucleus pulposus replacement
-
Binetti VR, Fussell GW, Lowman AM. Evaluation of two chemical crosslinking methods of poly(vinyl alcohol) hydrogels for injectable nucleus pulposus replacement. J Appl Polym Sci 2014; 131: 40843.
-
(2014)
J Appl Polym Sci
, vol.131
, pp. 40843
-
-
Binetti, V.R.1
Fussell, G.W.2
Lowman, A.M.3
-
59
-
-
77049093185
-
Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering
-
Jin R, Teixeira LS, Dijkstra PJ et al. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 2010; 31: 3103-3113.
-
(2010)
Biomaterials
, vol.31
, pp. 3103-3113
-
-
Jin, R.1
Teixeira, L.S.2
Dijkstra, P.J.3
-
60
-
-
84911435816
-
Thiol-norbornene photoclick hydrogels for tissue engineering applications
-
Lin C-C, Ki CS, Shih H. Thiol-norbornene photoclick hydrogels for tissue engineering applications. J Appl Polym Sci 2015; 132: 41563.
-
(2015)
J Appl Polym Sci
, vol.132
, pp. 41563
-
-
Lin, C.-C.1
Ki, C.S.2
Shih, H.3
-
61
-
-
84863229467
-
Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications
-
Li Y, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012; 41: 2193-2221.
-
(2012)
Chem Soc Rev
, vol.41
, pp. 2193-2221
-
-
Li, Y.1
Rodrigues, J.2
Tomas, H.3
-
62
-
-
84888405143
-
Injectable, biodegradable hydrogels for tissue engineering applications
-
Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials 2010; 3: 1746-1767.
-
(2010)
Materials
, vol.3
, pp. 1746-1767
-
-
Tan, H.1
Marra, K.G.2
-
63
-
-
84874373115
-
Recent progress of in situ formed gels for biomedical applications
-
Ko DY, Shinde UP, Yeon B et al. Recent progress of in situ formed gels for biomedical applications. Prog Polym Sci 2013; 38: 672-701.
-
(2013)
Prog Polym Sci
, vol.38
, pp. 672-701
-
-
Ko, D.Y.1
Shinde, U.P.2
Yeon, B.3
-
64
-
-
84908152887
-
Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery
-
Park H, Woo EK, Lee KY. Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery. J Control Release 2014; 196: 146-153.
-
(2014)
J Control Release
, vol.196
, pp. 146-153
-
-
Park, H.1
Woo, E.K.2
Lee, K.Y.3
-
65
-
-
67849101648
-
PH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: In vitro characteristics and in vivo biocompatibility
-
Chiu YL, Chen SC, Su CJ et al. pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 2009; 30: 4877-4888.
-
(2009)
Biomaterials
, vol.30
, pp. 4877-4888
-
-
Chiu, Y.L.1
Chen, S.C.2
Su, C.J.3
-
66
-
-
78651358116
-
Thermal gelling polyalaninepoloxamine- polyalanine aqueous solution for chondrocytes 3D culture: Initial concentration effect
-
Choi BG, Park MH, Cho S-H et al. Thermal gelling polyalaninepoloxamine- polyalanine aqueous solution for chondrocytes 3D culture: Initial concentration effect. Soft Matter 2011; 7: 456-462.
-
(2011)
Soft Matter
, vol.7
, pp. 456-462
-
-
Choi, B.G.1
Park, M.H.2
Cho, S.-H.3
-
67
-
-
84883774201
-
3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly (L-alanine) diblock copolymer thermogel
-
Yeon B, Park MH, Moon HJ et al. 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly (L-alanine) diblock copolymer thermogel. Biomacromolecules 2013; 14: 3256-3266.
-
(2013)
Biomacromolecules
, vol.14
, pp. 3256-3266
-
-
Yeon, B.1
Park, M.H.2
Moon, H.J.3
-
68
-
-
84858033844
-
Engineered whole organs and complex tissues
-
Badylak SF, Weiss DJ, Caplan A et al. Engineered whole organs and complex tissues. Lancet 2012; 379: 943-952.
-
(2012)
Lancet
, vol.379
, pp. 943-952
-
-
Badylak, S.F.1
Weiss, D.J.2
Caplan, A.3
-
69
-
-
84875265038
-
Extracellular matrix scaffolds for cartilage and bone regeneration
-
Benders KE, van Weeren PR, Badylak SF et al. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 2013; 31: 169-176.
-
(2013)
Trends Biotechnol
, vol.31
, pp. 169-176
-
-
Benders, K.E.1
Van Weeren, P.R.2
Badylak, S.F.3
-
70
-
-
84897503621
-
Extracellular matrix as an inductive scaffold for functional tissue reconstruction
-
Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res 2014; 163: 268-285.
-
(2014)
Transl Res
, vol.163
, pp. 268-285
-
-
Brown, B.N.1
Badylak, S.F.2
-
71
-
-
84990974624
-
Reduced EGFR signaling enhances cartilage destruction in a mouse osteoarthritis model
-
Zhang X, Zhu J, Liu F et al. Reduced EGFR signaling enhances cartilage destruction in a mouse osteoarthritis model. Bone Res 2014; 2: 14015.
-
(2014)
Bone Res
, vol.2
, pp. 14015
-
-
Zhang, X.1
Zhu, J.2
Liu, F.3
-
72
-
-
84940604928
-
Consequences of metabolic and oxidative modifications of cartilage tissue
-
Hardin JA, Cobelli N, Santambrogio L. Consequences of metabolic and oxidative modifications of cartilage tissue. Nat Rev Rheumatol 2015; 11: 521-529.
-
(2015)
Nat Rev Rheumatol
, vol.11
, pp. 521-529
-
-
Hardin, J.A.1
Cobelli, N.2
Santambrogio, L.3
-
73
-
-
80053117718
-
Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid
-
Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 2011; 32: 8771-8782.
-
(2011)
Biomaterials
, vol.32
, pp. 8771-8782
-
-
Kim, I.L.1
Mauck, R.L.2
Burdick, J.A.3
-
75
-
-
77955510045
-
In vitro and in vivo degradation of an injectable bone repair composite
-
Tan R, Feng Q, She Z et al. In vitro and in vivo degradation of an injectable bone repair composite. Polym Degrad Stab 2010; 95: 1736-1742.
-
(2010)
Polym Degrad Stab
, vol.95
, pp. 1736-1742
-
-
Tan, R.1
Feng, Q.2
She, Z.3
-
76
-
-
84946854814
-
Nanomaterials and bone regeneration
-
Gong T, Xie J, Liao J et al. Nanomaterials and bone regeneration. Bone Res 2015; 3: 15029.
-
(2015)
Bone Res
, vol.3
, pp. 15029
-
-
Gong, T.1
Xie, J.2
Liao, J.3
-
77
-
-
84900021043
-
Bone regeneration based on tissue engineering conceptions-A 21st century perspective
-
Henkel J, Woodruff MA, Epari DR et al. Bone regeneration based on tissue engineering conceptions-A 21st century perspective. Bone Res 2013; 1: 216-248.
-
(2013)
Bone Res
, vol.1
, pp. 216-248
-
-
Henkel, J.1
Woodruff, M.A.2
Epari, D.R.3
-
78
-
-
0036403676
-
Mechano-electrochemical properties of articular cartilage: Their inhomogeneities and anisotropies
-
Mow V, Guo X. Mechano-electrochemical properties of articular cartilage: Their inhomogeneities and anisotropies. Annu Rev Biomed Eng 2002; 4: 175-209.
-
(2002)
Annu Rev Biomed Eng
, vol.4
, pp. 175-209
-
-
Mow, V.1
Guo, X.2
-
80
-
-
3242655507
-
Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
-
Svensson A, Nicklasson E, Harrah T et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005; 26: 419-431.
-
(2005)
Biomaterials
, vol.26
, pp. 419-431
-
-
Svensson, A.1
Nicklasson, E.2
Harrah, T.3
-
82
-
-
79955606605
-
Biomimetic materials for bone tissue engineering-state of the art and future trends
-
Cordonnier T, Sohier J, Rosset P et al. Biomimetic materials for bone tissue engineering-state of the art and future trends. Adv Eng Mater 2011; 13: B135-B150.
-
(2011)
Adv Eng Mater
, vol.13
, pp. B135-B150
-
-
Cordonnier, T.1
Sohier, J.2
Rosset, P.3
-
83
-
-
84945342923
-
Bioconjugated hydrogels for tissue engineering and regenerative medicine
-
Ahadian S, Sadeghian RB, Salehi S et al. Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjug Chem 2015; 26: 1984-2001.
-
(2015)
Bioconjug Chem
, vol.26
, pp. 1984-2001
-
-
Ahadian, S.1
Sadeghian, R.B.2
Salehi, S.3
-
84
-
-
35348895886
-
Extracellular matrix regenerated: Tissue engineering via electrospun biomimetic nanofibers
-
Sell S, Barnes C, Smith M et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polym Int 2007; 56: 1349-1360.
-
(2007)
Polym Int
, vol.56
, pp. 1349-1360
-
-
Sell, S.1
Barnes, C.2
Smith, M.3
-
85
-
-
0020456385
-
How does the extracellular matrix direct gene expression?
-
Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol 1982; 99: 31-68.
-
(1982)
J Theor Biol
, vol.99
, pp. 31-68
-
-
Bissell, M.J.1
Hall, H.G.2
Parry, G.3
-
86
-
-
33748967069
-
Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer
-
Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006; 22: 287-309.
-
(2006)
Annu Rev Cell Dev Biol
, vol.22
, pp. 287-309
-
-
Nelson, C.M.1
Bissell, M.J.2
-
87
-
-
84899482304
-
Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties
-
Fathi A, Mithieux SM, Wei H et al. Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties. Biomaterials 2014; 35: 5425-5435.
-
(2014)
Biomaterials
, vol.35
, pp. 5425-5435
-
-
Fathi, A.1
Mithieux, S.M.2
Wei, H.3
-
88
-
-
84855974293
-
An in situ forming collagen- PEG hydrogel for tissue regeneration
-
Sargeant TD, Desai AP, Banerjee S et al. An in situ forming collagen- PEG hydrogel for tissue regeneration. Acta Biomater 2012; 8: 124-132.
-
(2012)
Acta Biomater
, vol.8
, pp. 124-132
-
-
Sargeant, T.D.1
Desai, A.P.2
Banerjee, S.3
-
89
-
-
84921869422
-
Cardiac extracellular matrixfibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering
-
Williams C, Budina E, Stoppel WL et al. Cardiac extracellular matrixfibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater 2015; 14: 84-95.
-
(2015)
Acta Biomater
, vol.14
, pp. 84-95
-
-
Williams, C.1
Budina, E.2
Stoppel, W.L.3
-
90
-
-
85020023728
-
Hyaluronic acid based injectable hydrogels for localized and sustained gene delivery
-
Li Y, Tian H, Chen X. Hyaluronic acid based injectable hydrogels for localized and sustained gene delivery. J Control Release 2015; 213: E140-E141.
-
(2015)
J Control Release
, vol.213
, pp. E140-E141
-
-
Li, Y.1
Tian, H.2
Chen, X.3
-
91
-
-
84893783638
-
Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering
-
Ji X, Yang W, Wang T et al. Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. J Biomed Nanotechnol 2013; 9: 1672-1678.
-
(2013)
J Biomed Nanotechnol
, vol.9
, pp. 1672-1678
-
-
Ji, X.1
Yang, W.2
Wang, T.3
-
92
-
-
60849104777
-
Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering
-
Tan H, Chu CR, Payne KA et al. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009; 30: 2499-2506.
-
(2009)
Biomaterials
, vol.30
, pp. 2499-2506
-
-
Tan, H.1
Chu, C.R.2
Payne, K.A.3
-
93
-
-
20444409137
-
Chitosan: A versatile biopolymer for orthopaedic tissue-engineering
-
Martino AD, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005; 26: 5983-5990.
-
(2005)
Biomaterials
, vol.26
, pp. 5983-5990
-
-
Martino, A.D.1
Sittinger, M.2
Risbud, M.V.3
-
94
-
-
76749159914
-
Chitosan/Sodium tripolyphosphate nanoparticles: Preparation, characterization and application as drug carrier
-
Yang W, Fu J, Wang T et al. Chitosan/Sodium tripolyphosphate nanoparticles: preparation, characterization and application as drug carrier. J Biomed Nanotechnol 2009; 5: 591-595.
-
(2009)
J Biomed Nanotechnol
, vol.5
, pp. 591-595
-
-
Yang, W.1
Fu, J.2
Wang, T.3
-
95
-
-
84946062213
-
Preparation of chitosan-sodium sodium tripolyphosphate nanoparticles via reverse microemulsion-ionic gelation method
-
Hu X, Zhang Z, Wang G et al. Preparation of chitosan-sodium sodium tripolyphosphate nanoparticles via reverse microemulsion-ionic gelation method. J Bionanosci 2015; 9: 301-305.
-
(2015)
J Bionanosci
, vol.9
, pp. 301-305
-
-
Hu, X.1
Zhang, Z.2
Wang, G.3
-
96
-
-
84893016148
-
Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering
-
Naderi-Meshkin H, Andreas K, Matin MM et al. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int 2014; 38: 72-84.
-
(2014)
Cell Biol Int
, vol.38
, pp. 72-84
-
-
Naderi-Meshkin, H.1
Andreas, K.2
Matin, M.M.3
-
97
-
-
77957696874
-
Stimuli-responsive chitosanstarch injectable hydrogels combined with encapsulated adiposederived stromal cells for articular cartilage regeneration
-
S?-Lima H, Caridade SG, Mano JF et al. Stimuli-responsive chitosanstarch injectable hydrogels combined with encapsulated adiposederived stromal cells for articular cartilage regeneration. Soft Matter 2010; 6: 5184-5195.
-
(2010)
Soft Matter
, vol.6
, pp. 5184-5195
-
-
S-Lima, H.1
Caridade, S.G.2
Mano, J.F.3
-
98
-
-
84943551634
-
Thermogelling chitosancollagen- bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering
-
Moreira CD, Carvalho SM, Mansur HS et al. Thermogelling chitosancollagen- bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C Mater Biol Appl 2016; 58: 1207-1216.
-
(2016)
Mater Sci Eng C Mater Biol Appl
, vol.58
, pp. 1207-1216
-
-
Moreira, C.D.1
Carvalho, S.M.2
Mansur, H.S.3
-
99
-
-
43049137348
-
Investigation of PVA/ws-chitosan hydrogels prepared by combined ?-irradiation and freeze-thawing
-
Yang X, Liu Q, Chen X et al. Investigation of PVA/ws-chitosan hydrogels prepared by combined ?-irradiation and freeze-thawing. Carbohydr Polym 2008; 73: 401-408.
-
(2008)
Carbohydr Polym
, vol.73
, pp. 401-408
-
-
Yang, X.1
Liu, Q.2
Chen, X.3
-
100
-
-
84955337768
-
N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications
-
Kamoun EA. N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications. J Adv Res 2016; 7: 69-77.
-
(2016)
J Adv Res
, vol.7
, pp. 69-77
-
-
Kamoun, E.A.1
-
101
-
-
0035912971
-
Biomedical applications of collagen
-
Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001; 221: 1-22.
-
(2001)
Int J Pharm
, vol.221
, pp. 1-22
-
-
Lee, C.H.1
Singla, A.2
Lee, Y.3
-
102
-
-
84928015657
-
Collagen-mimetic peptidemodifiable hydrogels for articular cartilage regeneration
-
Parmar PA, Chow LW, St-Pierre JP et al. Collagen-mimetic peptidemodifiable hydrogels for articular cartilage regeneration. Biomaterials 2015; 54: 213-225.
-
(2015)
Biomaterials
, vol.54
, pp. 213-225
-
-
Parmar, P.A.1
Chow, L.W.2
St-Pierre, J.P.3
-
103
-
-
80053908371
-
A collagen peptide-based physical hydrogel for cell encapsulation
-
P?rez CM, Panitch A, Chmielewski J. A collagen peptide-based physical hydrogel for cell encapsulation. Macromol Biosci 2011; 11: 1426-1431.
-
(2011)
Macromol Biosci
, vol.11
, pp. 1426-1431
-
-
Prez, C.M.1
Panitch, A.2
Chmielewski, J.3
-
104
-
-
26444496551
-
Collagen biosynthesis of mechanically loaded articular cartilage explants
-
Ackermann B, Steinmeyer J. Collagen biosynthesis of mechanically loaded articular cartilage explants. Osteoarthritis Cartilage 2005; 13: 906-914.
-
(2005)
Osteoarthritis Cartilage
, vol.13
, pp. 906-914
-
-
Ackermann, B.1
Steinmeyer, J.2
-
105
-
-
84974628200
-
Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors
-
Yuan L, Li B, Yang J et al. Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors. Tissue Eng Part A 2016; 22: 899-906.
-
(2016)
Tissue Eng Part A
, vol.22
, pp. 899-906
-
-
Yuan, L.1
Li, B.2
Yang, J.3
-
106
-
-
44849139548
-
Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model
-
Funayama A, Niki Y, Matsumoto H et al. Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model. J Orthop Sci 2008; 13: 225-232.
-
(2008)
J Orthop Sci
, vol.13
, pp. 225-232
-
-
Funayama, A.1
Niki, Y.2
Matsumoto, H.3
-
107
-
-
84897453289
-
An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering
-
Kontturi LS, J?rvinen E, Muhonen V et al. An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv Transl Res 2014; 4: 149-158.
-
(2014)
Drug Deliv Transl Res
, vol.4
, pp. 149-158
-
-
Kontturi, L.S.1
Jrvinen, E.2
Muhonen, V.3
-
108
-
-
84906784323
-
Gelatin carriers for drug and cell delivery in tissue engineering
-
Santoro M, Tatara AM, Mikos AG. Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release 2014; 190: 210-218.
-
(2014)
J Control Release
, vol.190
, pp. 210-218
-
-
Santoro, M.1
Tatara, A.M.2
Mikos, A.G.3
-
109
-
-
84930210291
-
Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame
-
Song K, Li L, Li W et al. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Mater Sci Eng C Mater Biol Appl 2015; 55: 384-392.
-
(2015)
Mater Sci Eng C Mater Biol Appl
, vol.55
, pp. 384-392
-
-
Song, K.1
Li, L.2
Li, W.3
-
110
-
-
84923092650
-
Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating
-
Oh BH, Bismarck A, Chan-Park MB. Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating. Macromol Rapid Commun 2015; 36: 364-372.
-
(2015)
Macromol Rapid Commun
, vol.36
, pp. 364-372
-
-
Oh, B.H.1
Bismarck, A.2
Chan-Park, M.B.3
-
111
-
-
84870015704
-
Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)- acrylate for tissue engineering application
-
Geng X, Mo X, Fan L et al. Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)- acrylate for tissue engineering application. J Mater Chem 2012; 22: 25130-25139.
-
(2012)
J Mater Chem
, vol.22
, pp. 25130-25139
-
-
Geng, X.1
Mo, X.2
Fan, L.3
-
113
-
-
84861604651
-
Three-dimensional porous scaffold of hyaluronic acid for cartilage tissue engineering
-
Kim D-D, Kim D-H, Son Y-J. Three-dimensional porous scaffold of hyaluronic acid for cartilage tissue engineering. Stud Mechanobiol Tissue Eng Biomater 2011; 8: 329-349.
-
(2011)
Stud Mechanobiol Tissue Eng Biomater
, vol.8
, pp. 329-349
-
-
Kim, D.-D.1
Kim, D.-H.2
Son, Y.-J.3
-
114
-
-
77955827600
-
Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair
-
Jin R, Moreira Teixeira LS, Krouwels A et al. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 2010; 6: 1968-1977.
-
(2010)
Acta Biomater
, vol.6
, pp. 1968-1977
-
-
Jin, R.1
Moreira Teixeira, L.S.2
Krouwels, A.3
-
115
-
-
0014118432
-
Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids
-
Balazs EA, Watson D, Duff IF et al. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids. Arthritis Rheum 1967; 10: 357-376.
-
(1967)
Arthritis Rheum
, Issue.10
, pp. 357-376
-
-
Balazs, E.A.1
Watson, D.2
Duff, I.F.3
-
117
-
-
84861600904
-
Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review
-
Muzzarelli RA, Greco F, Busilacchi A et al. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a revie W. Carbohydr Polym 2012; 89: 723-739.
-
(2012)
Carbohydr Polym
, vol.89
, pp. 723-739
-
-
Muzzarelli, R.A.1
Greco, F.2
Busilacchi, A.3
-
118
-
-
0141993878
-
Hyaluronan and CD44: Strategic players for cell-matrix interactions during chondrogenesis and matrix assembly
-
Knudson CB. Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today 2003; 69: 174-196.
-
(2003)
Birth Defects Res C Embryo Today
, vol.69
, pp. 174-196
-
-
Knudson, C.B.1
-
119
-
-
79955004401
-
Hyaluronan and mesenchymal stem cells: From germ layer to cartilage and bone
-
Astachov L, Vago R, Aviv M et al. Hyaluronan and mesenchymal stem cells: from germ layer to cartilage and bone. Front Biosci (Landmark Ed) 2011; 16: 261-276.
-
(2011)
Front Biosci (Landmark Ed
, vol.16
, pp. 261-276
-
-
Astachov, L.1
Vago, R.2
Aviv, M.3
-
120
-
-
84891434679
-
An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels-Alder click chemistry
-
Yu F, Cao X, Li Y et al. An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels-Alder "click chemistry". Polym Chem 2014; 5: 1082-1090.
-
(2014)
Polym Chem
, vol.5
, pp. 1082-1090
-
-
Yu, F.1
Cao, X.2
Li, Y.3
-
121
-
-
84870236996
-
Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering
-
Park H, Choi B, Hu J et al. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater 2013; 9: 4779-4786.
-
(2013)
Acta Biomater
, vol.9
, pp. 4779-4786
-
-
Park, H.1
Choi, B.2
Hu, J.3
-
122
-
-
0036968183
-
Hyaluronic acid hydrogel in the treatment of osteoarthritis
-
Barbucci R, Lamponi S, Borzacchiello A et al. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 2002; 23: 4503-4513.
-
(2002)
Biomaterials
, vol.23
, pp. 4503-4513
-
-
Barbucci, R.1
Lamponi, S.2
Borzacchiello, A.3
-
123
-
-
84925426189
-
In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration
-
Palumbo FS, Fiorica C, Di Stefano M et al. In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration. Carbohydr Polym 2015; 122: 408-416.
-
(2015)
Carbohydr Polym
, vol.122
, pp. 408-416
-
-
Palumbo, F.S.1
Fiorica, C.2
Di Stefano, M.3
-
124
-
-
84939783184
-
Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications
-
Domingues RM, Silva M, Gershovich P et al. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem 2015; 26: 1571-1581.
-
(2015)
Bioconjug Chem
, vol.26
, pp. 1571-1581
-
-
Domingues, R.M.1
Silva, M.2
Gershovich, P.3
-
125
-
-
80051550620
-
The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering
-
Zhou H, Xu HH. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 2011; 32: 7503-7513.
-
(2011)
Biomaterials
, vol.32
, pp. 7503-7513
-
-
Zhou, H.1
Xu, H.H.2
-
126
-
-
33748886577
-
Long-term stable fibrin gels for cartilage engineering
-
Eyrich D, Brandl F, Appel B et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials 2007; 28: 55-65.
-
(2007)
Biomaterials
, vol.28
, pp. 55-65
-
-
Eyrich, D.1
Brandl, F.2
Appel, B.3
-
127
-
-
50249172825
-
Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in threedimensional poly(lactic-co-glycolic acid) scaffold
-
Sha'ban M, Yoon SJ, Ko YK et al. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in threedimensional poly(lactic-co-glycolic acid) scaffold. J Biomater Sci Polym Ed 2008; 19: 1219-1237.
-
(2008)
J Biomater Sci Polym Ed
, vol.19
, pp. 1219-1237
-
-
Sha'Ban, M.1
Yoon, S.J.2
Ko, Y.K.3
-
128
-
-
45249084145
-
Fibrin: A versatile scaffold for tissue engineering applications
-
Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 2008; 14: 199-215.
-
(2008)
Tissue Eng Part B Rev
, vol.14
, pp. 199-215
-
-
Ahmed, T.A.1
Dare, E.V.2
Hincke, M.3
-
129
-
-
84900034183
-
A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair
-
Snyder TN, Madhavan K, Intrator M et al. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J Biol Eng 2014; 8: 10.
-
(2014)
J Biol Eng
, vol.8
, pp. 10
-
-
Snyder, T.N.1
Madhavan, K.2
Intrator, M.3
-
130
-
-
73349121271
-
Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration
-
Dare EV, Griffith M, Poitras P et al. Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration. Cells Tissues Organs 2009; 190: 313-325.
-
(2009)
Cells Tissues Organs
, vol.190
, pp. 313-325
-
-
Dare, E.V.1
Griffith, M.2
Poitras, P.3
-
131
-
-
84880317767
-
Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel
-
Choi JW, Choi BH, Park SH et al. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Artif Organs 2013; 37: 648-655.
-
(2013)
Artif Organs
, vol.37
, pp. 648-655
-
-
Choi, J.W.1
Choi, B.H.2
Park, S.H.3
-
132
-
-
84933676605
-
In situ vascularization of injectable fibrin/poly(ethylene glycol) hydrogels by human amniotic fluid-derived stem cells
-
Benavides OM, Brooks AR, Cho SK et al. In situ vascularization of injectable fibrin/poly(ethylene glycol) hydrogels by human amniotic fluid-derived stem cells. J Biomed Mater Res A 2015; 103: 2645-2653.
-
(2015)
J Biomed Mater Res A
, vol.103
, pp. 2645-2653
-
-
Benavides, O.M.1
Brooks, A.R.2
Cho, S.K.3
-
133
-
-
84960865949
-
Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration
-
Almeida HV, Eswaramoorthy R, Cunniffe GM et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Acta Biomater 2016; 36: 55-62.
-
(2016)
Acta Biomater
, vol.36
, pp. 55-62
-
-
Almeida, H.V.1
Eswaramoorthy, R.2
Cunniffe, G.M.3
-
134
-
-
84873182912
-
Assessments of injectable alginate particle-embedded fibrin hydrogels for soft tissue reconstruction
-
Hwang CM, Ay B, Kaplan DL et al. Assessments of injectable alginate particle-embedded fibrin hydrogels for soft tissue reconstruction. Biomed Mater 2013; 8: 014105.
-
(2013)
Biomed Mater
, vol.8
, pp. 014105
-
-
Hwang, C.M.1
Ay, B.2
Kaplan, D.L.3
-
136
-
-
84920735951
-
Antibacterial properties of ZnO/calcium alginate composite and its application in wastewater treatment
-
Zhang F, Li X, He N et al. Antibacterial properties of ZnO/calcium alginate composite and its application in wastewater treatment. J Nanosci Nanotechnol 2015; 15: 3839-3845.
-
(2015)
J Nanosci Nanotechnol
, vol.15
, pp. 3839-3845
-
-
Zhang, F.1
Li, X.2
He, N.3
-
137
-
-
70449659415
-
Shear-reversibly crosslinked alginate hydrogels for tissue engineering
-
Park H, Kang SW, Kim BS et al. Shear-reversibly crosslinked alginate hydrogels for tissue engineering. Macromol Biosci 2009; 9: 895-901.
-
(2009)
Macromol Biosci
, vol.9
, pp. 895-901
-
-
Park, H.1
Kang, S.W.2
Kim, B.S.3
-
138
-
-
84951775551
-
Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside
-
Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev 2016; 96: 54-76.
-
(2016)
Adv Drug Deliv Rev
, vol.96
, pp. 54-76
-
-
Ruvinov, E.1
Cohen, S.2
-
139
-
-
84937633122
-
Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: Phenotypic and immunomodulatory evaluation
-
Follin B, Juhl M, Cohen S et al. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: phenotypic and immunomodulatory evaluation. Cytotherapy 2015; 17: 1104-1118.
-
(2015)
Cytotherapy
, vol.17
, pp. 1104-1118
-
-
Follin, B.1
Juhl, M.2
Cohen, S.3
-
140
-
-
84903693324
-
Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration
-
Balakrishnan B, Joshi N, Jayakrishnan A et al. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater 2014; 10: 3650-3663.
-
(2014)
Acta Biomater
, vol.10
, pp. 3650-3663
-
-
Balakrishnan, B.1
Joshi, N.2
Jayakrishnan, A.3
-
141
-
-
70249143635
-
Injectable biomaterials for regenerating complex craniofacial tissues
-
Kretlow JD, Young S, Klouda L et al. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater 2009; 21: 3368-3393.
-
(2009)
Adv Mater
, vol.21
, pp. 3368-3393
-
-
Kretlow, J.D.1
Young, S.2
Klouda, L.3
-
142
-
-
77953959594
-
An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering
-
Zhao L, Weir MD, Xu HH. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 2010; 31: 6502-6510.
-
(2010)
Biomaterials
, vol.31
, pp. 6502-6510
-
-
Zhao, L.1
Weir, M.D.2
Xu, H.H.3
-
143
-
-
84911807743
-
Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels
-
Park H, Lee KY. Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res A 2014; 102: 4519-4525.
-
(2014)
J Biomed Mater Res A
, vol.102
, pp. 4519-4525
-
-
Park, H.1
Lee, K.Y.2
-
144
-
-
84920929364
-
Injectable alginate-Ocarboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering
-
Jaikumar D, Sajesh KM, Soumya S et al. Injectable alginate-Ocarboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol 2015; 74: 318-326.
-
(2015)
Int J Biol Macromol
, vol.74
, pp. 318-326
-
-
Jaikumar, D.1
Sajesh, K.M.2
Soumya, S.3
-
145
-
-
0022322564
-
Structure and biological activity of heparin
-
Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem 1985; 43: 51-134.
-
(1985)
Adv Carbohydr Chem Biochem
, vol.43
, pp. 51-134
-
-
Casu, B.1
-
146
-
-
34347348304
-
Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules
-
Tae G, Kim Y-J, Choi W-I et al. Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules. Biomacromolecules 2007; 8: 1979-1986.
-
(2007)
Biomacromolecules
, vol.8
, pp. 1979-1986
-
-
Tae, G.1
Kim, Y.-J.2
Choi, W.-I.3
-
147
-
-
84896394738
-
Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications
-
Liang Y, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 2014; 10: 1588-1600.
-
(2014)
Acta Biomater
, vol.10
, pp. 1588-1600
-
-
Liang, Y.1
Kiick, K.L.2
-
148
-
-
0037457893
-
Rational design of low-molecular weight heparins with improved in vivo activity
-
Sundaram M, Qi Y, Shriver Z et al. Rational design of low-molecular weight heparins with improved in vivo activity. Proc Natl Acad Sci USA 2003; 100: 651-656.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 651-656
-
-
Sundaram, M.1
Qi, Y.2
Shriver, Z.3
-
149
-
-
84867447725
-
Growth factor binding on heparin mimetic peptide nanofibers
-
Mammadov R, Mammadov B, Guler MO et al. Growth factor binding on heparin mimetic peptide nanofibers. Biomacromolecules 2012; 13: 3311-3319.
-
(2012)
Biomacromolecules
, vol.13
, pp. 3311-3319
-
-
Mammadov, R.1
Mammadov, B.2
Guler, M.O.3
-
150
-
-
78650356386
-
Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures
-
Guillame-Gentil O, Semenov O, Roca AS et al. Engineering the extracellular environment: strategies for building 2D and 3D cellular structures. Adv Mater 2010; 22: 5443-5462.
-
(2010)
Adv Mater
, vol.22
, pp. 5443-5462
-
-
Guillame-Gentil, O.1
Semenov, O.2
Roca, A.S.3
-
151
-
-
79956074523
-
Biomaterials that regulate growth factor activity via bioinspired interactions
-
Hudalla GA, Murphy WL. Biomaterials that regulate growth factor activity via bioinspired interactions. Adv Funct Mater 2011; 21: 1754-1768.
-
(2011)
Adv Funct Mater
, vol.21
, pp. 1754-1768
-
-
Hudalla, G.A.1
Murphy, W.L.2
-
152
-
-
84896542800
-
Novel mineralized heparin-gelatin nanoparticles for potential application in tissue engineering of bone
-
Yang Y, Tang H, Kowitsch A et al. Novel mineralized heparin-gelatin nanoparticles for potential application in tissue engineering of bone. J Mater Sci Mater Med 2014; 25: 669-680.
-
(2014)
J Mater Sci Mater Med
, vol.25
, pp. 669-680
-
-
Yang, Y.1
Tang, H.2
Kowitsch, A.3
-
153
-
-
60549107772
-
Tetronic-oligolactide-heparin hydrogel as a multi-functional scaffold for tissue regeneration
-
Go DH, Joung YK, Lee SY et al. Tetronic-oligolactide-heparin hydrogel as a multi-functional scaffold for tissue regeneration. Macromol Biosci 2008; 8: 1152-1160.
-
(2008)
Macromol Biosci
, vol.8
, pp. 1152-1160
-
-
Go, D.H.1
Joung, Y.K.2
Lee, S.Y.3
-
154
-
-
84877329179
-
Fabrication and characterization of heparin-grafted poly-l-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket
-
Wang T, Ji X, Jin L et al. Fabrication and characterization of heparin-grafted poly-l-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket. ACS Appl Mater Interfaces 2013; 5: 3757-3763.
-
(2013)
ACS Appl Mater Interfaces
, vol.5
, pp. 3757-3763
-
-
Wang, T.1
Ji, X.2
Jin, L.3
-
155
-
-
33745942706
-
Controlled release of fibroblast growth factor-2 from an injectable 6-O-desulfated heparin hydrogel and subsequent effect on in vivo vascularization
-
Nakamura S, Ishihara M, Obara K et al. Controlled release of fibroblast growth factor-2 from an injectable 6-O-desulfated heparin hydrogel and subsequent effect on in vivo vascularization. J Biomed Mater Res A 2006; 78: 364-371.
-
(2006)
J Biomed Mater Res A
, vol.78
, pp. 364-371
-
-
Nakamura, S.1
Ishihara, M.2
Obara, K.3
-
156
-
-
33846419133
-
Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model
-
Fujita M, Ishihara M, Shimizu M et al. Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Wound Repair Regen 2007; 15: 58-65.
-
(2007)
Wound Repair Regen
, vol.15
, pp. 58-65
-
-
Fujita, M.1
Ishihara, M.2
Shimizu, M.3
-
157
-
-
78049437288
-
Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-epsilon-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel
-
Lee J, ChoiWI, Tae G et al. Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-epsilon-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Acta Biomater 2011; 7: 244-257.
-
(2011)
Acta Biomater
, vol.7
, pp. 244-257
-
-
Lee, J.1
Choiwi Tae, G.2
-
158
-
-
80051823590
-
The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects
-
Kim M, Kim SE, Kang SS et al. The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects. Biomaterials 2011; 32: 7883-7896.
-
(2011)
Biomaterials
, vol.32
, pp. 7883-7896
-
-
Kim, M.1
Kim, S.E.2
Kang, S.S.3
-
159
-
-
79958087795
-
Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels
-
Jin R, Moreira Teixeira LS, Dijkstra PJ et al. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release 2011; 152: 186-195.
-
(2011)
J Control Release
, vol.152
, pp. 186-195
-
-
Jin, R.1
Moreira Teixeira, L.S.2
Dijkstra, P.J.3
-
160
-
-
84865021298
-
Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects
-
Kim M, Hong B, Lee J et al. Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules 2012; 13: 2287-2298.
-
(2012)
Biomacromolecules
, vol.13
, pp. 2287-2298
-
-
Kim, M.1
Hong, B.2
Lee, J.3
-
161
-
-
73249140159
-
Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2
-
Annabi N, Mithieux SM, Weiss AS et al. Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. Biomaterials 2010; 31: 1655-1665.
-
(2010)
Biomaterials
, vol.31
, pp. 1655-1665
-
-
Annabi, N.1
Mithieux, S.M.2
Weiss, A.S.3
-
162
-
-
84930012585
-
Elastin-based biomaterials and mesenchymal stem cells
-
Ozsvar J, Mithieux SM, Wang R et al. Elastin-based biomaterials and mesenchymal stem cells. Biomater Sci 2015; 3: 800-809.
-
(2015)
Biomater Sci
, vol.3
, pp. 800-809
-
-
Ozsvar, J.1
Mithieux, S.M.2
Wang, R.3
-
163
-
-
78650276410
-
The effect of elastin on chondrocyte adhesion and proliferation on poly (varepsilon-caprolactone)/elastin composites
-
Annabi N, Fathi A, Mithieux SM et al. The effect of elastin on chondrocyte adhesion and proliferation on poly (varepsilon-caprolactone)/elastin composites. Biomaterials 2011; 32: 1517-1525.
-
(2011)
Biomaterials
, vol.32
, pp. 1517-1525
-
-
Annabi, N.1
Fathi, A.2
Mithieux, S.M.3
-
164
-
-
0029921188
-
CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes
-
Knutson Jr., Iida J, Fields GB et al. CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell 1996; 7: 383-396.
-
(1996)
Mol Biol Cell
, vol.7
, pp. 383-396
-
-
Knutson, J.R.1
Iida, J.2
Fields, G.B.3
-
165
-
-
34247863703
-
Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration
-
Wang DA, Varghese S, Sharma B et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater 2007; 6: 385-392.
-
(2007)
Nat Mater
, vol.6
, pp. 385-392
-
-
Wang, D.A.1
Varghese, S.2
Sharma, B.3
-
166
-
-
84903737357
-
Study of different delivery modes of chondroitin sulfate using microspheres and cryogel scaffold for application in cartilage tissue engineering
-
Dwivedi P, Bhat S, Nayak V et al. Study of different delivery modes of chondroitin sulfate using microspheres and cryogel scaffold for application in cartilage tissue engineering. Int J Polym Mater Po 2014; 63: 859-872.
-
(2014)
Int J Polym Mater Po
, vol.63
, pp. 859-872
-
-
Dwivedi, P.1
Bhat, S.2
Nayak, V.3
-
167
-
-
79952588296
-
Development and physicochemical evaluation of chondroitin sulfate-poly(ethylene oxide) hydrogel
-
Jo S, Kim D, Woo J et al. Development and physicochemical evaluation of chondroitin sulfate-poly(ethylene oxide) hydrogel. Macromol Res 2011; 19: 147-155.
-
(2011)
Macromol Res
, vol.19
, pp. 147-155
-
-
Jo, S.1
Kim, D.2
Woo, J.3
-
168
-
-
75149189930
-
A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel
-
Strehin I, Nahas Z, Arora K et al. A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 2010; 31: 2788-2797.
-
(2010)
Biomaterials
, vol.31
, pp. 2788-2797
-
-
Strehin, I.1
Nahas, Z.2
Arora, K.3
-
169
-
-
84867232593
-
Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction
-
Jo S, Kim S, Noh I. Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromol Res 2012; 20: 968-976.
-
(2012)
Macromol Res
, vol.20
, pp. 968-976
-
-
Jo, S.1
Kim, S.2
Noh, I.3
-
170
-
-
84929179994
-
Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering
-
Liao J, Qu Y, Chu B et al. Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci Rep 2015; 5: 9879.
-
(2015)
Sci Rep
, vol.5
, pp. 9879
-
-
Liao, J.1
Qu, Y.2
Chu, B.3
-
171
-
-
78951478099
-
Preparation of collagen-chondroitin sulfatehyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro
-
Zhang L, Li K, XiaoWet al. Preparation of collagen-chondroitin sulfatehyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym 2011; 84: 118-125.
-
(2011)
Carbohydr Polym
, vol.84
, pp. 118-125
-
-
Zhang, L.1
Li, K.2
Xiao, W.3
-
172
-
-
84876282906
-
Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering
-
Wiltsey C, Kubinski P, Christiani T et al. Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering. J Mater Sci Mater Med 2013; 24: 837-847.
-
(2013)
J Mater Sci Mater Med
, vol.24
, pp. 837-847
-
-
Wiltsey, C.1
Kubinski, P.2
Christiani, T.3
-
173
-
-
84956485436
-
An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering
-
Chen F, Yu S, Liu B et al. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci Rep 2016; 6: 20014.
-
(2016)
Sci Rep
, vol.6
, pp. 20014
-
-
Chen, F.1
Yu, S.2
Liu, B.3
-
174
-
-
84973596565
-
Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization
-
Fan J, He Q, Liu Y et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization. ACS Appl Mater Interfaces 2016; 8: 13804-13811.
-
(2016)
ACS Appl Mater Interfaces
, vol.8
, pp. 13804-13811
-
-
Fan, J.1
He, Q.2
Liu, Y.3
-
175
-
-
84956698217
-
Preparation of porous core-shell poly l-lactic acid/polyethylene glycol superfine fibres containing drug
-
Yang W, He N, Fu J et al. Preparation of porous core-shell poly l-lactic acid/polyethylene glycol superfine fibres containing drug. J Nanosci Nanotechnol 2015; 15: 9911-9917.
-
(2015)
J Nanosci Nanotechnol
, vol.15
, pp. 9911-9917
-
-
Yang, W.1
He, N.2
Fu, J.3
-
176
-
-
84904878606
-
Methoxy poly(ethylene glycol) conjugated doxorubicin micelles for effective killing of cancer cells
-
Zhang L, Xia K, Deng Y et al. Methoxy poly(ethylene glycol) conjugated doxorubicin micelles for effective killing of cancer cells. J Nanosci Nanotechnol 2014; 14: 6458-6460.
-
(2014)
J Nanosci Nanotechnol
, vol.14
, pp. 6458-6460
-
-
Zhang, L.1
Xia, K.2
Deng, Y.3
-
177
-
-
84876559330
-
PEGylated denatured bovine serum albumin modified water-soluble inorganic nanocrystals as multifunctional drug delivery platforms
-
Zhang L, Lu Z, Bai Y et al. PEGylated denatured bovine serum albumin modified water-soluble inorganic nanocrystals as multifunctional drug delivery platforms. J Mater Chem B 2013; 1: 1289.
-
(2013)
J Mater Chem B
, vol.1
, pp. 1289
-
-
Zhang, L.1
Lu, Z.2
Bai, Y.3
-
178
-
-
84916623347
-
Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering
-
Yan S, Wang T, Feng L et al. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules 2014; 15: 4495-4508.
-
(2014)
Biomacromolecules
, vol.15
, pp. 4495-4508
-
-
Yan, S.1
Wang, T.2
Feng, L.3
-
179
-
-
84983455421
-
Rapamycin release study of porous poly(L-lactic acid) scaffolds, prepared via coaxial electrospinning
-
Yang W, He N, Li Z. Rapamycin release study of porous poly(L-lactic acid) scaffolds, prepared via coaxial electrospinning. J Nanosci Nanotechnol 2016; 16: 9404-9412.
-
(2016)
J Nanosci Nanotechnol
, vol.16
, pp. 9404-9412
-
-
Yang, W.1
He, N.2
Li, Z.3
-
180
-
-
77949916808
-
Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage
-
Bonakdar S, Emami SH, Shokrgozar MA et al. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mat Sci Eng C 2010; 30: 636-643.
-
(2010)
Mat Sci Eng C
, vol.30
, pp. 636-643
-
-
Bonakdar, S.1
Emami, S.H.2
Shokrgozar, M.A.3
-
181
-
-
84903492070
-
Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial
-
Kallukalam BC, Jayabalan M, Sankar V. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial. Biomed Mater 2009; 4: 015002.
-
(2009)
Biomed Mater
, vol.4
, pp. 015002
-
-
Kallukalam, B.C.1
Jayabalan, M.2
Sankar, V.3
-
182
-
-
67349101289
-
Preparation and characterization of a novel injectable in situ cross-linked hydrogel
-
Sun S, Cao H, Su H et al. Preparation and characterization of a novel injectable in situ cross-linked hydrogel. Polym Bull 2009; 62: 699-711.
-
(2009)
Polym Bull
, vol.62
, pp. 699-711
-
-
Sun, S.1
Cao, H.2
Su, H.3
-
183
-
-
84912571281
-
Polyethylene glycol (PEG)-poly (N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications
-
Alexander A, Ajazuddin, Khan J et al. Polyethylene glycol (PEG)-poly (N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur J Pharm Biopharm 2014; 88: 575-585.
-
(2014)
Eur J Pharm Biopharm
, vol.88
, pp. 575-585
-
-
Alexander, A.1
Ajazuddin Khan, J.2
-
184
-
-
84910091974
-
Thermo-responsive injectable MPEGpolyester diblock copolymers for sustained drug release
-
Hyun H, Park S, Kwon D et al. Thermo-responsive injectable MPEGpolyester diblock copolymers for sustained drug release. Polymers 2014; 6: 2670-2683.
-
(2014)
Polymers
, vol.6
, pp. 2670-2683
-
-
Hyun, H.1
Park, S.2
Kwon, D.3
-
185
-
-
84880143294
-
Injectable in situ-forming hydrogel for cartilage tissue engineering
-
Kwon JS, Yoon SM, Kwon DY et al. Injectable in situ-forming hydrogel for cartilage tissue engineering. J Mater Chem B 2013; 1: 3314-3321.
-
(2013)
J Mater Chem B
, vol.1
, pp. 3314-3321
-
-
Kwon, J.S.1
Yoon, S.M.2
Kwon, D.Y.3
-
186
-
-
84961362493
-
Injectable in situ forming poly(L-glutamic acid) hydrogels for cartilage tissue engineering
-
Yan S, Zhang X, Zhang K et al. Injectable in situ forming poly(L-glutamic acid) hydrogels for cartilage tissue engineering. J Mater Chem B 2016; 4: 947-961.
-
(2016)
J Mater Chem B
, vol.4
, pp. 947-961
-
-
Yan, S.1
Zhang, X.2
Zhang, K.3
-
187
-
-
84923072586
-
An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering
-
Skaalure SC, Chu S, Bryant SJ. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering. Adv Healthc Mater 2015; 4: 420-431.
-
(2015)
Adv Healthc Mater
, vol.4
, pp. 420-431
-
-
Skaalure, S.C.1
Chu, S.2
Bryant, S.J.3
-
188
-
-
84957836995
-
Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking
-
De France KJ, Chan KJ, Cranston ED et al. Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 2016; 17: 649-660.
-
(2016)
Biomacromolecules
, vol.17
, pp. 649-660
-
-
De France, K.J.1
Chan, K.J.2
Cranston, E.D.3
-
189
-
-
84905020363
-
Diels-Alder crosslinked HA/PEG hydrogels with high elasticity and fatigue resistance for cell encapsulation and articular cartilage tissue repair
-
Yu F, Cao X, Li Y et al. Diels-Alder crosslinked HA/PEG hydrogels with high elasticity and fatigue resistance for cell encapsulation and articular cartilage tissue repair. Polym Chem 2014; 5: 5116-5123.
-
(2014)
Polym Chem
, vol.5
, pp. 5116-5123
-
-
Yu, F.1
Cao, X.2
Li, Y.3
-
190
-
-
84963621662
-
Thermosensitive injectable in situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture
-
Liu H, Liu J, Qi C et al. Thermosensitive injectable in situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater 2016; 35: 228-237.
-
(2016)
Acta Biomater
, vol.35
, pp. 228-237
-
-
Liu, H.1
Liu, J.2
Qi, C.3
-
191
-
-
67049162753
-
Injectable in situ-forming pH/thermosensitive hydrogel for bone tissue engineering
-
Kim HK, Shim WS, Kim SE et al. Injectable in situ-forming pH/thermosensitive hydrogel for bone tissue engineering. Tissue Eng Part A 2009; 15: 923-933.
-
(2009)
Tissue Eng Part A
, vol.15
, pp. 923-933
-
-
Kim, H.K.1
Shim, W.S.2
Kim, S.E.3
-
192
-
-
84870253512
-
Hydrogels for biomedical applications
-
Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64: 18-23.
-
(2012)
Adv Drug Deliv Rev
, vol.64
, pp. 18-23
-
-
Hoffman, A.S.1
-
193
-
-
84910602067
-
In situ-forming injectable hydrogels for regenerative medicine
-
Yang J-A, Yeom J, Hwang BW et al. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 2014; 39: 1973-1986.
-
(2014)
Prog Polym Sci
, vol.39
, pp. 1973-1986
-
-
Yang, J.-A.1
Yeom, J.2
Hwang, B.W.3
-
194
-
-
84878878788
-
Biodegradable polymers exhibiting temperature-responsive sol-gel transition as injectable biomedical materials
-
Nagahama K, Takahashi A, Ohya Y. Biodegradable polymers exhibiting temperature-responsive sol-gel transition as injectable biomedical materials. React Funct Polym 2013; 73: 979-985.
-
(2013)
React Funct Polym
, vol.73
, pp. 979-985
-
-
Nagahama, K.1
Takahashi, A.2
Ohya, Y.3
-
195
-
-
84958162914
-
Stimuli-responsive hydrogels in drug delivery and tissue engineering
-
Sood N, Bhardwaj A, Mehta S et al. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv 2016; 23: 758-780.
-
(2016)
Drug Deliv
, vol.23
, pp. 758-780
-
-
Sood, N.1
Bhardwaj, A.2
Mehta, S.3
-
196
-
-
80053557369
-
Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: Preparation, characterization and hydrogel behavior
-
Yu R, Zheng S. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior. J Biomater Sci Polym Ed 2011; 22: 2305-2324.
-
(2011)
J Biomater Sci Polym Ed
, vol.22
, pp. 2305-2324
-
-
Yu, R.1
Zheng, S.2
-
197
-
-
84964514069
-
Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering
-
Ashraf S, Park H-K, Park H et al. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: role in drug delivery and tissue engineering. Macromol Res 2016; 24: 297-304.
-
(2016)
Macromol Res
, vol.24
, pp. 297-304
-
-
Ashraf, S.1
Park, H.-K.2
Park, H.3
-
198
-
-
34249329921
-
Thermosensitive hydrogel PEG-PLGAPEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound
-
Lee PY, Cobain E, Huard J et al. Thermosensitive hydrogel PEG-PLGAPEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound. Mol Ther 2007; 15: 1189-1194.
-
(2007)
Mol Ther
, vol.15
, pp. 1189-1194
-
-
Lee, P.Y.1
Cobain, E.2
Huard, J.3
-
199
-
-
84939620313
-
In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering
-
Vo TN, Ekenseair AK, Spicer PP et al. In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. J Control Release 2015; 205: 25-34.
-
(2015)
J Control Release
, vol.205
, pp. 25-34
-
-
Vo, T.N.1
Ekenseair, A.K.2
Spicer, P.P.3
-
200
-
-
84864024082
-
Supporting biomaterials for articular cartilage repair
-
Duarte Campos DF, Drescher W, Rath B et al. Supporting biomaterials for articular cartilage repair. Cartilage 2012; 3: 205-221.
-
(2012)
Cartilage
, vol.3
, pp. 205-221
-
-
Duarte Campos, D.F.1
Drescher, W.2
Rath, B.3
-
201
-
-
84941098822
-
Synthesis and characterization of temperature-sensitive hydrogels
-
Hu X, Cheng W, Shao Z et al. Synthesis and characterization of temperature-sensitive hydrogels. E-Polymers 2015; 15: 353-360.
-
(2015)
E-Polymers
, vol.15
, pp. 353-360
-
-
Hu, X.1
Cheng, W.2
Shao, Z.3
-
202
-
-
79952189109
-
Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation
-
Klouda L, Perkins KR, Watson BM et al. Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater 2011; 7: 1460-1467.
-
(2011)
Acta Biomater
, vol.7
, pp. 1460-1467
-
-
Klouda, L.1
Perkins, K.R.2
Watson, B.M.3
-
203
-
-
84900389947
-
Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering
-
Watson BM, Kasper FK, Engel PS et al. Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering. Biomacromolecules 2014; 15: 1788-1796.
-
(2014)
Biomacromolecules
, vol.15
, pp. 1788-1796
-
-
Watson, B.M.1
Kasper, F.K.2
Engel, P.S.3
-
204
-
-
84940912075
-
Effective bone regeneration using thermosensitive poly(N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells
-
Ren Z, Wang Y, Ma S et al. Effective bone regeneration using thermosensitive poly(N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells. ACS Appl Mater Interfaces 2015; 7: 19006-19015.
-
(2015)
ACS Appl Mater Interfaces
, vol.7
, pp. 19006-19015
-
-
Ren, Z.1
Wang, Y.2
Ma, S.3
-
205
-
-
81255187755
-
Thermo-sensitive alginate-based injectable hydrogel for tissue engineering
-
Tan R, She Z, Wang M et al. Thermo-sensitive alginate-based injectable hydrogel for tissue engineering. Carbohyd Polym 2012; 87: 1515-1521.
-
(2012)
Carbohyd Polym
, vol.87
, pp. 1515-1521
-
-
Tan, R.1
She, Z.2
Wang, M.3
-
206
-
-
84954482482
-
A novel pH-sensitive ceramichydrogel for biomedical applications
-
Lima GGD, Campos L, Junqueira A et al. A novel pH-sensitive ceramichydrogel for biomedical applications. Polym Advan Technol 2015; 26: 1439-1446.
-
(2015)
Polym Advan Technol
, vol.26
, pp. 1439-1446
-
-
Ggd, L.1
Campos, L.2
Junqueira, A.3
-
207
-
-
84863230652
-
Synthesis, characteristics and potential application of poly(beta-amino ester urethane)-based multiblock co-polymers as an injectable, biodegradable and ph/temperature-sensitive hydrogel system
-
Huynh CT, Nguyen MK, Jeong IK et al. Synthesis, characteristics and potential application of poly(beta-amino ester urethane)-based multiblock co-polymers as an injectable, biodegradable and ph/temperature-sensitive hydrogel system. J Biomater Sci Polym Ed 2012; 23: 1091-1106.
-
(2012)
J Biomater Sci Polym Ed
, vol.23
, pp. 1091-1106
-
-
Huynh, C.T.1
Nguyen, M.K.2
Jeong, I.K.3
-
208
-
-
28844483415
-
Novel injectable pH and temperature sensitive block copolymer hydrogel
-
Shim WS, Yoo JS, Bae YH et al. Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules 2005; 6: 2930-2934.
-
(2005)
Biomacromolecules
, vol.6
, pp. 2930-2934
-
-
Shim, W.S.1
Yoo, J.S.2
Bae, Y.H.3
-
209
-
-
33746079628
-
Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamidemodified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)- poly(epsilon-caprolactone-co-lactide) block copolymer
-
Shim WS, Kim JH, Park H et al. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamidemodified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)- poly(epsilon-caprolactone-co-lactide) block copolymer. Biomaterials 2006; 27: 5178-5185.
-
(2006)
Biomaterials
, vol.27
, pp. 5178-5185
-
-
Shim, W.S.1
Kim, J.H.2
Park, H.3
-
210
-
-
41149139932
-
An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate
-
Lee F, Chung JE, Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 2008; 4: 880-887.
-
(2008)
Soft Matter
, vol.4
, pp. 880-887
-
-
Lee, F.1
Chung, J.E.2
Kurisawa, M.3
-
211
-
-
77953857299
-
Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering
-
Kurisawa M, Lee F, Wang L-S et al. Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering. J Mater Chem 2010; 20: 5371-5375.
-
(2010)
J Mater Chem
, vol.20
, pp. 5371-5375
-
-
Kurisawa, M.1
Lee, F.2
Wang, L.-S.3
-
212
-
-
84867541371
-
In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzymemediated reaction for enhancement of endothelial cell activity and neo-vascularization
-
Park KM, Lee Y, Son JY et al. In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzymemediated reaction for enhancement of endothelial cell activity and neo-vascularization. Bioconjug Chem 2012; 23: 2042-2050.
-
(2012)
Bioconjug Chem
, vol.23
, pp. 2042-2050
-
-
Park, K.M.1
Lee, Y.2
Son, J.Y.3
-
213
-
-
84944209612
-
Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix
-
Kuo KC, Lin RZ, Tien HW et al. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomater 2015; 27: 151-166.
-
(2015)
Acta Biomater
, vol.27
, pp. 151-166
-
-
Kuo, K.C.1
Lin, R.Z.2
Tien, H.W.3
-
214
-
-
84890467740
-
Enzyme-mediated fast injectable hydrogels based on chitosan-glycolic acid/tyrosine: Preparation, characterization, and chondrocyte culture
-
Jin R, Lin C, Cao A. Enzyme-mediated fast injectable hydrogels based on chitosan-glycolic acid/tyrosine: Preparation, characterization, and chondrocyte culture. Polym Chem 2014; 5: 391-398.
-
(2014)
Polym Chem
, vol.5
, pp. 391-398
-
-
Jin, R.1
Lin, C.2
Cao, A.3
-
215
-
-
83355177973
-
Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering
-
Teixeira LS, Feijen J, van Blitterswijk CA et al. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 2012; 33: 1281-1290.
-
(2012)
Biomaterials
, vol.33
, pp. 1281-1290
-
-
Teixeira, L.S.1
Feijen, J.2
Van Blitterswijk, C.A.3
-
217
-
-
84856569253
-
Self-attaching and cellattracting in situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair
-
Moreira Teixeira LS, Bijl S, Pully VV et al. Self-attaching and cellattracting in situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials 2012; 33: 3164-3174.
-
(2012)
Biomaterials
, vol.33
, pp. 3164-3174
-
-
Moreira Teixeira, L.S.1
Bijl, S.2
Pully, V.V.3
-
218
-
-
84934343185
-
Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel
-
Gohil SV, Brittain SB, Kan H-M et al. Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel. J Mater Chem B 2015; 3: 5511-5522.
-
(2015)
J Mater Chem B
, vol.3
, pp. 5511-5522
-
-
Gohil, S.V.1
Brittain, S.B.2
Kan, H.-M.3
-
219
-
-
30544454226
-
Active site structure and catalytic mechanisms of human peroxidases
-
Furtmuller PG, Zederbauer M, Jantschko W et al. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2006; 445: 199-213.
-
(2006)
Arch Biochem Biophys
, vol.445
, pp. 199-213
-
-
Furtmuller, P.G.1
Zederbauer, M.2
Jantschko, W.3
-
220
-
-
84924565790
-
Enzymatically crosslinked alginate hydrogels with improved adhesion properties
-
Hou J, Li C, Guan Y et al. Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polym Chem 2015; 6: 2204-2213.
-
(2015)
Polym Chem
, vol.6
, pp. 2204-2213
-
-
Hou, J.1
Li, C.2
Guan, Y.3
-
221
-
-
84891372388
-
Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties
-
Wang LS, Du C, Toh WS et al. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials 2014; 35: 2207-2217.
-
(2014)
Biomaterials
, vol.35
, pp. 2207-2217
-
-
Wang, L.S.1
Du, C.2
Toh, W.S.3
-
222
-
-
77956078310
-
Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering
-
Jin R, Moreira Teixeira LS, Dijkstra PJ et al. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng Part A 2010; 16: 2429-2440.
-
(2010)
Tissue Eng Part A
, vol.16
, pp. 2429-2440
-
-
Jin, R.1
Moreira Teixeira, L.S.2
Dijkstra, P.J.3
-
223
-
-
80051495774
-
Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules
-
Zhang Y, Tao L, Li S et al. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules 2011; 12: 2894-2901.
-
(2011)
Biomacromolecules
, vol.12
, pp. 2894-2901
-
-
Zhang, Y.1
Tao, L.2
Li, S.3
-
224
-
-
84867347142
-
Schiff's base as a stimuli-responsive linker in polymer chemistry
-
Xin Y, Yuan J. Schiff's base as a stimuli-responsive linker in polymer chemistry. Polym Chem 2012; 3: 3045-3055.
-
(2012)
Polym Chem
, vol.3
, pp. 3045-3055
-
-
Xin, Y.1
Yuan, J.2
-
225
-
-
84946615941
-
Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing
-
Li Z, Yuan B, Dong X et al. Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing. RSC Adv 2015; 5: 94248-94256.
-
(2015)
RSC Adv
, vol.5
, pp. 94248-94256
-
-
Li, Z.1
Yuan, B.2
Dong, X.3
-
226
-
-
84922874985
-
Molecular assembly of Schiff Base interactions: Construction and application
-
Jia Y, Li J. Molecular assembly of Schiff Base interactions: construction and application. Chem Rev 2015; 115: 1597-1621.
-
(2015)
Chem Rev
, vol.115
, pp. 1597-1621
-
-
Jia, Y.1
Li, J.2
-
227
-
-
84876475652
-
Covalently crosslinked hyaluronic acidchitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering
-
Sun J, Xiao C, Tan H et al. Covalently crosslinked hyaluronic acidchitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering. J Appl Polym Sci 2013; 129: 682-688.
-
(2013)
J Appl Polym Sci
, vol.129
, pp. 682-688
-
-
Sun, J.1
Xiao, C.2
Tan, H.3
-
228
-
-
84946827982
-
Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties
-
Li L, Ge J, Ma PX et al. Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties. RSC Adv 2015; 5: 92490-92498.
-
(2015)
RSC Adv
, vol.5
, pp. 92490-92498
-
-
Li, L.1
Ge, J.2
Ma, P.X.3
-
229
-
-
84888329127
-
In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering
-
Cheng Y, Nada AA, Valmikinathan CM et al. In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering. J Appl Polym Sci 2014; 131: 39934.
-
(2014)
J Appl Polym Sci
, vol.131
, pp. 39934
-
-
Cheng, Y.1
Nada, A.A.2
Valmikinathan, C.M.3
-
230
-
-
84929463675
-
An injectable hydrogel formed by in situ crosslinking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering
-
Cao L, Cao B, Lu C et al. An injectable hydrogel formed by in situ crosslinking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B 2015; 3: 1268-1280.
-
(2015)
J Mater Chem B
, vol.3
, pp. 1268-1280
-
-
Cao, L.1
Cao, B.2
Lu, C.3
-
231
-
-
84960893472
-
Biodegradable and injectable polymerliposome hydrogel: A promising cell carrier
-
Ma Y-H, Yang J, Li B et al. Biodegradable and injectable polymerliposome hydrogel: a promising cell carrier. Polym Chem 2016; 7: 2037-2044.
-
(2016)
Polym Chem
, vol.7
, pp. 2037-2044
-
-
Ma, Y.-H.1
Yang, J.2
Li, B.3
-
232
-
-
51349090975
-
An in situ gel-forming heparinconjugated PLGA-PEG-PLGA copolymer
-
Lih E, Yoon KiJ, Jin Woo B et al. An in situ gel-forming heparinconjugated PLGA-PEG-PLGA copolymer. J Bioact Compat Pol 2008; 23: 444-457.
-
(2008)
J Bioact Compat Pol
, vol.23
, pp. 444-457
-
-
Lih, E.1
Yoon, Ki.J.2
Jin Woo, B.3
-
233
-
-
77955778221
-
In situ forming hydrogels by tandem thermal gelling and michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan
-
Censi R, Fieten PJ, di Martino P et al. In situ forming hydrogels by tandem thermal gelling and michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan. Macromolecules 2010; 43: 5771-5778.
-
(2010)
Macromolecules
, vol.43
, pp. 5771-5778
-
-
Censi, R.1
Fieten, P.J.2
Di Martino, P.3
-
234
-
-
77956460936
-
Thermosensitive in situ-forming dextranpluronic hydrogels through Michael addition
-
Lin C, Zhao P, Li F et al. Thermosensitive in situ-forming dextranpluronic hydrogels through Michael addition. Mat Sci Eng C-Mater 2010; 30: 1236-1244.
-
(2010)
Mat Sci Eng C-Mater
, vol.30
, pp. 1236-1244
-
-
Lin, C.1
Zhao, P.2
Li, F.3
-
235
-
-
33646679654
-
Michael addition reactions in macromolecular design for emerging technologies
-
Mather BD, Viswanathan K, Miller KM et al. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 2006; 31: 487-531.
-
(2006)
Prog Polym Sci
, vol.31
, pp. 487-531
-
-
Mather, B.D.1
Viswanathan, K.2
Miller, K.M.3
-
236
-
-
80053202798
-
Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo (acryloyl carbonate) copolymers
-
Yu Y, Deng C, Meng F et al. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo (acryloyl carbonate) copolymers. J Biomed Mater Res A 2011; 99: 316-326.
-
(2011)
J Biomed Mater Res A
, vol.99
, pp. 316-326
-
-
Yu, Y.1
Deng, C.2
Meng, F.3
-
237
-
-
84895456752
-
Hydrogel based injectable scaffolds for cardiac tissue regeneration
-
Radhakrishnan J, Krishnan UM, Sethuraman S. Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv 2014; 32: 449-461.
-
(2014)
Biotechnol Adv
, vol.32
, pp. 449-461
-
-
Radhakrishnan, J.1
Krishnan, U.M.2
Sethuraman, S.3
-
238
-
-
84977962768
-
Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair
-
Sepantafar M, Maheronnaghsh R, Mohammadi H et al. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv 2016; 34: 362-379.
-
(2016)
Biotechnol Adv
, vol.34
, pp. 362-379
-
-
Sepantafar, M.1
Maheronnaghsh, R.2
Mohammadi, H.3
-
239
-
-
77549088407
-
Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes
-
Kim M, Lee JY, Jones CN et al. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials 2010; 31: 3596-3603.
-
(2010)
Biomaterials
, vol.31
, pp. 3596-3603
-
-
Kim, M.1
Lee, J.Y.2
Jones, C.N.3
-
240
-
-
84876173233
-
Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure
-
Chen C, Wang L, Deng L et al. Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure. J Biomed Mater Res A 2013; 101: 684-693.
-
(2013)
J Biomed Mater Res A
, vol.101
, pp. 684-693
-
-
Chen, C.1
Wang, L.2
Deng, L.3
-
241
-
-
85027954602
-
Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo
-
Rodell CB, MacArthur JW, Dorsey SM et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater 2015; 25: 636-644.
-
(2015)
Adv Funct Mater
, vol.25
, pp. 636-644
-
-
Rodell, C.B.1
MacArthur, J.W.2
Dorsey, S.M.3
-
242
-
-
78449240894
-
An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate
-
Pritchard CD, O'Shea TM, Siegwart DJ et al. An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials 2011; 32: 587-597.
-
(2011)
Biomaterials
, vol.32
, pp. 587-597
-
-
Pritchard, C.D.1
O'Shea, T.M.2
Siegwart, D.J.3
-
243
-
-
84923322110
-
Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair
-
Fiorica C, Palumbo FS, Pitarresi G et al. Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair. RSC Adv 2015; 5: 19715-19723.
-
(2015)
RSC Adv
, vol.5
, pp. 19715-19723
-
-
Fiorica, C.1
Palumbo, F.S.2
Pitarresi, G.3
-
244
-
-
67650601776
-
Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid
-
Testa G, Di Meo C, Nardecchia S et al. Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid. Int J Pharm 2009; 378: 86-92.
-
(2009)
Int J Pharm
, vol.378
, pp. 86-92
-
-
Testa, G.1
Di Meo, C.2
Nardecchia, S.3
-
245
-
-
84938946334
-
Photopatternable clickable hydrogels: "Orthogonal" control over fabrication and functionalization
-
Kaga S, Yapar S, Gecici EM et al. Photopatternable "clickable" hydrogels: "orthogonal" control over fabrication and functionalization. Macromolecules 2015; 48: 5106-5115.
-
(2015)
Macromolecules
, vol.48
, pp. 5106-5115
-
-
Kaga, S.1
Yapar, S.2
Gecici, E.M.3
-
246
-
-
68849096820
-
Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments
-
DeForest CA, Polizzotti BD, Anseth KS. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 2009; 8: 659-664.
-
(2009)
Nat Mater
, vol.8
, pp. 659-664
-
-
DeForest, C.A.1
Polizzotti, B.D.2
Anseth, K.S.3
-
247
-
-
80051709540
-
Characterization of well-defined poly (ethylene glycol) hydrogels prepared by thiol-ene chemistry
-
Yang T, Long H, Malkoch M et al. Characterization of well-defined poly (ethylene glycol) hydrogels prepared by thiol-ene chemistry. J Polym Sci Pol Chem 2011; 49: 4044-4054.
-
(2011)
J Polym Sci Pol Chem
, vol.49
, pp. 4044-4054
-
-
Yang, T.1
Long, H.2
Malkoch, M.3
-
248
-
-
84862935068
-
One-step preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel
-
Dong Y, Saeed AO, Hassan W et al. "One-step" preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol Rapid Commun 2012; 33: 120-126.
-
(2012)
Macromol Rapid Commun
, vol.33
, pp. 120-126
-
-
Dong, Y.1
Saeed, A.O.2
Hassan, W.3
-
249
-
-
84875974442
-
Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry
-
Alge DL, Azagarsamy MA, Donohue DF et al. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry. Biomacromolecules 2013; 14: 949-953.
-
(2013)
Biomacromolecules
, vol.14
, pp. 949-953
-
-
Alge, D.L.1
Azagarsamy, M.A.2
Donohue, D.F.3
-
250
-
-
84887064843
-
Designing functionalizable hydrogels through thiol-epoxy coupling chemistry
-
Cengiz N, Rao J, Sanyal A et al. Designing functionalizable hydrogels through thiol-epoxy coupling chemistry. Chem Commun 2013; 49: 11191-11193.
-
(2013)
Chem Commun
, vol.49
, pp. 11191-11193
-
-
Cengiz, N.1
Rao, J.2
Sanyal, A.3
-
251
-
-
84909979719
-
Cyclodextrin mediated polymer coupling via thiol-maleimide conjugation: Facile access to functionalizable hydrogels
-
Arslan M, Gevrek TN, Sanyal A et al. Cyclodextrin mediated polymer coupling via thiol-maleimide conjugation: facile access to functionalizable hydrogels. RSC Adv 2014; 4: 57834-57841.
-
(2014)
RSC Adv
, vol.4
, pp. 57834-57841
-
-
Arslan, M.1
Gevrek, T.N.2
Sanyal, A.3
-
252
-
-
84922382464
-
Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine resynostosis model
-
Hermann CD, Wilson DS, Lawrence KA et al. Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine resynostosis model. Biomaterials 2014; 35: 9698-9708.
-
(2014)
Biomaterials
, vol.35
, pp. 9698-9708
-
-
Hermann, C.D.1
Wilson, D.S.2
Lawrence, K.A.3
-
253
-
-
84962588479
-
In situ clickable zwitterionic starch-based hydrogel for 3D cell encapsulation
-
Dong D, Li J, Cui M et al. In situ "clickable" zwitterionic starch-based hydrogel for 3D cell encapsulation. ACS Appl Mater Interfaces 2016; 8: 4442-4455.
-
(2016)
ACS Appl Mater Interfaces
, vol.8
, pp. 4442-4455
-
-
Dong, D.1
Li, J.2
Cui, M.3
-
254
-
-
84947609459
-
Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine
-
Hacker MC, Nawaz HA. Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. Int J Mol Sci 2015; 16: 27677-27706.
-
(2015)
Int J Mol Sci
, vol.16
, pp. 27677-27706
-
-
Hacker, M.C.1
Nawaz, H.A.2
-
255
-
-
84958940753
-
Synthesis and functionalization of dendron-polymer conjugate based hydrogels via sequential thiol-ene click reactions
-
Kaga S, Gevrek TN, Sanyal A et al. Synthesis and functionalization of dendron-polymer conjugate based hydrogels via sequential thiol-ene "click" reactions. J Polym Sci Pol Chem 2016; 54: 926-934.
-
(2016)
J Polym Sci Pol Chem
, vol.54
, pp. 926-934
-
-
Kaga, S.1
Gevrek, T.N.2
Sanyal, A.3
-
256
-
-
61549109884
-
Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties
-
Jeon O, Bouhadir KH, Mansour JM et al. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 2009; 30: 2724-2734.
-
(2009)
Biomaterials
, vol.30
, pp. 2724-2734
-
-
Jeon, O.1
Bouhadir, K.H.2
Mansour, J.M.3
-
257
-
-
35348874191
-
Review: Photopolymerizable and degradable biomaterials for tissue engineering applications
-
Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 2007; 13: 2369-2385.
-
(2007)
Tissue Eng
, vol.13
, pp. 2369-2385
-
-
Ifkovits, J.L.1
Burdick, J.A.2
-
258
-
-
79952103414
-
Photopolymerized water-soluble chitosanbased hydrogel as potential use in tissue engineering
-
Zhou Y, Ma G, Shi S et al. Photopolymerized water-soluble chitosanbased hydrogel as potential use in tissue engineering. Int J Biol Macromol 2011; 48: 408-413.
-
(2011)
Int J Biol Macromol
, vol.48
, pp. 408-413
-
-
Zhou, Y.1
Ma, G.2
Shi, S.3
-
259
-
-
84862827675
-
Visible light crosslinkable chitosan hydrogels for tissue engineering
-
Hu J, Hou Y, Park H et al. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater 2012; 8: 1730-1738.
-
(2012)
Acta Biomater
, vol.8
, pp. 1730-1738
-
-
Hu, J.1
Hou, Y.2
Park, H.3
-
260
-
-
0035656898
-
Controlled-release of IGF-I and TGF-?1 in a photopolymerizing hydrogel for cartilage tissue engineering
-
Elisseeff J, McIntosh W, Fu K et al. Controlled-release of IGF-I and TGF-?1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 2001; 19: 1098-1104.
-
(2001)
J Orthop Res
, vol.19
, pp. 1098-1104
-
-
Elisseeff, J.1
McIntosh, W.2
Fu, K.3
-
261
-
-
84959422646
-
Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications
-
Cho IS, Cho MO, Li Z et al. Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications. Carbohydr Polym 2016; 144: 59-67.
-
(2016)
Carbohydr Polym
, vol.144
, pp. 59-67
-
-
Cho, I.S.1
Cho, M.O.2
Li, Z.3
-
262
-
-
79956126266
-
A printable photopolymerizable thermosensitive p HPMAm-lactate)-peg hydrogel for tissue engineering
-
Censi R, Schuurman W, Malda J et al. A printable photopolymerizable thermosensitive p(HPMAm-lactate)-peg hydrogel for tissue engineering. Adv Funct Mater 2011; 21: 1833-1842.
-
(2011)
Adv Funct Mater
, vol.21
, pp. 1833-1842
-
-
Censi, R.1
Schuurman, W.2
Malda, J.3
-
263
-
-
84914702977
-
Injectable and cross-linkable polyphosphazene hydrogels for space-filling scaffolds
-
Huang Z, Liu X, Chen S et al. Injectable and cross-linkable polyphosphazene hydrogels for space-filling scaffolds. Polym Chem 2015; 6: 143-149.
-
(2015)
Polym Chem
, vol.6
, pp. 143-149
-
-
Huang, Z.1
Liu, X.2
Chen, S.3
-
264
-
-
84923315776
-
Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering
-
Kim HD, Heo J, Hwang Y et al. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering. Tissue Eng Part A 2015; 21: 757-766.
-
(2015)
Tissue Eng Part A
, vol.21
, pp. 757-766
-
-
Kim, H.D.1
Heo, J.2
Hwang, Y.3
-
265
-
-
45849144744
-
Synthesis and characterization of injectable photocrosslinking poly (ethylene glycol) diacrylate based hydrogels
-
Tan G, Wang Y, Li J et al. Synthesis and characterization of injectable photocrosslinking poly (ethylene glycol) diacrylate based hydrogels. Polym Bull 2008; 61: 91-98.
-
(2008)
Polym Bull
, vol.61
, pp. 91-98
-
-
Tan, G.1
Wang, Y.2
Li, J.3
-
266
-
-
70349245050
-
Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo
-
Chou AI, Akintoye SO, Nicoll SB. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo. Osteoarthr Cartilage 2009; 17: 1377-1384.
-
(2009)
Osteoarthr Cartilage
, vol.17
, pp. 1377-1384
-
-
Chou, A.I.1
Akintoye, S.O.2
Nicoll, S.B.3
-
267
-
-
78650901996
-
Injectable and photopolymerizable tissue-engineered auricular cartilage using poly (ethylene glycol) dimethacrylate copolymer hydrogels
-
Papadopoulos A, Bichara DA, Zhao X et al. Injectable and photopolymerizable tissue-engineered auricular cartilage using poly (ethylene glycol) dimethacrylate copolymer hydrogels. Tissue Eng Part A 2011; 17: 161-169.
-
(2011)
Tissue Eng Part A
, vol.17
, pp. 161-169
-
-
Papadopoulos, A.1
Bichara, D.A.2
Zhao, X.3
-
268
-
-
84885001724
-
Epidemiology of fracture risk with advancing age
-
Ensrud KE. Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci 2013; 68: 1236-1242.
-
(2013)
J Gerontol A Biol Sci Med Sci
, vol.68
, pp. 1236-1242
-
-
Ensrud, K.E.1
-
269
-
-
84878853171
-
The international costs and utilities related to osteoporotic fractures study (ICUROS)-quality of life during the first 4 months after fracture
-
Borgstrom F, Lekander I, Ivergard M et al. The international costs and utilities related to osteoporotic fractures study (ICUROS)-quality of life during the first 4 months after fracture. Osteoporos Int 2013; 24: 811-823.
-
(2013)
Osteoporos Int
, vol.24
, pp. 811-823
-
-
Borgstrom, F.1
Lekander, I.2
Ivergard, M.3
-
270
-
-
84921355116
-
Effect of cell origin and timing of delivery for stem cell-based bone tissue engineering using biologically functionalized hydrogels
-
Dosier CR, Uhrig BA, Willett NJ et al. Effect of cell origin and timing of delivery for stem cell-based bone tissue engineering using biologically functionalized hydrogels. Tissue Eng Part A 2015; 21: 156-165.
-
(2015)
Tissue Eng Part A
, vol.21
, pp. 156-165
-
-
Dosier, C.R.1
Uhrig, B.A.2
Willett, N.J.3
-
271
-
-
84979220581
-
Development of PLGA-coated beta-TCP scaffolds containing VEGF for bone tissue engineering
-
Khojasteh A, Fahimipour F, Eslaminejad MB et al. Development of PLGA-coated beta-TCP scaffolds containing VEGF for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2016; 69: 780-788.
-
(2016)
Mater Sci Eng C Mater Biol Appl
, vol.69
, pp. 780-788
-
-
Khojasteh, A.1
Fahimipour, F.2
Eslaminejad, M.B.3
-
272
-
-
57449098439
-
Preparation of injectable 3D-formed ?-tricalcium phosphate bead/alginate composite for bone tissue engineering
-
Matsuno T, Hashimoto Y, Adachi S et al. Preparation of injectable 3D-formed ?-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dent Mater J 2008; 27: 827-834.
-
(2008)
Dent Mater J
, vol.27
, pp. 827-834
-
-
Matsuno, T.1
Hashimoto, Y.2
Adachi, S.3
-
273
-
-
84885032914
-
The calcium silicate/alginate composite: Preparation and evaluation of its behavior as bioactive injectable hydrogels
-
Han Y, Zeng Q, Li H et al. The calcium silicate/alginate composite: Preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomater 2013; 9: 9107-9117.
-
(2013)
Acta Biomater
, vol.9
, pp. 9107-9117
-
-
Han, Y.1
Zeng, Q.2
Li, H.3
-
274
-
-
71649111628
-
Injectable hydrogels based on chitosan derivative/polyethylene glycol dimethacrylate/N,N-dimethylacrylamide as bone tissue engineering matrix
-
Ma G, Yang D, Li Q et al. Injectable hydrogels based on chitosan derivative/polyethylene glycol dimethacrylate/N,N-dimethylacrylamide as bone tissue engineering matrix. Carbohydr Polym 2010; 79: 620-627.
-
(2010)
Carbohydr Polym
, vol.79
, pp. 620-627
-
-
Ma, G.1
Yang, D.2
Li, Q.3
-
275
-
-
84883223489
-
Novel biomimetic thermosensitive beta-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering
-
Dessi M, Borzacchiello A, Mohamed TH et al. Novel biomimetic thermosensitive beta-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res A 2013; 101: 2984-2993.
-
(2013)
J Biomed Mater Res A
, vol.101
, pp. 2984-2993
-
-
Dessi, M.1
Borzacchiello, A.2
Mohamed, T.H.3
-
276
-
-
84874829989
-
A promising injectable scaffold: The biocompatibility and effect on osteogenic differentiation of mesenchymal stem cells
-
Ding K, Zhang YL, Yang Z et al. A promising injectable scaffold: The biocompatibility and effect on osteogenic differentiation of mesenchymal stem cells. Biotechnol Bioproc E 2013; 18: 155-163.
-
(2013)
Biotechnol Bioproc e
, vol.18
, pp. 155-163
-
-
Ding, K.1
Zhang, Y.L.2
Yang, Z.3
-
277
-
-
84982994779
-
In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivoforming hydrogel
-
Jang JY, Park SH, Park JH et al. In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivoforming hydrogel. Macromol Biosci 2016; 16: 1158-1169.
-
(2016)
Macromol Biosci
, vol.16
, pp. 1158-1169
-
-
Jang, J.Y.1
Park, S.H.2
Park, J.H.3
-
278
-
-
84958087988
-
Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering
-
Vo TN, Shah SR, Lu S et al. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 2016; 83: 1-11.
-
(2016)
Biomaterials
, vol.83
, pp. 1-11
-
-
Vo, T.N.1
Shah, S.R.2
Lu, S.3
-
279
-
-
73349129378
-
Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)- poly(?-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites
-
Fu S, Guo G, Gong C et al. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)- poly(?-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B 2009; 113: 16518-16525.
-
(2009)
J Phys Chem B
, vol.113
, pp. 16518-16525
-
-
Fu, S.1
Guo, G.2
Gong, C.3
-
280
-
-
84859833364
-
Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration
-
Fu S, Ni P, Wang B et al. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 2012; 33: 4801-4809.
-
(2012)
Biomaterials
, vol.33
, pp. 4801-4809
-
-
Fu, S.1
Ni, P.2
Wang, B.3
-
281
-
-
84862944832
-
A rheological study of biodegradable injectable PEGMC/HA composite scaffolds
-
Jiao Y, Gyawali D, Stark JM et al. A rheological study of biodegradable injectable PEGMC/HA composite scaffolds. Soft Matter 2012; 8: 1499-1507.
-
(2012)
Soft Matter
, vol.8
, pp. 1499-1507
-
-
Jiao, Y.1
Gyawali, D.2
Stark, J.M.3
-
282
-
-
84964375906
-
An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering
-
Huang Y, Zhang X, Wu A et al. An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering. RSC Adv 2016; 6: 33529-33536.
-
(2016)
RSC Adv
, vol.6
, pp. 33529-33536
-
-
Huang, Y.1
Zhang, X.2
Wu, A.3
-
283
-
-
84859378531
-
Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: Preparation, characterization and in vitro release behavior
-
Lin G, Cosimbescu L, Karin NJ et al. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed Mater 2012; 7: 024107.
-
(2012)
Biomed Mater
, vol.7
, pp. 024107
-
-
Lin, G.1
Cosimbescu, L.2
Karin, N.J.3
-
284
-
-
84959569738
-
Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering
-
Yan J, Miao Y, Tan H et al. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2016; 63: 274-284.
-
(2016)
Mater Sci Eng C Mater Biol Appl
, vol.63
, pp. 274-284
-
-
Yan, J.1
Miao, Y.2
Tan, H.3
-
285
-
-
80051552844
-
Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-kappaB activation
-
Yamaguchi M, Weitzmann MN. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-kappaB activation. Mol Cell Biochem 2011; 355: 179-186.
-
(2011)
Mol Cell Biochem
, vol.355
, pp. 179-186
-
-
Yamaguchi, M.1
Weitzmann, M.N.2
-
286
-
-
84871432112
-
A novel injectable temperature-sensitive zinc doped chitosan/beta-glycerophosphate hydrogel for bone tissue engineering
-
Niranjan R, Koushik C, Saravanan S et al. A novel injectable temperature-sensitive zinc doped chitosan/beta-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 2013; 54: 24-29.
-
(2013)
Int J Biol Macromol
, vol.54
, pp. 24-29
-
-
Niranjan, R.1
Koushik, C.2
Saravanan, S.3
-
287
-
-
84931264437
-
Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo
-
Dhivya S, Saravanan S, Sastry TP et al. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnol 2015; 13: 40.
-
(2015)
J Nanobiotechnol
, vol.13
, pp. 40
-
-
Dhivya, S.1
Saravanan, S.2
Sastry, T.P.3
-
288
-
-
84904976163
-
Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses
-
Douglas TE, Piwowarczyk W, Pamula E et al. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed Mater 2014; 9: 045014.
-
(2014)
Biomed Mater
, vol.9
, pp. 045014
-
-
Douglas, T.E.1
Piwowarczyk, W.2
Pamula, E.3
-
289
-
-
84924301226
-
Bioactive hydrogel-nanosilica hybrid materials: A potential injectable scaffold for bone tissue engineering
-
Lewandowska-?a?cucka J, Fiejdasz S, Rodzik ? et al. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Biomed Mater 2015; 10: 015020.
-
(2015)
Biomed Mater
, vol.10
, pp. 015020
-
-
Lewandowska-Acucka, J.1
Fiejdasz, S.2
Rodzik3
-
290
-
-
84977557920
-
Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects
-
Vishnu Priya M, Sivshanmugam A, Boccaccini AR et al. Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Biomed Mater 2016; 11: 035017.
-
(2016)
Biomed Mater
, vol.11
, pp. 035017
-
-
Vishnu Priya, M.1
Sivshanmugam, A.2
Boccaccini, A.R.3
-
291
-
-
85020055529
-
In situ forming glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering
-
Ren K, He C, Li G et al. In situ forming glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. J Control Release 2015; 213: E64-E65.
-
(2015)
J Control Release
, vol.213
, pp. E64-E65
-
-
Ren, K.1
He, C.2
Li, G.3
-
292
-
-
84925134881
-
Injectable silk-polyethylene glycol hydrogels
-
Wang X, Partlow B, Liu J et al. Injectable silk-polyethylene glycol hydrogels. Acta Biomater 2015; 12: 51-61.
-
(2015)
Acta Biomater
, vol.12
, pp. 51-61
-
-
Wang, X.1
Partlow, B.2
Liu, J.3
-
293
-
-
84928301240
-
Chondrogenic potential of injectable kappa-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue engineering applications
-
Popa EG, Caridade SG, Mano JF et al. Chondrogenic potential of injectable kappa-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue engineering applications. J Tissue Eng Regen Med 2015; 9: 550-563.
-
(2015)
J Tissue Eng Regen Med
, vol.9
, pp. 550-563
-
-
Popa, E.G.1
Caridade, S.G.2
Mano, J.F.3
-
294
-
-
79955409005
-
Pectin-based injectable biomaterials for bone tissue engineering
-
Munarin F, Guerreiro SG, Grellier MA et al. Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules 2011; 12: 568-577.
-
(2011)
Biomacromolecules
, vol.12
, pp. 568-577
-
-
Munarin, F.1
Guerreiro, S.G.2
Grellier, M.A.3
-
295
-
-
84930628090
-
An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration
-
Wu J, Ding Q, Dutta A et al. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater 2015; 16: 49-59.
-
(2015)
Acta Biomater
, vol.16
, pp. 49-59
-
-
Wu, J.1
Ding, Q.2
Dutta, A.3
|