메뉴 건너뛰기




Volumn 5, Issue , 2017, Pages

Injectable hydrogels for cartilage and bone tissue engineering

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGY; BONE TISSUE; CARTILAGE; EXTRACELLULAR MATRIX; HUMAN; HYDROGEL; TISSUE ENGINEERING;

EID: 85019969928     PISSN: 20954700     EISSN: 20956231     Source Type: Journal    
DOI: 10.1038/boneres.2017.14     Document Type: Review
Times cited : (954)

References (295)
  • 1
    • 84937509643 scopus 로고    scopus 로고
    • Anisotropic temperature sensitive chitosanbased injectable hydrogels mimicking cartilage matrix
    • Walker KJ, Madihally SV. Anisotropic temperature sensitive chitosanbased injectable hydrogels mimicking cartilage matrix. J Biomed Mater Res B Appl Biomater 2015; 103: 1149-1160.
    • (2015) J Biomed Mater Res B Appl Biomater , vol.103 , pp. 1149-1160
    • Walker, K.J.1    Madihally, S.V.2
  • 2
    • 31544453046 scopus 로고    scopus 로고
    • Biodendrimer-based hydrogel scaffolds for cartilage tissue repair
    • S?ntjens SHM, Nettles DL, Carnahan MA et al. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules 2006; 7: 310-316.
    • (2006) Biomacromolecules , vol.7 , pp. 310-316
    • Shm, S.1    Nettles, D.L.2    Carnahan, M.A.3
  • 3
    • 84924864632 scopus 로고    scopus 로고
    • Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering
    • Ren K, He C, Xiao C et al. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Biomaterials 2015; 51: 238-249.
    • (2015) Biomaterials , vol.51 , pp. 238-249
    • Ren, K.1    He, C.2    Xiao, C.3
  • 4
    • 0037358343 scopus 로고    scopus 로고
    • Tissue engineering and cell therapy of cartilage and bone
    • Cancedda R, Dozin B, Giannoni P et al. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 2003; 22: 81-91.
    • (2003) Matrix Biol , vol.22 , pp. 81-91
    • Cancedda, R.1    Dozin, B.2    Giannoni, P.3
  • 5
    • 0036766881 scopus 로고    scopus 로고
    • Articular cartilage defects in 1,000 knee arthroscopies
    • Hjelle K, Solheim E, Strand T et al. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18: 730-734.
    • (2002) Arthroscopy , vol.18 , pp. 730-734
    • Hjelle, K.1    Solheim, E.2    Strand, T.3
  • 6
    • 84969244006 scopus 로고    scopus 로고
    • Cartilage repair using hydrogels: A critical review of in vivo experimental designs
    • Vilela CA, Correia C, Oliveira JM et al. Cartilage repair using hydrogels: a critical review of in vivo experimental designs. ACS Biomater Sci Eng 2015; 1: 726-739.
    • (2015) ACS Biomater Sci Eng , vol.1 , pp. 726-739
    • Vilela, C.A.1    Correia, C.2    Oliveira, J.M.3
  • 7
    • 84905649950 scopus 로고    scopus 로고
    • Recent developments in scaffold-guided cartilage tissue regeneration
    • Liao J, Shi K, Ding Q et al. Recent developments in scaffold-guided cartilage tissue regeneration. J Biomed Nanotechnol 2014; 10: 3085-3104.
    • (2014) J Biomed Nanotechnol , vol.10 , pp. 3085-3104
    • Liao, J.1    Shi, K.2    Ding, Q.3
  • 8
    • 84892434742 scopus 로고    scopus 로고
    • Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering
    • Yuan T, Zhang L, Li K et al. Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2014; 102: 337-344.
    • (2014) J Biomed Mater Res B Appl Biomater , vol.102 , pp. 337-344
    • Yuan, T.1    Zhang, L.2    Li, K.3
  • 9
    • 0031661022 scopus 로고    scopus 로고
    • Articular cartilage: Injuries and potential for healing
    • Buckwalter J. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther 1998; 28: 192-202.
    • (1998) J Orthop Sports Phys Ther , vol.28 , pp. 192-202
    • Buckwalter, J.1
  • 10
    • 84869110610 scopus 로고    scopus 로고
    • Unlike bone, cartilage regeneration remains elusive
    • Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012; 338: 917-921.
    • (2012) Science , vol.338 , pp. 917-921
    • Huey, D.J.1    Hu, J.C.2    Athanasiou, K.A.3
  • 11
    • 84926339363 scopus 로고    scopus 로고
    • Current progress in stem cellbased gene therapy for articular cartilage repair
    • Frisch J, Venkatesan J, Rey-Rico A et al. Current progress in stem cellbased gene therapy for articular cartilage repair. Curr Stem Cell Res Ther 2015; 10: 121-131.
    • (2015) Curr Stem Cell Res Ther , vol.10 , pp. 121-131
    • Frisch, J.1    Venkatesan, J.2    Rey-Rico, A.3
  • 12
    • 84959260064 scopus 로고    scopus 로고
    • Current research on pharmacologic and regenerative therapies for osteoarthritis
    • Zhang W, Ouyang H, Dass CR et al. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 2016; 4: 15040.
    • (2016) Bone Res , vol.4 , pp. 15040
    • Zhang, W.1    Ouyang, H.2    Dass, C.R.3
  • 13
    • 85030322118 scopus 로고    scopus 로고
    • Skeletal blood flow in bone repair and maintenance
    • Tomlinson RE, Silva MJ. Skeletal blood flow in bone repair and maintenance. Bone Res 2013; 1: 311-322.
    • (2013) Bone Res , vol.1 , pp. 311-322
    • Tomlinson, R.E.1    Silva, M.J.2
  • 14
    • 84883626117 scopus 로고    scopus 로고
    • Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: A retrospective cohort study in 182 patients
    • Flierl MA, Smith WR, Mauffrey C et al. Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: A retrospective cohort study in 182 patients. J Orthop Surg Res 2013; 8: 33.
    • (2013) J Orthop Surg Res , vol.8 , pp. 33
    • Flierl, M.A.1    Smith, W.R.2    Mauffrey, C.3
  • 16
    • 33947323908 scopus 로고    scopus 로고
    • Autologous iliac crest bone graft: Should it still be the gold standard for treating nonunions?
    • Sen MK, Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 2007; 38 (Suppl 1): S75-S80.
    • (2007) Injury , vol.38 , pp. S75-S80
    • Sen, M.K.1    Miclau, T.2
  • 17
    • 85007110829 scopus 로고    scopus 로고
    • The key role of the blood supply to bone
    • Marenzana M, Arnett TR. The key role of the blood supply to bone. Bone Res 2013; 1: 203-215.
    • (2013) Bone Res , vol.1 , pp. 203-215
    • Marenzana, M.1    Arnett, T.R.2
  • 18
    • 84928484351 scopus 로고    scopus 로고
    • Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells
    • Wang P, Zhao L, Liu J et al. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2014; 2: 14017.
    • (2014) Bone Res , vol.2 , pp. 14017
    • Wang, P.1    Zhao, L.2    Liu, J.3
  • 19
    • 84862027776 scopus 로고    scopus 로고
    • Biomimetic scaffolds for tissue engineering
    • Kim TG, Shin H, Lim D W. Biomimetic scaffolds for tissue engineering. Adv Funct Mater 2012; 22: 2446-2468.
    • (2012) Adv Funct Mater , vol.22 , pp. 2446-2468
    • Kim, T.G.1    Shin, H.2    Lim, D.W.3
  • 20
    • 84862623506 scopus 로고    scopus 로고
    • Stem cell therapy and tissue engineering applications for cartilage regeneration
    • Khan WS, Malik A. Stem cell therapy and tissue engineering applications for cartilage regeneration. Curr Stem Cell Res Ther 2012; 7: 241-242.
    • (2012) Curr Stem Cell Res Ther , vol.7 , pp. 241-242
    • Khan, W.S.1    Malik, A.2
  • 21
    • 84900030868 scopus 로고    scopus 로고
    • Osteogenesis of adipose-derived stem cells
    • Grottkau BE, Lin Y. Osteogenesis of adipose-derived stem cells. Bone Res 2013; 1: 133-145.
    • (2013) Bone Res , vol.1 , pp. 133-145
    • Grottkau, B.E.1    Lin, Y.2
  • 22
    • 84957598906 scopus 로고    scopus 로고
    • Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration
    • Bush Jr., Liang H, Dickinson M et al. Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration. Polym Adv Technol 2016; 27: 1050-1055.
    • (2016) Polym Adv Technol , vol.27 , pp. 1050-1055
    • Bush, J.R.1    Liang, H.2    Dickinson, M.3
  • 23
    • 84989244239 scopus 로고    scopus 로고
    • The role of tissue engineering in achilles tendon repair: A review
    • Sahni V, Tibrewal S, Bissell L et al. The role of tissue engineering in achilles tendon repair: a revie W. Curr Stem Cell Res Ther 2015; 10: 31-36.
    • (2015) Curr Stem Cell Res Ther , vol.10 , pp. 31-36
    • Sahni, V.1    Tibrewal, S.2    Bissell, L.3
  • 24
    • 84959354785 scopus 로고    scopus 로고
    • Aligned biomimetic scaffolds as a new tendency in tissue engineering
    • Wang Y, Shang S, Li C. Aligned biomimetic scaffolds as a new tendency in tissue engineering. Curr Stem Cell Res Ther 2016; 11: 3-18.
    • (2016) Curr Stem Cell Res Ther , vol.11 , pp. 3-18
    • Wang, Y.1    Shang, S.2    Li, C.3
  • 25
    • 84884903697 scopus 로고    scopus 로고
    • 25th anniversary article: Engineering hydrogels for biofabrication
    • Malda J, Visser J, Melchels FP et al. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 2013; 25: 5011-5028.
    • (2013) Adv Mater , vol.25 , pp. 5011-5028
    • Malda, J.1    Visser, J.2    Melchels, F.P.3
  • 26
    • 80051739587 scopus 로고    scopus 로고
    • Biopolymer-based hydrogels for cartilage tissue engineering
    • Balakrishnan B, Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem Rev 2011; 111: 4453-4474.
    • (2011) Chem Rev , vol.111 , pp. 4453-4474
    • Balakrishnan, B.1    Banerjee, R.2
  • 27
    • 84899475906 scopus 로고    scopus 로고
    • 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering
    • Huang CC, Ravindran S, Yin Z et al. 3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering. Biomaterials 2014; 35: 5316-5326.
    • (2014) Biomaterials , vol.35 , pp. 5316-5326
    • Huang, C.C.1    Ravindran, S.2    Yin, Z.3
  • 28
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4: 518-524.
    • (2005) Nat Mater , vol.4 , pp. 518-524
    • Hollister, S.J.1
  • 29
    • 84861714640 scopus 로고    scopus 로고
    • Designing cell-compatible hydrogels for biomedical applications
    • Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science 2012; 336: 1124-1128.
    • (2012) Science , vol.336 , pp. 1124-1128
    • Seliktar, D.1
  • 30
    • 84900643756 scopus 로고    scopus 로고
    • Efficient and facile synthesis of gold nanorods with finely tunable plasmonic peaks from visible to near-IR range
    • Zhang L, Xia K, Lu Z et al. Efficient and facile synthesis of gold nanorods with finely tunable plasmonic peaks from visible to near-IR range. Chem Mater 2014; 26: 1794-1798.
    • (2014) Chem Mater , vol.26 , pp. 1794-1798
    • Zhang, L.1    Xia, K.2    Lu, Z.3
  • 31
    • 84877795821 scopus 로고    scopus 로고
    • A comparison of extracellular excitatory amino acids release inhibition of acute lamotrigine and topiramate treatment in the hippocampus of ptz-kindled epileptic rats
    • Deng Y, Wang M, Jiang L et al. A comparison of extracellular excitatory amino acids release inhibition of acute lamotrigine and topiramate treatment in the hippocampus of ptz-kindled epileptic rats. J Biomed Nanotechnol 2013; 9: 1123-1128.
    • (2013) J Biomed Nanotechnol , vol.9 , pp. 1123-1128
    • Deng, Y.1    Wang, M.2    Jiang, L.3
  • 32
    • 84990878216 scopus 로고    scopus 로고
    • Graphene-based materials for tissue engineering
    • Shin SR, Li YC, Jang HL et al. Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 2016; 105: 255-274.
    • (2016) Adv Drug Deliv Rev , vol.105 , pp. 255-274
    • Shin, S.R.1    Li, Y.C.2    Jang, H.L.3
  • 33
    • 84868699470 scopus 로고    scopus 로고
    • Methoxy poly(ethylene glycol) conjugated denatured bovine serum albumin micelles for effective delivery of camptothecin
    • Zhang L, Lu Z, Li X et al. Methoxy poly(ethylene glycol) conjugated denatured bovine serum albumin micelles for effective delivery of camptothecin. Polym Chem 2012; 3: 1958.
    • (2012) Polym Chem , vol.3 , pp. 1958
    • Zhang, L.1    Lu, Z.2    Li, X.3
  • 34
    • 84945478297 scopus 로고    scopus 로고
    • A biodegradable PEG-based micro-cavitary hydrogel as scaffold for cartilage tissue engineering
    • Fan C, Wang D-A. A biodegradable PEG-based micro-cavitary hydrogel as scaffold for cartilage tissue engineering. Eur Polym J 2015; 72: 651-660.
    • (2015) Eur Polym J , vol.72 , pp. 651-660
    • Fan, C.1    Wang, D.-A.2
  • 35
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: Scaffold design variables and applications
    • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003; 24: 4337-4351.
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 36
    • 84948708559 scopus 로고    scopus 로고
    • A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO
    • Fan J, He N, He Q et al. A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. Nanoscale 2015; 7: 20055-20062.
    • (2015) Nanoscale , vol.7 , pp. 20055-20062
    • Fan, J.1    He, N.2    He, Q.3
  • 37
    • 84920747242 scopus 로고    scopus 로고
    • Preparation of gold nanorods using 1 2,4-trihydroxybenzene as a reducing agent
    • Lu Z, Huang Y, Zhang L et al. Preparation of gold nanorods using 1,2,4-trihydroxybenzene as a reducing agent. J Nanosci Nanotechnol 2015; 15: 6230-6235.
    • (2015) J Nanosci Nanotechnol , vol.15 , pp. 6230-6235
    • Lu, Z.1    Huang, Y.2    Zhang, L.3
  • 38
    • 55749100987 scopus 로고    scopus 로고
    • Nanotechnology and nanomaterials: Promises for improved tissue regeneration
    • Zhang L, Webster TJ. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009; 4: 66-80.
    • (2009) Nano Today , vol.4 , pp. 66-80
    • Zhang, L.1    Webster, T.J.2
  • 40
    • 84914703749 scopus 로고    scopus 로고
    • Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering
    • Choi B, Kim S, Lin B et al. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 2014; 6: 20110-20121.
    • (2014) ACS Appl Mater Interfaces , vol.6 , pp. 20110-20121
    • Choi, B.1    Kim, S.2    Lin, B.3
  • 41
    • 79955793532 scopus 로고    scopus 로고
    • Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review
    • Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a revie W. Biomacromolecules 2011; 12: 1387-1408.
    • (2011) Biomacromolecules , vol.12 , pp. 1387-1408
    • Van Vlierberghe, S.1    Dubruel, P.2    Schacht, E.3
  • 42
    • 84896486539 scopus 로고    scopus 로고
    • Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering
    • Yazdimamaghani M, Vashaee D, Assefa S et al. Hybrid macroporous gelatin/bioactive-glass/nanosilver scaffolds with controlled degradation behavior and antimicrobial activity for bone tissue engineering. J Biomed Nanotechnol 2014; 10: 911-931.
    • (2014) J Biomed Nanotechnol , vol.10 , pp. 911-931
    • Yazdimamaghani, M.1    Vashaee, D.2    Assefa, S.3
  • 43
    • 61349111323 scopus 로고    scopus 로고
    • Injectable chitosan-based hydrogels for cartilage tissue engineering
    • Jin R, Moreira Teixeira LS, Dijkstra PJ et al. Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 2009; 30: 2544-2551.
    • (2009) Biomaterials , vol.30 , pp. 2544-2551
    • Jin, R.1    Moreira Teixeira, L.S.2    Dijkstra, P.J.3
  • 44
    • 84945442240 scopus 로고    scopus 로고
    • An overview of injectable polymeric hydrogels for tissue engineering
    • Sivashanmugam A, Arun Kumar R, Vishnu Priya M et al. An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J 2015; 72: 543-565.
    • (2015) Eur Polym J , vol.72 , pp. 543-565
    • Sivashanmugam, A.1    Arun Kumar, R.2    Vishnu Priya, M.3
  • 45
    • 80054758233 scopus 로고    scopus 로고
    • Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy
    • Tan H, Li H, Rubin JP et al. Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J Tissue Eng Regen Med 2011; 5: 790-797.
    • (2011) J Tissue Eng Regen Med , vol.5 , pp. 790-797
    • Tan, H.1    Li, H.2    Rubin, J.P.3
  • 46
    • 63049109223 scopus 로고    scopus 로고
    • An improved injectable polysaccharide hydrogel: Modified gellan gum for long-term cartilage regeneration in vitro
    • Gong Y, Wang C, Lai RC et al. An improved injectable polysaccharide hydrogel: modified gellan gum for long-term cartilage regeneration in vitro. J Mater Chem 2009; 19: 1968-1977.
    • (2009) J Mater Chem , vol.19 , pp. 1968-1977
    • Gong, Y.1    Wang, C.2    Lai, R.C.3
  • 47
    • 38049048712 scopus 로고    scopus 로고
    • A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells
    • Wei Y, Hu Y, HaoWet al. A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells. J Orthop Res 2008; 26: 27-33.
    • (2008) J Orthop Res , vol.26 , pp. 27-33
    • Wei, Y.1    Hu, Y.2    Hao, W.3
  • 48
    • 84936931503 scopus 로고    scopus 로고
    • Tough biodegradable chitosan-gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering
    • Shen Z-S, Cui X, Hou R-X et al. Tough biodegradable chitosan-gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering. RSC Adv 2015; 5: 55640-55647.
    • (2015) RSC Adv , vol.5 , pp. 55640-55647
    • Shen, Z.-S.1    Cui, X.2    Hou, R.-X.3
  • 49
    • 43049141936 scopus 로고    scopus 로고
    • Collagen-coated polylactide microcarriers/chitosan hydrogel composite: Injectable scaffold for cartilage regeneration
    • Hong Y, Gong Y, Gao C et al. Collagen-coated polylactide microcarriers/chitosan hydrogel composite: injectable scaffold for cartilage regeneration. J Biomed Mater Res A 2008; 85: 628-637.
    • (2008) J Biomed Mater Res A , vol.85 , pp. 628-637
    • Hong, Y.1    Gong, Y.2    Gao, C.3
  • 50
    • 84896403229 scopus 로고    scopus 로고
    • Injectable alginate hydrogels for cell delivery in tissue engineering
    • Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 2014; 10: 1646-1662.
    • (2014) Acta Biomater , vol.10 , pp. 1646-1662
    • Bidarra, S.J.1    Barrias, C.C.2    Granja, P.L.3
  • 51
    • 84940765292 scopus 로고    scopus 로고
    • MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction
    • Dorsey SM, McGarvey Jr., Wang H et al. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 2015; 69: 65-75.
    • (2015) Biomaterials , vol.69 , pp. 65-75
    • Dorsey, S.M.1    McGarvey, J.R.2    Wang, H.3
  • 52
    • 84946944019 scopus 로고    scopus 로고
    • Heparin-based temperature-sensitive injectable hydrogels for protein delivery
    • Sim HJ, Thambi T, Lee DS. Heparin-based temperature-sensitive injectable hydrogels for protein delivery. J Mater Chem B 2015; 3: 8892-8901.
    • (2015) J Mater Chem B , vol.3 , pp. 8892-8901
    • Sim, H.J.1    Thambi, T.2    Lee, D.S.3
  • 53
    • 77956621279 scopus 로고    scopus 로고
    • Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers
    • Wang F, Li Z, Khan M et al. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater 2010; 6: 1978-1991.
    • (2010) Acta Biomater , vol.6 , pp. 1978-1991
    • Wang, F.1    Li, Z.2    Khan, M.3
  • 54
    • 84887134441 scopus 로고    scopus 로고
    • Poly(ethylene glycol)-poly(lacticco- glycolic acid) based thermosensitive injectable hydrogels for biomedical applications
    • Alexander A, Ajazuddin, Khan J et al. Poly(ethylene glycol)-poly(lacticco- glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J Control Release 2013; 172: 715-729.
    • (2013) J Control Release , vol.172 , pp. 715-729
    • Alexander, A.1    Ajazuddin Khan, J.2
  • 55
    • 45849133813 scopus 로고    scopus 로고
    • Poly(vinyl alcohol) cross-linkers for in vivo injectable hydrogels
    • Ossipov DA, Piskounova S, Hilborn J. Poly(vinyl alcohol) cross-linkers for in vivo injectable hydrogels. Macromolecules 2008; 41: 3971-3982.
    • (2008) Macromolecules , vol.41 , pp. 3971-3982
    • Ossipov, D.A.1    Piskounova, S.2    Hilborn, J.3
  • 57
    • 84859397983 scopus 로고    scopus 로고
    • Injectable hydrogels for bone and cartilage repair
    • Amini AA, Nair LS. Injectable hydrogels for bone and cartilage repair. Biomed Mater 2012; 7: 024105.
    • (2012) Biomed Mater , vol.7 , pp. 024105
    • Amini, A.A.1    Nair, L.S.2
  • 58
    • 84904480212 scopus 로고    scopus 로고
    • Evaluation of two chemical crosslinking methods of poly(vinyl alcohol) hydrogels for injectable nucleus pulposus replacement
    • Binetti VR, Fussell GW, Lowman AM. Evaluation of two chemical crosslinking methods of poly(vinyl alcohol) hydrogels for injectable nucleus pulposus replacement. J Appl Polym Sci 2014; 131: 40843.
    • (2014) J Appl Polym Sci , vol.131 , pp. 40843
    • Binetti, V.R.1    Fussell, G.W.2    Lowman, A.M.3
  • 59
    • 77049093185 scopus 로고    scopus 로고
    • Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering
    • Jin R, Teixeira LS, Dijkstra PJ et al. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials 2010; 31: 3103-3113.
    • (2010) Biomaterials , vol.31 , pp. 3103-3113
    • Jin, R.1    Teixeira, L.S.2    Dijkstra, P.J.3
  • 60
    • 84911435816 scopus 로고    scopus 로고
    • Thiol-norbornene photoclick hydrogels for tissue engineering applications
    • Lin C-C, Ki CS, Shih H. Thiol-norbornene photoclick hydrogels for tissue engineering applications. J Appl Polym Sci 2015; 132: 41563.
    • (2015) J Appl Polym Sci , vol.132 , pp. 41563
    • Lin, C.-C.1    Ki, C.S.2    Shih, H.3
  • 61
    • 84863229467 scopus 로고    scopus 로고
    • Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications
    • Li Y, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012; 41: 2193-2221.
    • (2012) Chem Soc Rev , vol.41 , pp. 2193-2221
    • Li, Y.1    Rodrigues, J.2    Tomas, H.3
  • 62
    • 84888405143 scopus 로고    scopus 로고
    • Injectable, biodegradable hydrogels for tissue engineering applications
    • Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials 2010; 3: 1746-1767.
    • (2010) Materials , vol.3 , pp. 1746-1767
    • Tan, H.1    Marra, K.G.2
  • 63
    • 84874373115 scopus 로고    scopus 로고
    • Recent progress of in situ formed gels for biomedical applications
    • Ko DY, Shinde UP, Yeon B et al. Recent progress of in situ formed gels for biomedical applications. Prog Polym Sci 2013; 38: 672-701.
    • (2013) Prog Polym Sci , vol.38 , pp. 672-701
    • Ko, D.Y.1    Shinde, U.P.2    Yeon, B.3
  • 64
    • 84908152887 scopus 로고    scopus 로고
    • Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery
    • Park H, Woo EK, Lee KY. Ionically cross-linkable hyaluronate-based hydrogels for injectable cell delivery. J Control Release 2014; 196: 146-153.
    • (2014) J Control Release , vol.196 , pp. 146-153
    • Park, H.1    Woo, E.K.2    Lee, K.Y.3
  • 65
    • 67849101648 scopus 로고    scopus 로고
    • PH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: In vitro characteristics and in vivo biocompatibility
    • Chiu YL, Chen SC, Su CJ et al. pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 2009; 30: 4877-4888.
    • (2009) Biomaterials , vol.30 , pp. 4877-4888
    • Chiu, Y.L.1    Chen, S.C.2    Su, C.J.3
  • 66
    • 78651358116 scopus 로고    scopus 로고
    • Thermal gelling polyalaninepoloxamine- polyalanine aqueous solution for chondrocytes 3D culture: Initial concentration effect
    • Choi BG, Park MH, Cho S-H et al. Thermal gelling polyalaninepoloxamine- polyalanine aqueous solution for chondrocytes 3D culture: Initial concentration effect. Soft Matter 2011; 7: 456-462.
    • (2011) Soft Matter , vol.7 , pp. 456-462
    • Choi, B.G.1    Park, M.H.2    Cho, S.-H.3
  • 67
    • 84883774201 scopus 로고    scopus 로고
    • 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly (L-alanine) diblock copolymer thermogel
    • Yeon B, Park MH, Moon HJ et al. 3D culture of adipose-tissue-derived stem cells mainly leads to chondrogenesis in poly(ethylene glycol)-poly (L-alanine) diblock copolymer thermogel. Biomacromolecules 2013; 14: 3256-3266.
    • (2013) Biomacromolecules , vol.14 , pp. 3256-3266
    • Yeon, B.1    Park, M.H.2    Moon, H.J.3
  • 68
    • 84858033844 scopus 로고    scopus 로고
    • Engineered whole organs and complex tissues
    • Badylak SF, Weiss DJ, Caplan A et al. Engineered whole organs and complex tissues. Lancet 2012; 379: 943-952.
    • (2012) Lancet , vol.379 , pp. 943-952
    • Badylak, S.F.1    Weiss, D.J.2    Caplan, A.3
  • 69
    • 84875265038 scopus 로고    scopus 로고
    • Extracellular matrix scaffolds for cartilage and bone regeneration
    • Benders KE, van Weeren PR, Badylak SF et al. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 2013; 31: 169-176.
    • (2013) Trends Biotechnol , vol.31 , pp. 169-176
    • Benders, K.E.1    Van Weeren, P.R.2    Badylak, S.F.3
  • 70
    • 84897503621 scopus 로고    scopus 로고
    • Extracellular matrix as an inductive scaffold for functional tissue reconstruction
    • Brown BN, Badylak SF. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl Res 2014; 163: 268-285.
    • (2014) Transl Res , vol.163 , pp. 268-285
    • Brown, B.N.1    Badylak, S.F.2
  • 71
    • 84990974624 scopus 로고    scopus 로고
    • Reduced EGFR signaling enhances cartilage destruction in a mouse osteoarthritis model
    • Zhang X, Zhu J, Liu F et al. Reduced EGFR signaling enhances cartilage destruction in a mouse osteoarthritis model. Bone Res 2014; 2: 14015.
    • (2014) Bone Res , vol.2 , pp. 14015
    • Zhang, X.1    Zhu, J.2    Liu, F.3
  • 72
    • 84940604928 scopus 로고    scopus 로고
    • Consequences of metabolic and oxidative modifications of cartilage tissue
    • Hardin JA, Cobelli N, Santambrogio L. Consequences of metabolic and oxidative modifications of cartilage tissue. Nat Rev Rheumatol 2015; 11: 521-529.
    • (2015) Nat Rev Rheumatol , vol.11 , pp. 521-529
    • Hardin, J.A.1    Cobelli, N.2    Santambrogio, L.3
  • 73
    • 80053117718 scopus 로고    scopus 로고
    • Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid
    • Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 2011; 32: 8771-8782.
    • (2011) Biomaterials , vol.32 , pp. 8771-8782
    • Kim, I.L.1    Mauck, R.L.2    Burdick, J.A.3
  • 75
    • 77955510045 scopus 로고    scopus 로고
    • In vitro and in vivo degradation of an injectable bone repair composite
    • Tan R, Feng Q, She Z et al. In vitro and in vivo degradation of an injectable bone repair composite. Polym Degrad Stab 2010; 95: 1736-1742.
    • (2010) Polym Degrad Stab , vol.95 , pp. 1736-1742
    • Tan, R.1    Feng, Q.2    She, Z.3
  • 76
    • 84946854814 scopus 로고    scopus 로고
    • Nanomaterials and bone regeneration
    • Gong T, Xie J, Liao J et al. Nanomaterials and bone regeneration. Bone Res 2015; 3: 15029.
    • (2015) Bone Res , vol.3 , pp. 15029
    • Gong, T.1    Xie, J.2    Liao, J.3
  • 77
    • 84900021043 scopus 로고    scopus 로고
    • Bone regeneration based on tissue engineering conceptions-A 21st century perspective
    • Henkel J, Woodruff MA, Epari DR et al. Bone regeneration based on tissue engineering conceptions-A 21st century perspective. Bone Res 2013; 1: 216-248.
    • (2013) Bone Res , vol.1 , pp. 216-248
    • Henkel, J.1    Woodruff, M.A.2    Epari, D.R.3
  • 78
    • 0036403676 scopus 로고    scopus 로고
    • Mechano-electrochemical properties of articular cartilage: Their inhomogeneities and anisotropies
    • Mow V, Guo X. Mechano-electrochemical properties of articular cartilage: Their inhomogeneities and anisotropies. Annu Rev Biomed Eng 2002; 4: 175-209.
    • (2002) Annu Rev Biomed Eng , vol.4 , pp. 175-209
    • Mow, V.1    Guo, X.2
  • 80
    • 3242655507 scopus 로고    scopus 로고
    • Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
    • Svensson A, Nicklasson E, Harrah T et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 2005; 26: 419-431.
    • (2005) Biomaterials , vol.26 , pp. 419-431
    • Svensson, A.1    Nicklasson, E.2    Harrah, T.3
  • 82
    • 79955606605 scopus 로고    scopus 로고
    • Biomimetic materials for bone tissue engineering-state of the art and future trends
    • Cordonnier T, Sohier J, Rosset P et al. Biomimetic materials for bone tissue engineering-state of the art and future trends. Adv Eng Mater 2011; 13: B135-B150.
    • (2011) Adv Eng Mater , vol.13 , pp. B135-B150
    • Cordonnier, T.1    Sohier, J.2    Rosset, P.3
  • 83
    • 84945342923 scopus 로고    scopus 로고
    • Bioconjugated hydrogels for tissue engineering and regenerative medicine
    • Ahadian S, Sadeghian RB, Salehi S et al. Bioconjugated hydrogels for tissue engineering and regenerative medicine. Bioconjug Chem 2015; 26: 1984-2001.
    • (2015) Bioconjug Chem , vol.26 , pp. 1984-2001
    • Ahadian, S.1    Sadeghian, R.B.2    Salehi, S.3
  • 84
    • 35348895886 scopus 로고    scopus 로고
    • Extracellular matrix regenerated: Tissue engineering via electrospun biomimetic nanofibers
    • Sell S, Barnes C, Smith M et al. Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polym Int 2007; 56: 1349-1360.
    • (2007) Polym Int , vol.56 , pp. 1349-1360
    • Sell, S.1    Barnes, C.2    Smith, M.3
  • 85
    • 0020456385 scopus 로고
    • How does the extracellular matrix direct gene expression?
    • Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol 1982; 99: 31-68.
    • (1982) J Theor Biol , vol.99 , pp. 31-68
    • Bissell, M.J.1    Hall, H.G.2    Parry, G.3
  • 86
    • 33748967069 scopus 로고    scopus 로고
    • Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer
    • Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2006; 22: 287-309.
    • (2006) Annu Rev Cell Dev Biol , vol.22 , pp. 287-309
    • Nelson, C.M.1    Bissell, M.J.2
  • 87
    • 84899482304 scopus 로고    scopus 로고
    • Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties
    • Fathi A, Mithieux SM, Wei H et al. Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties. Biomaterials 2014; 35: 5425-5435.
    • (2014) Biomaterials , vol.35 , pp. 5425-5435
    • Fathi, A.1    Mithieux, S.M.2    Wei, H.3
  • 88
    • 84855974293 scopus 로고    scopus 로고
    • An in situ forming collagen- PEG hydrogel for tissue regeneration
    • Sargeant TD, Desai AP, Banerjee S et al. An in situ forming collagen- PEG hydrogel for tissue regeneration. Acta Biomater 2012; 8: 124-132.
    • (2012) Acta Biomater , vol.8 , pp. 124-132
    • Sargeant, T.D.1    Desai, A.P.2    Banerjee, S.3
  • 89
    • 84921869422 scopus 로고    scopus 로고
    • Cardiac extracellular matrixfibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering
    • Williams C, Budina E, Stoppel WL et al. Cardiac extracellular matrixfibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater 2015; 14: 84-95.
    • (2015) Acta Biomater , vol.14 , pp. 84-95
    • Williams, C.1    Budina, E.2    Stoppel, W.L.3
  • 90
    • 85020023728 scopus 로고    scopus 로고
    • Hyaluronic acid based injectable hydrogels for localized and sustained gene delivery
    • Li Y, Tian H, Chen X. Hyaluronic acid based injectable hydrogels for localized and sustained gene delivery. J Control Release 2015; 213: E140-E141.
    • (2015) J Control Release , vol.213 , pp. E140-E141
    • Li, Y.1    Tian, H.2    Chen, X.3
  • 91
    • 84893783638 scopus 로고    scopus 로고
    • Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering
    • Ji X, Yang W, Wang T et al. Coaxially electrospun core/shell structured poly(L-lactide) acid/chitosan nanofibers for potential drug carrier in tissue engineering. J Biomed Nanotechnol 2013; 9: 1672-1678.
    • (2013) J Biomed Nanotechnol , vol.9 , pp. 1672-1678
    • Ji, X.1    Yang, W.2    Wang, T.3
  • 92
    • 60849104777 scopus 로고    scopus 로고
    • Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering
    • Tan H, Chu CR, Payne KA et al. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009; 30: 2499-2506.
    • (2009) Biomaterials , vol.30 , pp. 2499-2506
    • Tan, H.1    Chu, C.R.2    Payne, K.A.3
  • 93
    • 20444409137 scopus 로고    scopus 로고
    • Chitosan: A versatile biopolymer for orthopaedic tissue-engineering
    • Martino AD, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 2005; 26: 5983-5990.
    • (2005) Biomaterials , vol.26 , pp. 5983-5990
    • Martino, A.D.1    Sittinger, M.2    Risbud, M.V.3
  • 94
    • 76749159914 scopus 로고    scopus 로고
    • Chitosan/Sodium tripolyphosphate nanoparticles: Preparation, characterization and application as drug carrier
    • Yang W, Fu J, Wang T et al. Chitosan/Sodium tripolyphosphate nanoparticles: preparation, characterization and application as drug carrier. J Biomed Nanotechnol 2009; 5: 591-595.
    • (2009) J Biomed Nanotechnol , vol.5 , pp. 591-595
    • Yang, W.1    Fu, J.2    Wang, T.3
  • 95
    • 84946062213 scopus 로고    scopus 로고
    • Preparation of chitosan-sodium sodium tripolyphosphate nanoparticles via reverse microemulsion-ionic gelation method
    • Hu X, Zhang Z, Wang G et al. Preparation of chitosan-sodium sodium tripolyphosphate nanoparticles via reverse microemulsion-ionic gelation method. J Bionanosci 2015; 9: 301-305.
    • (2015) J Bionanosci , vol.9 , pp. 301-305
    • Hu, X.1    Zhang, Z.2    Wang, G.3
  • 96
    • 84893016148 scopus 로고    scopus 로고
    • Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering
    • Naderi-Meshkin H, Andreas K, Matin MM et al. Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering. Cell Biol Int 2014; 38: 72-84.
    • (2014) Cell Biol Int , vol.38 , pp. 72-84
    • Naderi-Meshkin, H.1    Andreas, K.2    Matin, M.M.3
  • 97
    • 77957696874 scopus 로고    scopus 로고
    • Stimuli-responsive chitosanstarch injectable hydrogels combined with encapsulated adiposederived stromal cells for articular cartilage regeneration
    • S?-Lima H, Caridade SG, Mano JF et al. Stimuli-responsive chitosanstarch injectable hydrogels combined with encapsulated adiposederived stromal cells for articular cartilage regeneration. Soft Matter 2010; 6: 5184-5195.
    • (2010) Soft Matter , vol.6 , pp. 5184-5195
    • S-Lima, H.1    Caridade, S.G.2    Mano, J.F.3
  • 98
    • 84943551634 scopus 로고    scopus 로고
    • Thermogelling chitosancollagen- bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering
    • Moreira CD, Carvalho SM, Mansur HS et al. Thermogelling chitosancollagen- bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C Mater Biol Appl 2016; 58: 1207-1216.
    • (2016) Mater Sci Eng C Mater Biol Appl , vol.58 , pp. 1207-1216
    • Moreira, C.D.1    Carvalho, S.M.2    Mansur, H.S.3
  • 99
    • 43049137348 scopus 로고    scopus 로고
    • Investigation of PVA/ws-chitosan hydrogels prepared by combined ?-irradiation and freeze-thawing
    • Yang X, Liu Q, Chen X et al. Investigation of PVA/ws-chitosan hydrogels prepared by combined ?-irradiation and freeze-thawing. Carbohydr Polym 2008; 73: 401-408.
    • (2008) Carbohydr Polym , vol.73 , pp. 401-408
    • Yang, X.1    Liu, Q.2    Chen, X.3
  • 100
    • 84955337768 scopus 로고    scopus 로고
    • N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications
    • Kamoun EA. N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications. J Adv Res 2016; 7: 69-77.
    • (2016) J Adv Res , vol.7 , pp. 69-77
    • Kamoun, E.A.1
  • 101
    • 0035912971 scopus 로고    scopus 로고
    • Biomedical applications of collagen
    • Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm 2001; 221: 1-22.
    • (2001) Int J Pharm , vol.221 , pp. 1-22
    • Lee, C.H.1    Singla, A.2    Lee, Y.3
  • 102
    • 84928015657 scopus 로고    scopus 로고
    • Collagen-mimetic peptidemodifiable hydrogels for articular cartilage regeneration
    • Parmar PA, Chow LW, St-Pierre JP et al. Collagen-mimetic peptidemodifiable hydrogels for articular cartilage regeneration. Biomaterials 2015; 54: 213-225.
    • (2015) Biomaterials , vol.54 , pp. 213-225
    • Parmar, P.A.1    Chow, L.W.2    St-Pierre, J.P.3
  • 103
    • 80053908371 scopus 로고    scopus 로고
    • A collagen peptide-based physical hydrogel for cell encapsulation
    • P?rez CM, Panitch A, Chmielewski J. A collagen peptide-based physical hydrogel for cell encapsulation. Macromol Biosci 2011; 11: 1426-1431.
    • (2011) Macromol Biosci , vol.11 , pp. 1426-1431
    • Prez, C.M.1    Panitch, A.2    Chmielewski, J.3
  • 104
    • 26444496551 scopus 로고    scopus 로고
    • Collagen biosynthesis of mechanically loaded articular cartilage explants
    • Ackermann B, Steinmeyer J. Collagen biosynthesis of mechanically loaded articular cartilage explants. Osteoarthritis Cartilage 2005; 13: 906-914.
    • (2005) Osteoarthritis Cartilage , vol.13 , pp. 906-914
    • Ackermann, B.1    Steinmeyer, J.2
  • 105
    • 84974628200 scopus 로고    scopus 로고
    • Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors
    • Yuan L, Li B, Yang J et al. Effects of composition and mechanical property of injectable collagen I/II composite hydrogels on chondrocyte behaviors. Tissue Eng Part A 2016; 22: 899-906.
    • (2016) Tissue Eng Part A , vol.22 , pp. 899-906
    • Yuan, L.1    Li, B.2    Yang, J.3
  • 106
    • 44849139548 scopus 로고    scopus 로고
    • Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model
    • Funayama A, Niki Y, Matsumoto H et al. Repair of full-thickness articular cartilage defects using injectable type II collagen gel embedded with cultured chondrocytes in a rabbit model. J Orthop Sci 2008; 13: 225-232.
    • (2008) J Orthop Sci , vol.13 , pp. 225-232
    • Funayama, A.1    Niki, Y.2    Matsumoto, H.3
  • 107
    • 84897453289 scopus 로고    scopus 로고
    • An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering
    • Kontturi LS, J?rvinen E, Muhonen V et al. An injectable, in situ forming type II collagen/hyaluronic acid hydrogel vehicle for chondrocyte delivery in cartilage tissue engineering. Drug Deliv Transl Res 2014; 4: 149-158.
    • (2014) Drug Deliv Transl Res , vol.4 , pp. 149-158
    • Kontturi, L.S.1    Jrvinen, E.2    Muhonen, V.3
  • 108
    • 84906784323 scopus 로고    scopus 로고
    • Gelatin carriers for drug and cell delivery in tissue engineering
    • Santoro M, Tatara AM, Mikos AG. Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release 2014; 190: 210-218.
    • (2014) J Control Release , vol.190 , pp. 210-218
    • Santoro, M.1    Tatara, A.M.2    Mikos, A.G.3
  • 109
    • 84930210291 scopus 로고    scopus 로고
    • Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame
    • Song K, Li L, Li W et al. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Mater Sci Eng C Mater Biol Appl 2015; 55: 384-392.
    • (2015) Mater Sci Eng C Mater Biol Appl , vol.55 , pp. 384-392
    • Song, K.1    Li, L.2    Li, W.3
  • 110
    • 84923092650 scopus 로고    scopus 로고
    • Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating
    • Oh BH, Bismarck A, Chan-Park MB. Injectable, interconnected, high-porosity macroporous biocompatible gelatin scaffolds made by surfactant-free emulsion templating. Macromol Rapid Commun 2015; 36: 364-372.
    • (2015) Macromol Rapid Commun , vol.36 , pp. 364-372
    • Oh, B.H.1    Bismarck, A.2    Chan-Park, M.B.3
  • 111
    • 84870015704 scopus 로고    scopus 로고
    • Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)- acrylate for tissue engineering application
    • Geng X, Mo X, Fan L et al. Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)- acrylate for tissue engineering application. J Mater Chem 2012; 22: 25130-25139.
    • (2012) J Mater Chem , vol.22 , pp. 25130-25139
    • Geng, X.1    Mo, X.2    Fan, L.3
  • 113
    • 84861604651 scopus 로고    scopus 로고
    • Three-dimensional porous scaffold of hyaluronic acid for cartilage tissue engineering
    • Kim D-D, Kim D-H, Son Y-J. Three-dimensional porous scaffold of hyaluronic acid for cartilage tissue engineering. Stud Mechanobiol Tissue Eng Biomater 2011; 8: 329-349.
    • (2011) Stud Mechanobiol Tissue Eng Biomater , vol.8 , pp. 329-349
    • Kim, D.-D.1    Kim, D.-H.2    Son, Y.-J.3
  • 114
    • 77955827600 scopus 로고    scopus 로고
    • Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair
    • Jin R, Moreira Teixeira LS, Krouwels A et al. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 2010; 6: 1968-1977.
    • (2010) Acta Biomater , vol.6 , pp. 1968-1977
    • Jin, R.1    Moreira Teixeira, L.S.2    Krouwels, A.3
  • 115
    • 0014118432 scopus 로고
    • Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids
    • Balazs EA, Watson D, Duff IF et al. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids. Arthritis Rheum 1967; 10: 357-376.
    • (1967) Arthritis Rheum , Issue.10 , pp. 357-376
    • Balazs, E.A.1    Watson, D.2    Duff, I.F.3
  • 117
    • 84861600904 scopus 로고    scopus 로고
    • Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review
    • Muzzarelli RA, Greco F, Busilacchi A et al. Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a revie W. Carbohydr Polym 2012; 89: 723-739.
    • (2012) Carbohydr Polym , vol.89 , pp. 723-739
    • Muzzarelli, R.A.1    Greco, F.2    Busilacchi, A.3
  • 118
    • 0141993878 scopus 로고    scopus 로고
    • Hyaluronan and CD44: Strategic players for cell-matrix interactions during chondrogenesis and matrix assembly
    • Knudson CB. Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res C Embryo Today 2003; 69: 174-196.
    • (2003) Birth Defects Res C Embryo Today , vol.69 , pp. 174-196
    • Knudson, C.B.1
  • 119
    • 79955004401 scopus 로고    scopus 로고
    • Hyaluronan and mesenchymal stem cells: From germ layer to cartilage and bone
    • Astachov L, Vago R, Aviv M et al. Hyaluronan and mesenchymal stem cells: from germ layer to cartilage and bone. Front Biosci (Landmark Ed) 2011; 16: 261-276.
    • (2011) Front Biosci (Landmark Ed , vol.16 , pp. 261-276
    • Astachov, L.1    Vago, R.2    Aviv, M.3
  • 120
    • 84891434679 scopus 로고    scopus 로고
    • An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels-Alder click chemistry
    • Yu F, Cao X, Li Y et al. An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels-Alder "click chemistry". Polym Chem 2014; 5: 1082-1090.
    • (2014) Polym Chem , vol.5 , pp. 1082-1090
    • Yu, F.1    Cao, X.2    Li, Y.3
  • 121
    • 84870236996 scopus 로고    scopus 로고
    • Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering
    • Park H, Choi B, Hu J et al. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater 2013; 9: 4779-4786.
    • (2013) Acta Biomater , vol.9 , pp. 4779-4786
    • Park, H.1    Choi, B.2    Hu, J.3
  • 122
    • 0036968183 scopus 로고    scopus 로고
    • Hyaluronic acid hydrogel in the treatment of osteoarthritis
    • Barbucci R, Lamponi S, Borzacchiello A et al. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 2002; 23: 4503-4513.
    • (2002) Biomaterials , vol.23 , pp. 4503-4513
    • Barbucci, R.1    Lamponi, S.2    Borzacchiello, A.3
  • 123
    • 84925426189 scopus 로고    scopus 로고
    • In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration
    • Palumbo FS, Fiorica C, Di Stefano M et al. In situ forming hydrogels of hyaluronic acid and inulin derivatives for cartilage regeneration. Carbohydr Polym 2015; 122: 408-416.
    • (2015) Carbohydr Polym , vol.122 , pp. 408-416
    • Palumbo, F.S.1    Fiorica, C.2    Di Stefano, M.3
  • 124
    • 84939783184 scopus 로고    scopus 로고
    • Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications
    • Domingues RM, Silva M, Gershovich P et al. Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem 2015; 26: 1571-1581.
    • (2015) Bioconjug Chem , vol.26 , pp. 1571-1581
    • Domingues, R.M.1    Silva, M.2    Gershovich, P.3
  • 125
    • 80051550620 scopus 로고    scopus 로고
    • The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering
    • Zhou H, Xu HH. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials 2011; 32: 7503-7513.
    • (2011) Biomaterials , vol.32 , pp. 7503-7513
    • Zhou, H.1    Xu, H.H.2
  • 126
    • 33748886577 scopus 로고    scopus 로고
    • Long-term stable fibrin gels for cartilage engineering
    • Eyrich D, Brandl F, Appel B et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials 2007; 28: 55-65.
    • (2007) Biomaterials , vol.28 , pp. 55-65
    • Eyrich, D.1    Brandl, F.2    Appel, B.3
  • 127
    • 50249172825 scopus 로고    scopus 로고
    • Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in threedimensional poly(lactic-co-glycolic acid) scaffold
    • Sha'ban M, Yoon SJ, Ko YK et al. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in threedimensional poly(lactic-co-glycolic acid) scaffold. J Biomater Sci Polym Ed 2008; 19: 1219-1237.
    • (2008) J Biomater Sci Polym Ed , vol.19 , pp. 1219-1237
    • Sha'Ban, M.1    Yoon, S.J.2    Ko, Y.K.3
  • 128
    • 45249084145 scopus 로고    scopus 로고
    • Fibrin: A versatile scaffold for tissue engineering applications
    • Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev 2008; 14: 199-215.
    • (2008) Tissue Eng Part B Rev , vol.14 , pp. 199-215
    • Ahmed, T.A.1    Dare, E.V.2    Hincke, M.3
  • 129
    • 84900034183 scopus 로고    scopus 로고
    • A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair
    • Snyder TN, Madhavan K, Intrator M et al. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J Biol Eng 2014; 8: 10.
    • (2014) J Biol Eng , vol.8 , pp. 10
    • Snyder, T.N.1    Madhavan, K.2    Intrator, M.3
  • 130
    • 73349121271 scopus 로고    scopus 로고
    • Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration
    • Dare EV, Griffith M, Poitras P et al. Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration. Cells Tissues Organs 2009; 190: 313-325.
    • (2009) Cells Tissues Organs , vol.190 , pp. 313-325
    • Dare, E.V.1    Griffith, M.2    Poitras, P.3
  • 131
    • 84880317767 scopus 로고    scopus 로고
    • Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel
    • Choi JW, Choi BH, Park SH et al. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Artif Organs 2013; 37: 648-655.
    • (2013) Artif Organs , vol.37 , pp. 648-655
    • Choi, J.W.1    Choi, B.H.2    Park, S.H.3
  • 132
    • 84933676605 scopus 로고    scopus 로고
    • In situ vascularization of injectable fibrin/poly(ethylene glycol) hydrogels by human amniotic fluid-derived stem cells
    • Benavides OM, Brooks AR, Cho SK et al. In situ vascularization of injectable fibrin/poly(ethylene glycol) hydrogels by human amniotic fluid-derived stem cells. J Biomed Mater Res A 2015; 103: 2645-2653.
    • (2015) J Biomed Mater Res A , vol.103 , pp. 2645-2653
    • Benavides, O.M.1    Brooks, A.R.2    Cho, S.K.3
  • 133
    • 84960865949 scopus 로고    scopus 로고
    • Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration
    • Almeida HV, Eswaramoorthy R, Cunniffe GM et al. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Acta Biomater 2016; 36: 55-62.
    • (2016) Acta Biomater , vol.36 , pp. 55-62
    • Almeida, H.V.1    Eswaramoorthy, R.2    Cunniffe, G.M.3
  • 134
    • 84873182912 scopus 로고    scopus 로고
    • Assessments of injectable alginate particle-embedded fibrin hydrogels for soft tissue reconstruction
    • Hwang CM, Ay B, Kaplan DL et al. Assessments of injectable alginate particle-embedded fibrin hydrogels for soft tissue reconstruction. Biomed Mater 2013; 8: 014105.
    • (2013) Biomed Mater , vol.8 , pp. 014105
    • Hwang, C.M.1    Ay, B.2    Kaplan, D.L.3
  • 135
    • 84907494045 scopus 로고    scopus 로고
    • Alginate composites for bone tissue engineering: A review
    • Venkatesan J, Bhatnagar I, Manivasagan P et al. Alginate composites for bone tissue engineering: a revie W. Int J Biol Macromol 2015; 72: 269-281.
    • (2015) Int J Biol Macromol , vol.72 , pp. 269-281
    • Venkatesan, J.1    Bhatnagar, I.2    Manivasagan, P.3
  • 136
    • 84920735951 scopus 로고    scopus 로고
    • Antibacterial properties of ZnO/calcium alginate composite and its application in wastewater treatment
    • Zhang F, Li X, He N et al. Antibacterial properties of ZnO/calcium alginate composite and its application in wastewater treatment. J Nanosci Nanotechnol 2015; 15: 3839-3845.
    • (2015) J Nanosci Nanotechnol , vol.15 , pp. 3839-3845
    • Zhang, F.1    Li, X.2    He, N.3
  • 137
    • 70449659415 scopus 로고    scopus 로고
    • Shear-reversibly crosslinked alginate hydrogels for tissue engineering
    • Park H, Kang SW, Kim BS et al. Shear-reversibly crosslinked alginate hydrogels for tissue engineering. Macromol Biosci 2009; 9: 895-901.
    • (2009) Macromol Biosci , vol.9 , pp. 895-901
    • Park, H.1    Kang, S.W.2    Kim, B.S.3
  • 138
    • 84951775551 scopus 로고    scopus 로고
    • Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside
    • Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev 2016; 96: 54-76.
    • (2016) Adv Drug Deliv Rev , vol.96 , pp. 54-76
    • Ruvinov, E.1    Cohen, S.2
  • 139
    • 84937633122 scopus 로고    scopus 로고
    • Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: Phenotypic and immunomodulatory evaluation
    • Follin B, Juhl M, Cohen S et al. Human adipose-derived stromal cells in a clinically applicable injectable alginate hydrogel: phenotypic and immunomodulatory evaluation. Cytotherapy 2015; 17: 1104-1118.
    • (2015) Cytotherapy , vol.17 , pp. 1104-1118
    • Follin, B.1    Juhl, M.2    Cohen, S.3
  • 140
    • 84903693324 scopus 로고    scopus 로고
    • Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration
    • Balakrishnan B, Joshi N, Jayakrishnan A et al. Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater 2014; 10: 3650-3663.
    • (2014) Acta Biomater , vol.10 , pp. 3650-3663
    • Balakrishnan, B.1    Joshi, N.2    Jayakrishnan, A.3
  • 141
    • 70249143635 scopus 로고    scopus 로고
    • Injectable biomaterials for regenerating complex craniofacial tissues
    • Kretlow JD, Young S, Klouda L et al. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater 2009; 21: 3368-3393.
    • (2009) Adv Mater , vol.21 , pp. 3368-3393
    • Kretlow, J.D.1    Young, S.2    Klouda, L.3
  • 142
    • 77953959594 scopus 로고    scopus 로고
    • An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering
    • Zhao L, Weir MD, Xu HH. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials 2010; 31: 6502-6510.
    • (2010) Biomaterials , vol.31 , pp. 6502-6510
    • Zhao, L.1    Weir, M.D.2    Xu, H.H.3
  • 143
    • 84911807743 scopus 로고    scopus 로고
    • Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels
    • Park H, Lee KY. Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res A 2014; 102: 4519-4525.
    • (2014) J Biomed Mater Res A , vol.102 , pp. 4519-4525
    • Park, H.1    Lee, K.Y.2
  • 144
    • 84920929364 scopus 로고    scopus 로고
    • Injectable alginate-Ocarboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering
    • Jaikumar D, Sajesh KM, Soumya S et al. Injectable alginate-Ocarboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol 2015; 74: 318-326.
    • (2015) Int J Biol Macromol , vol.74 , pp. 318-326
    • Jaikumar, D.1    Sajesh, K.M.2    Soumya, S.3
  • 145
    • 0022322564 scopus 로고
    • Structure and biological activity of heparin
    • Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem 1985; 43: 51-134.
    • (1985) Adv Carbohydr Chem Biochem , vol.43 , pp. 51-134
    • Casu, B.1
  • 146
    • 34347348304 scopus 로고    scopus 로고
    • Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules
    • Tae G, Kim Y-J, Choi W-I et al. Formation of a novel heparin-based hydrogel in the presence of heparin-binding biomolecules. Biomacromolecules 2007; 8: 1979-1986.
    • (2007) Biomacromolecules , vol.8 , pp. 1979-1986
    • Tae, G.1    Kim, Y.-J.2    Choi, W.-I.3
  • 147
    • 84896394738 scopus 로고    scopus 로고
    • Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications
    • Liang Y, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater 2014; 10: 1588-1600.
    • (2014) Acta Biomater , vol.10 , pp. 1588-1600
    • Liang, Y.1    Kiick, K.L.2
  • 148
    • 0037457893 scopus 로고    scopus 로고
    • Rational design of low-molecular weight heparins with improved in vivo activity
    • Sundaram M, Qi Y, Shriver Z et al. Rational design of low-molecular weight heparins with improved in vivo activity. Proc Natl Acad Sci USA 2003; 100: 651-656.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 651-656
    • Sundaram, M.1    Qi, Y.2    Shriver, Z.3
  • 149
    • 84867447725 scopus 로고    scopus 로고
    • Growth factor binding on heparin mimetic peptide nanofibers
    • Mammadov R, Mammadov B, Guler MO et al. Growth factor binding on heparin mimetic peptide nanofibers. Biomacromolecules 2012; 13: 3311-3319.
    • (2012) Biomacromolecules , vol.13 , pp. 3311-3319
    • Mammadov, R.1    Mammadov, B.2    Guler, M.O.3
  • 150
    • 78650356386 scopus 로고    scopus 로고
    • Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures
    • Guillame-Gentil O, Semenov O, Roca AS et al. Engineering the extracellular environment: strategies for building 2D and 3D cellular structures. Adv Mater 2010; 22: 5443-5462.
    • (2010) Adv Mater , vol.22 , pp. 5443-5462
    • Guillame-Gentil, O.1    Semenov, O.2    Roca, A.S.3
  • 151
    • 79956074523 scopus 로고    scopus 로고
    • Biomaterials that regulate growth factor activity via bioinspired interactions
    • Hudalla GA, Murphy WL. Biomaterials that regulate growth factor activity via bioinspired interactions. Adv Funct Mater 2011; 21: 1754-1768.
    • (2011) Adv Funct Mater , vol.21 , pp. 1754-1768
    • Hudalla, G.A.1    Murphy, W.L.2
  • 152
    • 84896542800 scopus 로고    scopus 로고
    • Novel mineralized heparin-gelatin nanoparticles for potential application in tissue engineering of bone
    • Yang Y, Tang H, Kowitsch A et al. Novel mineralized heparin-gelatin nanoparticles for potential application in tissue engineering of bone. J Mater Sci Mater Med 2014; 25: 669-680.
    • (2014) J Mater Sci Mater Med , vol.25 , pp. 669-680
    • Yang, Y.1    Tang, H.2    Kowitsch, A.3
  • 153
    • 60549107772 scopus 로고    scopus 로고
    • Tetronic-oligolactide-heparin hydrogel as a multi-functional scaffold for tissue regeneration
    • Go DH, Joung YK, Lee SY et al. Tetronic-oligolactide-heparin hydrogel as a multi-functional scaffold for tissue regeneration. Macromol Biosci 2008; 8: 1152-1160.
    • (2008) Macromol Biosci , vol.8 , pp. 1152-1160
    • Go, D.H.1    Joung, Y.K.2    Lee, S.Y.3
  • 154
    • 84877329179 scopus 로고    scopus 로고
    • Fabrication and characterization of heparin-grafted poly-l-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket
    • Wang T, Ji X, Jin L et al. Fabrication and characterization of heparin-grafted poly-l-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket. ACS Appl Mater Interfaces 2013; 5: 3757-3763.
    • (2013) ACS Appl Mater Interfaces , vol.5 , pp. 3757-3763
    • Wang, T.1    Ji, X.2    Jin, L.3
  • 155
    • 33745942706 scopus 로고    scopus 로고
    • Controlled release of fibroblast growth factor-2 from an injectable 6-O-desulfated heparin hydrogel and subsequent effect on in vivo vascularization
    • Nakamura S, Ishihara M, Obara K et al. Controlled release of fibroblast growth factor-2 from an injectable 6-O-desulfated heparin hydrogel and subsequent effect on in vivo vascularization. J Biomed Mater Res A 2006; 78: 364-371.
    • (2006) J Biomed Mater Res A , vol.78 , pp. 364-371
    • Nakamura, S.1    Ishihara, M.2    Obara, K.3
  • 156
    • 33846419133 scopus 로고    scopus 로고
    • Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model
    • Fujita M, Ishihara M, Shimizu M et al. Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Wound Repair Regen 2007; 15: 58-65.
    • (2007) Wound Repair Regen , vol.15 , pp. 58-65
    • Fujita, M.1    Ishihara, M.2    Shimizu, M.3
  • 157
    • 78049437288 scopus 로고    scopus 로고
    • Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-epsilon-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel
    • Lee J, ChoiWI, Tae G et al. Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-epsilon-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Acta Biomater 2011; 7: 244-257.
    • (2011) Acta Biomater , vol.7 , pp. 244-257
    • Lee, J.1    Choiwi Tae, G.2
  • 158
    • 80051823590 scopus 로고    scopus 로고
    • The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects
    • Kim M, Kim SE, Kang SS et al. The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects. Biomaterials 2011; 32: 7883-7896.
    • (2011) Biomaterials , vol.32 , pp. 7883-7896
    • Kim, M.1    Kim, S.E.2    Kang, S.S.3
  • 159
    • 79958087795 scopus 로고    scopus 로고
    • Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels
    • Jin R, Moreira Teixeira LS, Dijkstra PJ et al. Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels. J Control Release 2011; 152: 186-195.
    • (2011) J Control Release , vol.152 , pp. 186-195
    • Jin, R.1    Moreira Teixeira, L.S.2    Dijkstra, P.J.3
  • 160
    • 84865021298 scopus 로고    scopus 로고
    • Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects
    • Kim M, Hong B, Lee J et al. Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules 2012; 13: 2287-2298.
    • (2012) Biomacromolecules , vol.13 , pp. 2287-2298
    • Kim, M.1    Hong, B.2    Lee, J.3
  • 161
    • 73249140159 scopus 로고    scopus 로고
    • Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2
    • Annabi N, Mithieux SM, Weiss AS et al. Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. Biomaterials 2010; 31: 1655-1665.
    • (2010) Biomaterials , vol.31 , pp. 1655-1665
    • Annabi, N.1    Mithieux, S.M.2    Weiss, A.S.3
  • 162
    • 84930012585 scopus 로고    scopus 로고
    • Elastin-based biomaterials and mesenchymal stem cells
    • Ozsvar J, Mithieux SM, Wang R et al. Elastin-based biomaterials and mesenchymal stem cells. Biomater Sci 2015; 3: 800-809.
    • (2015) Biomater Sci , vol.3 , pp. 800-809
    • Ozsvar, J.1    Mithieux, S.M.2    Wang, R.3
  • 163
    • 78650276410 scopus 로고    scopus 로고
    • The effect of elastin on chondrocyte adhesion and proliferation on poly (varepsilon-caprolactone)/elastin composites
    • Annabi N, Fathi A, Mithieux SM et al. The effect of elastin on chondrocyte adhesion and proliferation on poly (varepsilon-caprolactone)/elastin composites. Biomaterials 2011; 32: 1517-1525.
    • (2011) Biomaterials , vol.32 , pp. 1517-1525
    • Annabi, N.1    Fathi, A.2    Mithieux, S.M.3
  • 164
    • 0029921188 scopus 로고    scopus 로고
    • CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes
    • Knutson Jr., Iida J, Fields GB et al. CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell 1996; 7: 383-396.
    • (1996) Mol Biol Cell , vol.7 , pp. 383-396
    • Knutson, J.R.1    Iida, J.2    Fields, G.B.3
  • 165
    • 34247863703 scopus 로고    scopus 로고
    • Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration
    • Wang DA, Varghese S, Sharma B et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater 2007; 6: 385-392.
    • (2007) Nat Mater , vol.6 , pp. 385-392
    • Wang, D.A.1    Varghese, S.2    Sharma, B.3
  • 166
    • 84903737357 scopus 로고    scopus 로고
    • Study of different delivery modes of chondroitin sulfate using microspheres and cryogel scaffold for application in cartilage tissue engineering
    • Dwivedi P, Bhat S, Nayak V et al. Study of different delivery modes of chondroitin sulfate using microspheres and cryogel scaffold for application in cartilage tissue engineering. Int J Polym Mater Po 2014; 63: 859-872.
    • (2014) Int J Polym Mater Po , vol.63 , pp. 859-872
    • Dwivedi, P.1    Bhat, S.2    Nayak, V.3
  • 167
    • 79952588296 scopus 로고    scopus 로고
    • Development and physicochemical evaluation of chondroitin sulfate-poly(ethylene oxide) hydrogel
    • Jo S, Kim D, Woo J et al. Development and physicochemical evaluation of chondroitin sulfate-poly(ethylene oxide) hydrogel. Macromol Res 2011; 19: 147-155.
    • (2011) Macromol Res , vol.19 , pp. 147-155
    • Jo, S.1    Kim, D.2    Woo, J.3
  • 168
    • 75149189930 scopus 로고    scopus 로고
    • A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel
    • Strehin I, Nahas Z, Arora K et al. A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 2010; 31: 2788-2797.
    • (2010) Biomaterials , vol.31 , pp. 2788-2797
    • Strehin, I.1    Nahas, Z.2    Arora, K.3
  • 169
    • 84867232593 scopus 로고    scopus 로고
    • Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction
    • Jo S, Kim S, Noh I. Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromol Res 2012; 20: 968-976.
    • (2012) Macromol Res , vol.20 , pp. 968-976
    • Jo, S.1    Kim, S.2    Noh, I.3
  • 170
    • 84929179994 scopus 로고    scopus 로고
    • Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering
    • Liao J, Qu Y, Chu B et al. Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci Rep 2015; 5: 9879.
    • (2015) Sci Rep , vol.5 , pp. 9879
    • Liao, J.1    Qu, Y.2    Chu, B.3
  • 171
    • 78951478099 scopus 로고    scopus 로고
    • Preparation of collagen-chondroitin sulfatehyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro
    • Zhang L, Li K, XiaoWet al. Preparation of collagen-chondroitin sulfatehyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym 2011; 84: 118-125.
    • (2011) Carbohydr Polym , vol.84 , pp. 118-125
    • Zhang, L.1    Li, K.2    Xiao, W.3
  • 172
    • 84876282906 scopus 로고    scopus 로고
    • Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering
    • Wiltsey C, Kubinski P, Christiani T et al. Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering. J Mater Sci Mater Med 2013; 24: 837-847.
    • (2013) J Mater Sci Mater Med , vol.24 , pp. 837-847
    • Wiltsey, C.1    Kubinski, P.2    Christiani, T.3
  • 173
    • 84956485436 scopus 로고    scopus 로고
    • An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering
    • Chen F, Yu S, Liu B et al. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci Rep 2016; 6: 20014.
    • (2016) Sci Rep , vol.6 , pp. 20014
    • Chen, F.1    Yu, S.2    Liu, B.3
  • 174
    • 84973596565 scopus 로고    scopus 로고
    • Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization
    • Fan J, He Q, Liu Y et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization. ACS Appl Mater Interfaces 2016; 8: 13804-13811.
    • (2016) ACS Appl Mater Interfaces , vol.8 , pp. 13804-13811
    • Fan, J.1    He, Q.2    Liu, Y.3
  • 175
    • 84956698217 scopus 로고    scopus 로고
    • Preparation of porous core-shell poly l-lactic acid/polyethylene glycol superfine fibres containing drug
    • Yang W, He N, Fu J et al. Preparation of porous core-shell poly l-lactic acid/polyethylene glycol superfine fibres containing drug. J Nanosci Nanotechnol 2015; 15: 9911-9917.
    • (2015) J Nanosci Nanotechnol , vol.15 , pp. 9911-9917
    • Yang, W.1    He, N.2    Fu, J.3
  • 176
    • 84904878606 scopus 로고    scopus 로고
    • Methoxy poly(ethylene glycol) conjugated doxorubicin micelles for effective killing of cancer cells
    • Zhang L, Xia K, Deng Y et al. Methoxy poly(ethylene glycol) conjugated doxorubicin micelles for effective killing of cancer cells. J Nanosci Nanotechnol 2014; 14: 6458-6460.
    • (2014) J Nanosci Nanotechnol , vol.14 , pp. 6458-6460
    • Zhang, L.1    Xia, K.2    Deng, Y.3
  • 177
    • 84876559330 scopus 로고    scopus 로고
    • PEGylated denatured bovine serum albumin modified water-soluble inorganic nanocrystals as multifunctional drug delivery platforms
    • Zhang L, Lu Z, Bai Y et al. PEGylated denatured bovine serum albumin modified water-soluble inorganic nanocrystals as multifunctional drug delivery platforms. J Mater Chem B 2013; 1: 1289.
    • (2013) J Mater Chem B , vol.1 , pp. 1289
    • Zhang, L.1    Lu, Z.2    Bai, Y.3
  • 178
    • 84916623347 scopus 로고    scopus 로고
    • Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering
    • Yan S, Wang T, Feng L et al. Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid) and alginate for cartilage tissue engineering. Biomacromolecules 2014; 15: 4495-4508.
    • (2014) Biomacromolecules , vol.15 , pp. 4495-4508
    • Yan, S.1    Wang, T.2    Feng, L.3
  • 179
    • 84983455421 scopus 로고    scopus 로고
    • Rapamycin release study of porous poly(L-lactic acid) scaffolds, prepared via coaxial electrospinning
    • Yang W, He N, Li Z. Rapamycin release study of porous poly(L-lactic acid) scaffolds, prepared via coaxial electrospinning. J Nanosci Nanotechnol 2016; 16: 9404-9412.
    • (2016) J Nanosci Nanotechnol , vol.16 , pp. 9404-9412
    • Yang, W.1    He, N.2    Li, Z.3
  • 180
    • 77949916808 scopus 로고    scopus 로고
    • Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage
    • Bonakdar S, Emami SH, Shokrgozar MA et al. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mat Sci Eng C 2010; 30: 636-643.
    • (2010) Mat Sci Eng C , vol.30 , pp. 636-643
    • Bonakdar, S.1    Emami, S.H.2    Shokrgozar, M.A.3
  • 181
    • 84903492070 scopus 로고    scopus 로고
    • Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial
    • Kallukalam BC, Jayabalan M, Sankar V. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial. Biomed Mater 2009; 4: 015002.
    • (2009) Biomed Mater , vol.4 , pp. 015002
    • Kallukalam, B.C.1    Jayabalan, M.2    Sankar, V.3
  • 182
    • 67349101289 scopus 로고    scopus 로고
    • Preparation and characterization of a novel injectable in situ cross-linked hydrogel
    • Sun S, Cao H, Su H et al. Preparation and characterization of a novel injectable in situ cross-linked hydrogel. Polym Bull 2009; 62: 699-711.
    • (2009) Polym Bull , vol.62 , pp. 699-711
    • Sun, S.1    Cao, H.2    Su, H.3
  • 183
    • 84912571281 scopus 로고    scopus 로고
    • Polyethylene glycol (PEG)-poly (N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications
    • Alexander A, Ajazuddin, Khan J et al. Polyethylene glycol (PEG)-poly (N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur J Pharm Biopharm 2014; 88: 575-585.
    • (2014) Eur J Pharm Biopharm , vol.88 , pp. 575-585
    • Alexander, A.1    Ajazuddin Khan, J.2
  • 184
    • 84910091974 scopus 로고    scopus 로고
    • Thermo-responsive injectable MPEGpolyester diblock copolymers for sustained drug release
    • Hyun H, Park S, Kwon D et al. Thermo-responsive injectable MPEGpolyester diblock copolymers for sustained drug release. Polymers 2014; 6: 2670-2683.
    • (2014) Polymers , vol.6 , pp. 2670-2683
    • Hyun, H.1    Park, S.2    Kwon, D.3
  • 185
    • 84880143294 scopus 로고    scopus 로고
    • Injectable in situ-forming hydrogel for cartilage tissue engineering
    • Kwon JS, Yoon SM, Kwon DY et al. Injectable in situ-forming hydrogel for cartilage tissue engineering. J Mater Chem B 2013; 1: 3314-3321.
    • (2013) J Mater Chem B , vol.1 , pp. 3314-3321
    • Kwon, J.S.1    Yoon, S.M.2    Kwon, D.Y.3
  • 186
    • 84961362493 scopus 로고    scopus 로고
    • Injectable in situ forming poly(L-glutamic acid) hydrogels for cartilage tissue engineering
    • Yan S, Zhang X, Zhang K et al. Injectable in situ forming poly(L-glutamic acid) hydrogels for cartilage tissue engineering. J Mater Chem B 2016; 4: 947-961.
    • (2016) J Mater Chem B , vol.4 , pp. 947-961
    • Yan, S.1    Zhang, X.2    Zhang, K.3
  • 187
    • 84923072586 scopus 로고    scopus 로고
    • An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering
    • Skaalure SC, Chu S, Bryant SJ. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering. Adv Healthc Mater 2015; 4: 420-431.
    • (2015) Adv Healthc Mater , vol.4 , pp. 420-431
    • Skaalure, S.C.1    Chu, S.2    Bryant, S.J.3
  • 188
    • 84957836995 scopus 로고    scopus 로고
    • Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking
    • De France KJ, Chan KJ, Cranston ED et al. Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 2016; 17: 649-660.
    • (2016) Biomacromolecules , vol.17 , pp. 649-660
    • De France, K.J.1    Chan, K.J.2    Cranston, E.D.3
  • 189
    • 84905020363 scopus 로고    scopus 로고
    • Diels-Alder crosslinked HA/PEG hydrogels with high elasticity and fatigue resistance for cell encapsulation and articular cartilage tissue repair
    • Yu F, Cao X, Li Y et al. Diels-Alder crosslinked HA/PEG hydrogels with high elasticity and fatigue resistance for cell encapsulation and articular cartilage tissue repair. Polym Chem 2014; 5: 5116-5123.
    • (2014) Polym Chem , vol.5 , pp. 5116-5123
    • Yu, F.1    Cao, X.2    Li, Y.3
  • 190
    • 84963621662 scopus 로고    scopus 로고
    • Thermosensitive injectable in situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture
    • Liu H, Liu J, Qi C et al. Thermosensitive injectable in situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater 2016; 35: 228-237.
    • (2016) Acta Biomater , vol.35 , pp. 228-237
    • Liu, H.1    Liu, J.2    Qi, C.3
  • 191
    • 67049162753 scopus 로고    scopus 로고
    • Injectable in situ-forming pH/thermosensitive hydrogel for bone tissue engineering
    • Kim HK, Shim WS, Kim SE et al. Injectable in situ-forming pH/thermosensitive hydrogel for bone tissue engineering. Tissue Eng Part A 2009; 15: 923-933.
    • (2009) Tissue Eng Part A , vol.15 , pp. 923-933
    • Kim, H.K.1    Shim, W.S.2    Kim, S.E.3
  • 192
    • 84870253512 scopus 로고    scopus 로고
    • Hydrogels for biomedical applications
    • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64: 18-23.
    • (2012) Adv Drug Deliv Rev , vol.64 , pp. 18-23
    • Hoffman, A.S.1
  • 193
    • 84910602067 scopus 로고    scopus 로고
    • In situ-forming injectable hydrogels for regenerative medicine
    • Yang J-A, Yeom J, Hwang BW et al. In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 2014; 39: 1973-1986.
    • (2014) Prog Polym Sci , vol.39 , pp. 1973-1986
    • Yang, J.-A.1    Yeom, J.2    Hwang, B.W.3
  • 194
    • 84878878788 scopus 로고    scopus 로고
    • Biodegradable polymers exhibiting temperature-responsive sol-gel transition as injectable biomedical materials
    • Nagahama K, Takahashi A, Ohya Y. Biodegradable polymers exhibiting temperature-responsive sol-gel transition as injectable biomedical materials. React Funct Polym 2013; 73: 979-985.
    • (2013) React Funct Polym , vol.73 , pp. 979-985
    • Nagahama, K.1    Takahashi, A.2    Ohya, Y.3
  • 195
    • 84958162914 scopus 로고    scopus 로고
    • Stimuli-responsive hydrogels in drug delivery and tissue engineering
    • Sood N, Bhardwaj A, Mehta S et al. Stimuli-responsive hydrogels in drug delivery and tissue engineering. Drug Deliv 2016; 23: 758-780.
    • (2016) Drug Deliv , vol.23 , pp. 758-780
    • Sood, N.1    Bhardwaj, A.2    Mehta, S.3
  • 196
    • 80053557369 scopus 로고    scopus 로고
    • Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: Preparation, characterization and hydrogel behavior
    • Yu R, Zheng S. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior. J Biomater Sci Polym Ed 2011; 22: 2305-2324.
    • (2011) J Biomater Sci Polym Ed , vol.22 , pp. 2305-2324
    • Yu, R.1    Zheng, S.2
  • 197
    • 84964514069 scopus 로고    scopus 로고
    • Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering
    • Ashraf S, Park H-K, Park H et al. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: role in drug delivery and tissue engineering. Macromol Res 2016; 24: 297-304.
    • (2016) Macromol Res , vol.24 , pp. 297-304
    • Ashraf, S.1    Park, H.-K.2    Park, H.3
  • 198
    • 34249329921 scopus 로고    scopus 로고
    • Thermosensitive hydrogel PEG-PLGAPEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound
    • Lee PY, Cobain E, Huard J et al. Thermosensitive hydrogel PEG-PLGAPEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound. Mol Ther 2007; 15: 1189-1194.
    • (2007) Mol Ther , vol.15 , pp. 1189-1194
    • Lee, P.Y.1    Cobain, E.2    Huard, J.3
  • 199
    • 84939620313 scopus 로고    scopus 로고
    • In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering
    • Vo TN, Ekenseair AK, Spicer PP et al. In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. J Control Release 2015; 205: 25-34.
    • (2015) J Control Release , vol.205 , pp. 25-34
    • Vo, T.N.1    Ekenseair, A.K.2    Spicer, P.P.3
  • 200
    • 84864024082 scopus 로고    scopus 로고
    • Supporting biomaterials for articular cartilage repair
    • Duarte Campos DF, Drescher W, Rath B et al. Supporting biomaterials for articular cartilage repair. Cartilage 2012; 3: 205-221.
    • (2012) Cartilage , vol.3 , pp. 205-221
    • Duarte Campos, D.F.1    Drescher, W.2    Rath, B.3
  • 201
    • 84941098822 scopus 로고    scopus 로고
    • Synthesis and characterization of temperature-sensitive hydrogels
    • Hu X, Cheng W, Shao Z et al. Synthesis and characterization of temperature-sensitive hydrogels. E-Polymers 2015; 15: 353-360.
    • (2015) E-Polymers , vol.15 , pp. 353-360
    • Hu, X.1    Cheng, W.2    Shao, Z.3
  • 202
    • 79952189109 scopus 로고    scopus 로고
    • Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation
    • Klouda L, Perkins KR, Watson BM et al. Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater 2011; 7: 1460-1467.
    • (2011) Acta Biomater , vol.7 , pp. 1460-1467
    • Klouda, L.1    Perkins, K.R.2    Watson, B.M.3
  • 203
    • 84900389947 scopus 로고    scopus 로고
    • Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering
    • Watson BM, Kasper FK, Engel PS et al. Synthesis and characterization of injectable, biodegradable, phosphate-containing, chemically cross-linkable, thermoresponsive macromers for bone tissue engineering. Biomacromolecules 2014; 15: 1788-1796.
    • (2014) Biomacromolecules , vol.15 , pp. 1788-1796
    • Watson, B.M.1    Kasper, F.K.2    Engel, P.S.3
  • 204
    • 84940912075 scopus 로고    scopus 로고
    • Effective bone regeneration using thermosensitive poly(N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells
    • Ren Z, Wang Y, Ma S et al. Effective bone regeneration using thermosensitive poly(N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells. ACS Appl Mater Interfaces 2015; 7: 19006-19015.
    • (2015) ACS Appl Mater Interfaces , vol.7 , pp. 19006-19015
    • Ren, Z.1    Wang, Y.2    Ma, S.3
  • 205
    • 81255187755 scopus 로고    scopus 로고
    • Thermo-sensitive alginate-based injectable hydrogel for tissue engineering
    • Tan R, She Z, Wang M et al. Thermo-sensitive alginate-based injectable hydrogel for tissue engineering. Carbohyd Polym 2012; 87: 1515-1521.
    • (2012) Carbohyd Polym , vol.87 , pp. 1515-1521
    • Tan, R.1    She, Z.2    Wang, M.3
  • 206
    • 84954482482 scopus 로고    scopus 로고
    • A novel pH-sensitive ceramichydrogel for biomedical applications
    • Lima GGD, Campos L, Junqueira A et al. A novel pH-sensitive ceramichydrogel for biomedical applications. Polym Advan Technol 2015; 26: 1439-1446.
    • (2015) Polym Advan Technol , vol.26 , pp. 1439-1446
    • Ggd, L.1    Campos, L.2    Junqueira, A.3
  • 207
    • 84863230652 scopus 로고    scopus 로고
    • Synthesis, characteristics and potential application of poly(beta-amino ester urethane)-based multiblock co-polymers as an injectable, biodegradable and ph/temperature-sensitive hydrogel system
    • Huynh CT, Nguyen MK, Jeong IK et al. Synthesis, characteristics and potential application of poly(beta-amino ester urethane)-based multiblock co-polymers as an injectable, biodegradable and ph/temperature-sensitive hydrogel system. J Biomater Sci Polym Ed 2012; 23: 1091-1106.
    • (2012) J Biomater Sci Polym Ed , vol.23 , pp. 1091-1106
    • Huynh, C.T.1    Nguyen, M.K.2    Jeong, I.K.3
  • 208
    • 28844483415 scopus 로고    scopus 로고
    • Novel injectable pH and temperature sensitive block copolymer hydrogel
    • Shim WS, Yoo JS, Bae YH et al. Novel injectable pH and temperature sensitive block copolymer hydrogel. Biomacromolecules 2005; 6: 2930-2934.
    • (2005) Biomacromolecules , vol.6 , pp. 2930-2934
    • Shim, W.S.1    Yoo, J.S.2    Bae, Y.H.3
  • 209
    • 33746079628 scopus 로고    scopus 로고
    • Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamidemodified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)- poly(epsilon-caprolactone-co-lactide) block copolymer
    • Shim WS, Kim JH, Park H et al. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamidemodified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)- poly(epsilon-caprolactone-co-lactide) block copolymer. Biomaterials 2006; 27: 5178-5185.
    • (2006) Biomaterials , vol.27 , pp. 5178-5185
    • Shim, W.S.1    Kim, J.H.2    Park, H.3
  • 210
    • 41149139932 scopus 로고    scopus 로고
    • An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate
    • Lee F, Chung JE, Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid-tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter 2008; 4: 880-887.
    • (2008) Soft Matter , vol.4 , pp. 880-887
    • Lee, F.1    Chung, J.E.2    Kurisawa, M.3
  • 211
    • 77953857299 scopus 로고    scopus 로고
    • Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering
    • Kurisawa M, Lee F, Wang L-S et al. Injectable enzymatically crosslinked hydrogel system with independent tuning of mechanical strength and gelation rate for drug delivery and tissue engineering. J Mater Chem 2010; 20: 5371-5375.
    • (2010) J Mater Chem , vol.20 , pp. 5371-5375
    • Kurisawa, M.1    Lee, F.2    Wang, L.-S.3
  • 212
    • 84867541371 scopus 로고    scopus 로고
    • In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzymemediated reaction for enhancement of endothelial cell activity and neo-vascularization
    • Park KM, Lee Y, Son JY et al. In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzymemediated reaction for enhancement of endothelial cell activity and neo-vascularization. Bioconjug Chem 2012; 23: 2042-2050.
    • (2012) Bioconjug Chem , vol.23 , pp. 2042-2050
    • Park, K.M.1    Lee, Y.2    Son, J.Y.3
  • 213
    • 84944209612 scopus 로고    scopus 로고
    • Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix
    • Kuo KC, Lin RZ, Tien HW et al. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix. Acta Biomater 2015; 27: 151-166.
    • (2015) Acta Biomater , vol.27 , pp. 151-166
    • Kuo, K.C.1    Lin, R.Z.2    Tien, H.W.3
  • 214
    • 84890467740 scopus 로고    scopus 로고
    • Enzyme-mediated fast injectable hydrogels based on chitosan-glycolic acid/tyrosine: Preparation, characterization, and chondrocyte culture
    • Jin R, Lin C, Cao A. Enzyme-mediated fast injectable hydrogels based on chitosan-glycolic acid/tyrosine: Preparation, characterization, and chondrocyte culture. Polym Chem 2014; 5: 391-398.
    • (2014) Polym Chem , vol.5 , pp. 391-398
    • Jin, R.1    Lin, C.2    Cao, A.3
  • 215
    • 83355177973 scopus 로고    scopus 로고
    • Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering
    • Teixeira LS, Feijen J, van Blitterswijk CA et al. Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 2012; 33: 1281-1290.
    • (2012) Biomaterials , vol.33 , pp. 1281-1290
    • Teixeira, L.S.1    Feijen, J.2    Van Blitterswijk, C.A.3
  • 216
  • 217
    • 84856569253 scopus 로고    scopus 로고
    • Self-attaching and cellattracting in situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair
    • Moreira Teixeira LS, Bijl S, Pully VV et al. Self-attaching and cellattracting in situ forming dextran-tyramine conjugates hydrogels for arthroscopic cartilage repair. Biomaterials 2012; 33: 3164-3174.
    • (2012) Biomaterials , vol.33 , pp. 3164-3174
    • Moreira Teixeira, L.S.1    Bijl, S.2    Pully, V.V.3
  • 218
    • 84934343185 scopus 로고    scopus 로고
    • Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel
    • Gohil SV, Brittain SB, Kan H-M et al. Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel. J Mater Chem B 2015; 3: 5511-5522.
    • (2015) J Mater Chem B , vol.3 , pp. 5511-5522
    • Gohil, S.V.1    Brittain, S.B.2    Kan, H.-M.3
  • 219
    • 30544454226 scopus 로고    scopus 로고
    • Active site structure and catalytic mechanisms of human peroxidases
    • Furtmuller PG, Zederbauer M, Jantschko W et al. Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 2006; 445: 199-213.
    • (2006) Arch Biochem Biophys , vol.445 , pp. 199-213
    • Furtmuller, P.G.1    Zederbauer, M.2    Jantschko, W.3
  • 220
    • 84924565790 scopus 로고    scopus 로고
    • Enzymatically crosslinked alginate hydrogels with improved adhesion properties
    • Hou J, Li C, Guan Y et al. Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polym Chem 2015; 6: 2204-2213.
    • (2015) Polym Chem , vol.6 , pp. 2204-2213
    • Hou, J.1    Li, C.2    Guan, Y.3
  • 221
    • 84891372388 scopus 로고    scopus 로고
    • Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties
    • Wang LS, Du C, Toh WS et al. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties. Biomaterials 2014; 35: 2207-2217.
    • (2014) Biomaterials , vol.35 , pp. 2207-2217
    • Wang, L.S.1    Du, C.2    Toh, W.S.3
  • 222
    • 77956078310 scopus 로고    scopus 로고
    • Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering
    • Jin R, Moreira Teixeira LS, Dijkstra PJ et al. Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering. Tissue Eng Part A 2010; 16: 2429-2440.
    • (2010) Tissue Eng Part A , vol.16 , pp. 2429-2440
    • Jin, R.1    Moreira Teixeira, L.S.2    Dijkstra, P.J.3
  • 223
    • 80051495774 scopus 로고    scopus 로고
    • Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules
    • Zhang Y, Tao L, Li S et al. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules 2011; 12: 2894-2901.
    • (2011) Biomacromolecules , vol.12 , pp. 2894-2901
    • Zhang, Y.1    Tao, L.2    Li, S.3
  • 224
    • 84867347142 scopus 로고    scopus 로고
    • Schiff's base as a stimuli-responsive linker in polymer chemistry
    • Xin Y, Yuan J. Schiff's base as a stimuli-responsive linker in polymer chemistry. Polym Chem 2012; 3: 3045-3055.
    • (2012) Polym Chem , vol.3 , pp. 3045-3055
    • Xin, Y.1    Yuan, J.2
  • 225
    • 84946615941 scopus 로고    scopus 로고
    • Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing
    • Li Z, Yuan B, Dong X et al. Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing. RSC Adv 2015; 5: 94248-94256.
    • (2015) RSC Adv , vol.5 , pp. 94248-94256
    • Li, Z.1    Yuan, B.2    Dong, X.3
  • 226
    • 84922874985 scopus 로고    scopus 로고
    • Molecular assembly of Schiff Base interactions: Construction and application
    • Jia Y, Li J. Molecular assembly of Schiff Base interactions: construction and application. Chem Rev 2015; 115: 1597-1621.
    • (2015) Chem Rev , vol.115 , pp. 1597-1621
    • Jia, Y.1    Li, J.2
  • 227
    • 84876475652 scopus 로고    scopus 로고
    • Covalently crosslinked hyaluronic acidchitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering
    • Sun J, Xiao C, Tan H et al. Covalently crosslinked hyaluronic acidchitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering. J Appl Polym Sci 2013; 129: 682-688.
    • (2013) J Appl Polym Sci , vol.129 , pp. 682-688
    • Sun, J.1    Xiao, C.2    Tan, H.3
  • 228
    • 84946827982 scopus 로고    scopus 로고
    • Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties
    • Li L, Ge J, Ma PX et al. Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties. RSC Adv 2015; 5: 92490-92498.
    • (2015) RSC Adv , vol.5 , pp. 92490-92498
    • Li, L.1    Ge, J.2    Ma, P.X.3
  • 229
    • 84888329127 scopus 로고    scopus 로고
    • In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering
    • Cheng Y, Nada AA, Valmikinathan CM et al. In situ gelling polysaccharide-based hydrogel for cell and drug delivery in tissue engineering. J Appl Polym Sci 2014; 131: 39934.
    • (2014) J Appl Polym Sci , vol.131 , pp. 39934
    • Cheng, Y.1    Nada, A.A.2    Valmikinathan, C.M.3
  • 230
    • 84929463675 scopus 로고    scopus 로고
    • An injectable hydrogel formed by in situ crosslinking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering
    • Cao L, Cao B, Lu C et al. An injectable hydrogel formed by in situ crosslinking of glycol chitosan and multi-benzaldehyde functionalized PEG analogues for cartilage tissue engineering. J Mater Chem B 2015; 3: 1268-1280.
    • (2015) J Mater Chem B , vol.3 , pp. 1268-1280
    • Cao, L.1    Cao, B.2    Lu, C.3
  • 231
    • 84960893472 scopus 로고    scopus 로고
    • Biodegradable and injectable polymerliposome hydrogel: A promising cell carrier
    • Ma Y-H, Yang J, Li B et al. Biodegradable and injectable polymerliposome hydrogel: a promising cell carrier. Polym Chem 2016; 7: 2037-2044.
    • (2016) Polym Chem , vol.7 , pp. 2037-2044
    • Ma, Y.-H.1    Yang, J.2    Li, B.3
  • 232
    • 51349090975 scopus 로고    scopus 로고
    • An in situ gel-forming heparinconjugated PLGA-PEG-PLGA copolymer
    • Lih E, Yoon KiJ, Jin Woo B et al. An in situ gel-forming heparinconjugated PLGA-PEG-PLGA copolymer. J Bioact Compat Pol 2008; 23: 444-457.
    • (2008) J Bioact Compat Pol , vol.23 , pp. 444-457
    • Lih, E.1    Yoon, Ki.J.2    Jin Woo, B.3
  • 233
    • 77955778221 scopus 로고    scopus 로고
    • In situ forming hydrogels by tandem thermal gelling and michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan
    • Censi R, Fieten PJ, di Martino P et al. In situ forming hydrogels by tandem thermal gelling and michael addition reaction between thermosensitive triblock copolymers and thiolated hyaluronan. Macromolecules 2010; 43: 5771-5778.
    • (2010) Macromolecules , vol.43 , pp. 5771-5778
    • Censi, R.1    Fieten, P.J.2    Di Martino, P.3
  • 234
    • 77956460936 scopus 로고    scopus 로고
    • Thermosensitive in situ-forming dextranpluronic hydrogels through Michael addition
    • Lin C, Zhao P, Li F et al. Thermosensitive in situ-forming dextranpluronic hydrogels through Michael addition. Mat Sci Eng C-Mater 2010; 30: 1236-1244.
    • (2010) Mat Sci Eng C-Mater , vol.30 , pp. 1236-1244
    • Lin, C.1    Zhao, P.2    Li, F.3
  • 235
    • 33646679654 scopus 로고    scopus 로고
    • Michael addition reactions in macromolecular design for emerging technologies
    • Mather BD, Viswanathan K, Miller KM et al. Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 2006; 31: 487-531.
    • (2006) Prog Polym Sci , vol.31 , pp. 487-531
    • Mather, B.D.1    Viswanathan, K.2    Miller, K.M.3
  • 236
    • 80053202798 scopus 로고    scopus 로고
    • Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo (acryloyl carbonate) copolymers
    • Yu Y, Deng C, Meng F et al. Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo (acryloyl carbonate) copolymers. J Biomed Mater Res A 2011; 99: 316-326.
    • (2011) J Biomed Mater Res A , vol.99 , pp. 316-326
    • Yu, Y.1    Deng, C.2    Meng, F.3
  • 237
    • 84895456752 scopus 로고    scopus 로고
    • Hydrogel based injectable scaffolds for cardiac tissue regeneration
    • Radhakrishnan J, Krishnan UM, Sethuraman S. Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv 2014; 32: 449-461.
    • (2014) Biotechnol Adv , vol.32 , pp. 449-461
    • Radhakrishnan, J.1    Krishnan, U.M.2    Sethuraman, S.3
  • 238
    • 84977962768 scopus 로고    scopus 로고
    • Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair
    • Sepantafar M, Maheronnaghsh R, Mohammadi H et al. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv 2016; 34: 362-379.
    • (2016) Biotechnol Adv , vol.34 , pp. 362-379
    • Sepantafar, M.1    Maheronnaghsh, R.2    Mohammadi, H.3
  • 239
    • 77549088407 scopus 로고    scopus 로고
    • Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes
    • Kim M, Lee JY, Jones CN et al. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials 2010; 31: 3596-3603.
    • (2010) Biomaterials , vol.31 , pp. 3596-3603
    • Kim, M.1    Lee, J.Y.2    Jones, C.N.3
  • 240
    • 84876173233 scopus 로고    scopus 로고
    • Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure
    • Chen C, Wang L, Deng L et al. Performance optimization of injectable chitosan hydrogel by combining physical and chemical triple crosslinking structure. J Biomed Mater Res A 2013; 101: 684-693.
    • (2013) J Biomed Mater Res A , vol.101 , pp. 684-693
    • Chen, C.1    Wang, L.2    Deng, L.3
  • 241
    • 85027954602 scopus 로고    scopus 로고
    • Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo
    • Rodell CB, MacArthur JW, Dorsey SM et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater 2015; 25: 636-644.
    • (2015) Adv Funct Mater , vol.25 , pp. 636-644
    • Rodell, C.B.1    MacArthur, J.W.2    Dorsey, S.M.3
  • 242
    • 78449240894 scopus 로고    scopus 로고
    • An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate
    • Pritchard CD, O'Shea TM, Siegwart DJ et al. An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate. Biomaterials 2011; 32: 587-597.
    • (2011) Biomaterials , vol.32 , pp. 587-597
    • Pritchard, C.D.1    O'Shea, T.M.2    Siegwart, D.J.3
  • 243
    • 84923322110 scopus 로고    scopus 로고
    • Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair
    • Fiorica C, Palumbo FS, Pitarresi G et al. Injectable in situ forming hydrogels based on natural and synthetic polymers for potential application in cartilage repair. RSC Adv 2015; 5: 19715-19723.
    • (2015) RSC Adv , vol.5 , pp. 19715-19723
    • Fiorica, C.1    Palumbo, F.S.2    Pitarresi, G.3
  • 244
    • 67650601776 scopus 로고    scopus 로고
    • Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid
    • Testa G, Di Meo C, Nardecchia S et al. Influence of dialkyne structure on the properties of new click-gels based on hyaluronic acid. Int J Pharm 2009; 378: 86-92.
    • (2009) Int J Pharm , vol.378 , pp. 86-92
    • Testa, G.1    Di Meo, C.2    Nardecchia, S.3
  • 245
    • 84938946334 scopus 로고    scopus 로고
    • Photopatternable clickable hydrogels: "Orthogonal" control over fabrication and functionalization
    • Kaga S, Yapar S, Gecici EM et al. Photopatternable "clickable" hydrogels: "orthogonal" control over fabrication and functionalization. Macromolecules 2015; 48: 5106-5115.
    • (2015) Macromolecules , vol.48 , pp. 5106-5115
    • Kaga, S.1    Yapar, S.2    Gecici, E.M.3
  • 246
    • 68849096820 scopus 로고    scopus 로고
    • Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments
    • DeForest CA, Polizzotti BD, Anseth KS. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 2009; 8: 659-664.
    • (2009) Nat Mater , vol.8 , pp. 659-664
    • DeForest, C.A.1    Polizzotti, B.D.2    Anseth, K.S.3
  • 247
    • 80051709540 scopus 로고    scopus 로고
    • Characterization of well-defined poly (ethylene glycol) hydrogels prepared by thiol-ene chemistry
    • Yang T, Long H, Malkoch M et al. Characterization of well-defined poly (ethylene glycol) hydrogels prepared by thiol-ene chemistry. J Polym Sci Pol Chem 2011; 49: 4044-4054.
    • (2011) J Polym Sci Pol Chem , vol.49 , pp. 4044-4054
    • Yang, T.1    Long, H.2    Malkoch, M.3
  • 248
    • 84862935068 scopus 로고    scopus 로고
    • One-step preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel
    • Dong Y, Saeed AO, Hassan W et al. "One-step" preparation of thiol-ene clickable PEG-based thermoresponsive hyperbranched copolymer for in situ crosslinking hybrid hydrogel. Macromol Rapid Commun 2012; 33: 120-126.
    • (2012) Macromol Rapid Commun , vol.33 , pp. 120-126
    • Dong, Y.1    Saeed, A.O.2    Hassan, W.3
  • 249
    • 84875974442 scopus 로고    scopus 로고
    • Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry
    • Alge DL, Azagarsamy MA, Donohue DF et al. Synthetically tractable click hydrogels for three-dimensional cell culture formed using tetrazine-norbornene chemistry. Biomacromolecules 2013; 14: 949-953.
    • (2013) Biomacromolecules , vol.14 , pp. 949-953
    • Alge, D.L.1    Azagarsamy, M.A.2    Donohue, D.F.3
  • 250
    • 84887064843 scopus 로고    scopus 로고
    • Designing functionalizable hydrogels through thiol-epoxy coupling chemistry
    • Cengiz N, Rao J, Sanyal A et al. Designing functionalizable hydrogels through thiol-epoxy coupling chemistry. Chem Commun 2013; 49: 11191-11193.
    • (2013) Chem Commun , vol.49 , pp. 11191-11193
    • Cengiz, N.1    Rao, J.2    Sanyal, A.3
  • 251
    • 84909979719 scopus 로고    scopus 로고
    • Cyclodextrin mediated polymer coupling via thiol-maleimide conjugation: Facile access to functionalizable hydrogels
    • Arslan M, Gevrek TN, Sanyal A et al. Cyclodextrin mediated polymer coupling via thiol-maleimide conjugation: facile access to functionalizable hydrogels. RSC Adv 2014; 4: 57834-57841.
    • (2014) RSC Adv , vol.4 , pp. 57834-57841
    • Arslan, M.1    Gevrek, T.N.2    Sanyal, A.3
  • 252
    • 84922382464 scopus 로고    scopus 로고
    • Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine resynostosis model
    • Hermann CD, Wilson DS, Lawrence KA et al. Rapidly polymerizing injectable click hydrogel therapy to delay bone growth in a murine resynostosis model. Biomaterials 2014; 35: 9698-9708.
    • (2014) Biomaterials , vol.35 , pp. 9698-9708
    • Hermann, C.D.1    Wilson, D.S.2    Lawrence, K.A.3
  • 253
    • 84962588479 scopus 로고    scopus 로고
    • In situ clickable zwitterionic starch-based hydrogel for 3D cell encapsulation
    • Dong D, Li J, Cui M et al. In situ "clickable" zwitterionic starch-based hydrogel for 3D cell encapsulation. ACS Appl Mater Interfaces 2016; 8: 4442-4455.
    • (2016) ACS Appl Mater Interfaces , vol.8 , pp. 4442-4455
    • Dong, D.1    Li, J.2    Cui, M.3
  • 254
    • 84947609459 scopus 로고    scopus 로고
    • Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine
    • Hacker MC, Nawaz HA. Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. Int J Mol Sci 2015; 16: 27677-27706.
    • (2015) Int J Mol Sci , vol.16 , pp. 27677-27706
    • Hacker, M.C.1    Nawaz, H.A.2
  • 255
    • 84958940753 scopus 로고    scopus 로고
    • Synthesis and functionalization of dendron-polymer conjugate based hydrogels via sequential thiol-ene click reactions
    • Kaga S, Gevrek TN, Sanyal A et al. Synthesis and functionalization of dendron-polymer conjugate based hydrogels via sequential thiol-ene "click" reactions. J Polym Sci Pol Chem 2016; 54: 926-934.
    • (2016) J Polym Sci Pol Chem , vol.54 , pp. 926-934
    • Kaga, S.1    Gevrek, T.N.2    Sanyal, A.3
  • 256
    • 61549109884 scopus 로고    scopus 로고
    • Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties
    • Jeon O, Bouhadir KH, Mansour JM et al. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 2009; 30: 2724-2734.
    • (2009) Biomaterials , vol.30 , pp. 2724-2734
    • Jeon, O.1    Bouhadir, K.H.2    Mansour, J.M.3
  • 257
    • 35348874191 scopus 로고    scopus 로고
    • Review: Photopolymerizable and degradable biomaterials for tissue engineering applications
    • Ifkovits JL, Burdick JA. Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 2007; 13: 2369-2385.
    • (2007) Tissue Eng , vol.13 , pp. 2369-2385
    • Ifkovits, J.L.1    Burdick, J.A.2
  • 258
    • 79952103414 scopus 로고    scopus 로고
    • Photopolymerized water-soluble chitosanbased hydrogel as potential use in tissue engineering
    • Zhou Y, Ma G, Shi S et al. Photopolymerized water-soluble chitosanbased hydrogel as potential use in tissue engineering. Int J Biol Macromol 2011; 48: 408-413.
    • (2011) Int J Biol Macromol , vol.48 , pp. 408-413
    • Zhou, Y.1    Ma, G.2    Shi, S.3
  • 259
    • 84862827675 scopus 로고    scopus 로고
    • Visible light crosslinkable chitosan hydrogels for tissue engineering
    • Hu J, Hou Y, Park H et al. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater 2012; 8: 1730-1738.
    • (2012) Acta Biomater , vol.8 , pp. 1730-1738
    • Hu, J.1    Hou, Y.2    Park, H.3
  • 260
    • 0035656898 scopus 로고    scopus 로고
    • Controlled-release of IGF-I and TGF-?1 in a photopolymerizing hydrogel for cartilage tissue engineering
    • Elisseeff J, McIntosh W, Fu K et al. Controlled-release of IGF-I and TGF-?1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res 2001; 19: 1098-1104.
    • (2001) J Orthop Res , vol.19 , pp. 1098-1104
    • Elisseeff, J.1    McIntosh, W.2    Fu, K.3
  • 261
    • 84959422646 scopus 로고    scopus 로고
    • Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications
    • Cho IS, Cho MO, Li Z et al. Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications. Carbohydr Polym 2016; 144: 59-67.
    • (2016) Carbohydr Polym , vol.144 , pp. 59-67
    • Cho, I.S.1    Cho, M.O.2    Li, Z.3
  • 262
    • 79956126266 scopus 로고    scopus 로고
    • A printable photopolymerizable thermosensitive p HPMAm-lactate)-peg hydrogel for tissue engineering
    • Censi R, Schuurman W, Malda J et al. A printable photopolymerizable thermosensitive p(HPMAm-lactate)-peg hydrogel for tissue engineering. Adv Funct Mater 2011; 21: 1833-1842.
    • (2011) Adv Funct Mater , vol.21 , pp. 1833-1842
    • Censi, R.1    Schuurman, W.2    Malda, J.3
  • 263
    • 84914702977 scopus 로고    scopus 로고
    • Injectable and cross-linkable polyphosphazene hydrogels for space-filling scaffolds
    • Huang Z, Liu X, Chen S et al. Injectable and cross-linkable polyphosphazene hydrogels for space-filling scaffolds. Polym Chem 2015; 6: 143-149.
    • (2015) Polym Chem , vol.6 , pp. 143-149
    • Huang, Z.1    Liu, X.2    Chen, S.3
  • 264
    • 84923315776 scopus 로고    scopus 로고
    • Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering
    • Kim HD, Heo J, Hwang Y et al. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering. Tissue Eng Part A 2015; 21: 757-766.
    • (2015) Tissue Eng Part A , vol.21 , pp. 757-766
    • Kim, H.D.1    Heo, J.2    Hwang, Y.3
  • 265
    • 45849144744 scopus 로고    scopus 로고
    • Synthesis and characterization of injectable photocrosslinking poly (ethylene glycol) diacrylate based hydrogels
    • Tan G, Wang Y, Li J et al. Synthesis and characterization of injectable photocrosslinking poly (ethylene glycol) diacrylate based hydrogels. Polym Bull 2008; 61: 91-98.
    • (2008) Polym Bull , vol.61 , pp. 91-98
    • Tan, G.1    Wang, Y.2    Li, J.3
  • 266
    • 70349245050 scopus 로고    scopus 로고
    • Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo
    • Chou AI, Akintoye SO, Nicoll SB. Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulposus cells in vivo. Osteoarthr Cartilage 2009; 17: 1377-1384.
    • (2009) Osteoarthr Cartilage , vol.17 , pp. 1377-1384
    • Chou, A.I.1    Akintoye, S.O.2    Nicoll, S.B.3
  • 267
    • 78650901996 scopus 로고    scopus 로고
    • Injectable and photopolymerizable tissue-engineered auricular cartilage using poly (ethylene glycol) dimethacrylate copolymer hydrogels
    • Papadopoulos A, Bichara DA, Zhao X et al. Injectable and photopolymerizable tissue-engineered auricular cartilage using poly (ethylene glycol) dimethacrylate copolymer hydrogels. Tissue Eng Part A 2011; 17: 161-169.
    • (2011) Tissue Eng Part A , vol.17 , pp. 161-169
    • Papadopoulos, A.1    Bichara, D.A.2    Zhao, X.3
  • 268
    • 84885001724 scopus 로고    scopus 로고
    • Epidemiology of fracture risk with advancing age
    • Ensrud KE. Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci 2013; 68: 1236-1242.
    • (2013) J Gerontol A Biol Sci Med Sci , vol.68 , pp. 1236-1242
    • Ensrud, K.E.1
  • 269
    • 84878853171 scopus 로고    scopus 로고
    • The international costs and utilities related to osteoporotic fractures study (ICUROS)-quality of life during the first 4 months after fracture
    • Borgstrom F, Lekander I, Ivergard M et al. The international costs and utilities related to osteoporotic fractures study (ICUROS)-quality of life during the first 4 months after fracture. Osteoporos Int 2013; 24: 811-823.
    • (2013) Osteoporos Int , vol.24 , pp. 811-823
    • Borgstrom, F.1    Lekander, I.2    Ivergard, M.3
  • 270
    • 84921355116 scopus 로고    scopus 로고
    • Effect of cell origin and timing of delivery for stem cell-based bone tissue engineering using biologically functionalized hydrogels
    • Dosier CR, Uhrig BA, Willett NJ et al. Effect of cell origin and timing of delivery for stem cell-based bone tissue engineering using biologically functionalized hydrogels. Tissue Eng Part A 2015; 21: 156-165.
    • (2015) Tissue Eng Part A , vol.21 , pp. 156-165
    • Dosier, C.R.1    Uhrig, B.A.2    Willett, N.J.3
  • 271
    • 84979220581 scopus 로고    scopus 로고
    • Development of PLGA-coated beta-TCP scaffolds containing VEGF for bone tissue engineering
    • Khojasteh A, Fahimipour F, Eslaminejad MB et al. Development of PLGA-coated beta-TCP scaffolds containing VEGF for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2016; 69: 780-788.
    • (2016) Mater Sci Eng C Mater Biol Appl , vol.69 , pp. 780-788
    • Khojasteh, A.1    Fahimipour, F.2    Eslaminejad, M.B.3
  • 272
    • 57449098439 scopus 로고    scopus 로고
    • Preparation of injectable 3D-formed ?-tricalcium phosphate bead/alginate composite for bone tissue engineering
    • Matsuno T, Hashimoto Y, Adachi S et al. Preparation of injectable 3D-formed ?-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dent Mater J 2008; 27: 827-834.
    • (2008) Dent Mater J , vol.27 , pp. 827-834
    • Matsuno, T.1    Hashimoto, Y.2    Adachi, S.3
  • 273
    • 84885032914 scopus 로고    scopus 로고
    • The calcium silicate/alginate composite: Preparation and evaluation of its behavior as bioactive injectable hydrogels
    • Han Y, Zeng Q, Li H et al. The calcium silicate/alginate composite: Preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomater 2013; 9: 9107-9117.
    • (2013) Acta Biomater , vol.9 , pp. 9107-9117
    • Han, Y.1    Zeng, Q.2    Li, H.3
  • 274
    • 71649111628 scopus 로고    scopus 로고
    • Injectable hydrogels based on chitosan derivative/polyethylene glycol dimethacrylate/N,N-dimethylacrylamide as bone tissue engineering matrix
    • Ma G, Yang D, Li Q et al. Injectable hydrogels based on chitosan derivative/polyethylene glycol dimethacrylate/N,N-dimethylacrylamide as bone tissue engineering matrix. Carbohydr Polym 2010; 79: 620-627.
    • (2010) Carbohydr Polym , vol.79 , pp. 620-627
    • Ma, G.1    Yang, D.2    Li, Q.3
  • 275
    • 84883223489 scopus 로고    scopus 로고
    • Novel biomimetic thermosensitive beta-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering
    • Dessi M, Borzacchiello A, Mohamed TH et al. Novel biomimetic thermosensitive beta-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res A 2013; 101: 2984-2993.
    • (2013) J Biomed Mater Res A , vol.101 , pp. 2984-2993
    • Dessi, M.1    Borzacchiello, A.2    Mohamed, T.H.3
  • 276
    • 84874829989 scopus 로고    scopus 로고
    • A promising injectable scaffold: The biocompatibility and effect on osteogenic differentiation of mesenchymal stem cells
    • Ding K, Zhang YL, Yang Z et al. A promising injectable scaffold: The biocompatibility and effect on osteogenic differentiation of mesenchymal stem cells. Biotechnol Bioproc E 2013; 18: 155-163.
    • (2013) Biotechnol Bioproc e , vol.18 , pp. 155-163
    • Ding, K.1    Zhang, Y.L.2    Yang, Z.3
  • 277
    • 84982994779 scopus 로고    scopus 로고
    • In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivoforming hydrogel
    • Jang JY, Park SH, Park JH et al. In vivo osteogenic differentiation of human dental pulp stem cells embedded in an injectable in vivoforming hydrogel. Macromol Biosci 2016; 16: 1158-1169.
    • (2016) Macromol Biosci , vol.16 , pp. 1158-1169
    • Jang, J.Y.1    Park, S.H.2    Park, J.H.3
  • 278
    • 84958087988 scopus 로고    scopus 로고
    • Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering
    • Vo TN, Shah SR, Lu S et al. Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering. Biomaterials 2016; 83: 1-11.
    • (2016) Biomaterials , vol.83 , pp. 1-11
    • Vo, T.N.1    Shah, S.R.2    Lu, S.3
  • 279
    • 73349129378 scopus 로고    scopus 로고
    • Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)- poly(?-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites
    • Fu S, Guo G, Gong C et al. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)- poly(?-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B 2009; 113: 16518-16525.
    • (2009) J Phys Chem B , vol.113 , pp. 16518-16525
    • Fu, S.1    Guo, G.2    Gong, C.3
  • 280
    • 84859833364 scopus 로고    scopus 로고
    • Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration
    • Fu S, Ni P, Wang B et al. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 2012; 33: 4801-4809.
    • (2012) Biomaterials , vol.33 , pp. 4801-4809
    • Fu, S.1    Ni, P.2    Wang, B.3
  • 281
    • 84862944832 scopus 로고    scopus 로고
    • A rheological study of biodegradable injectable PEGMC/HA composite scaffolds
    • Jiao Y, Gyawali D, Stark JM et al. A rheological study of biodegradable injectable PEGMC/HA composite scaffolds. Soft Matter 2012; 8: 1499-1507.
    • (2012) Soft Matter , vol.8 , pp. 1499-1507
    • Jiao, Y.1    Gyawali, D.2    Stark, J.M.3
  • 282
    • 84964375906 scopus 로고    scopus 로고
    • An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering
    • Huang Y, Zhang X, Wu A et al. An injectable nano-hydroxyapatite (n-HA)/glycol chitosan (G-CS)/hyaluronic acid (HyA) composite hydrogel for bone tissue engineering. RSC Adv 2016; 6: 33529-33536.
    • (2016) RSC Adv , vol.6 , pp. 33529-33536
    • Huang, Y.1    Zhang, X.2    Wu, A.3
  • 283
    • 84859378531 scopus 로고    scopus 로고
    • Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: Preparation, characterization and in vitro release behavior
    • Lin G, Cosimbescu L, Karin NJ et al. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior. Biomed Mater 2012; 7: 024107.
    • (2012) Biomed Mater , vol.7 , pp. 024107
    • Lin, G.1    Cosimbescu, L.2    Karin, N.J.3
  • 284
    • 84959569738 scopus 로고    scopus 로고
    • Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering
    • Yan J, Miao Y, Tan H et al. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2016; 63: 274-284.
    • (2016) Mater Sci Eng C Mater Biol Appl , vol.63 , pp. 274-284
    • Yan, J.1    Miao, Y.2    Tan, H.3
  • 285
    • 80051552844 scopus 로고    scopus 로고
    • Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-kappaB activation
    • Yamaguchi M, Weitzmann MN. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-kappaB activation. Mol Cell Biochem 2011; 355: 179-186.
    • (2011) Mol Cell Biochem , vol.355 , pp. 179-186
    • Yamaguchi, M.1    Weitzmann, M.N.2
  • 286
    • 84871432112 scopus 로고    scopus 로고
    • A novel injectable temperature-sensitive zinc doped chitosan/beta-glycerophosphate hydrogel for bone tissue engineering
    • Niranjan R, Koushik C, Saravanan S et al. A novel injectable temperature-sensitive zinc doped chitosan/beta-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 2013; 54: 24-29.
    • (2013) Int J Biol Macromol , vol.54 , pp. 24-29
    • Niranjan, R.1    Koushik, C.2    Saravanan, S.3
  • 287
    • 84931264437 scopus 로고    scopus 로고
    • Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo
    • Dhivya S, Saravanan S, Sastry TP et al. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnol 2015; 13: 40.
    • (2015) J Nanobiotechnol , vol.13 , pp. 40
    • Dhivya, S.1    Saravanan, S.2    Sastry, T.P.3
  • 288
    • 84904976163 scopus 로고    scopus 로고
    • Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses
    • Douglas TE, Piwowarczyk W, Pamula E et al. Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed Mater 2014; 9: 045014.
    • (2014) Biomed Mater , vol.9 , pp. 045014
    • Douglas, T.E.1    Piwowarczyk, W.2    Pamula, E.3
  • 289
    • 84924301226 scopus 로고    scopus 로고
    • Bioactive hydrogel-nanosilica hybrid materials: A potential injectable scaffold for bone tissue engineering
    • Lewandowska-?a?cucka J, Fiejdasz S, Rodzik ? et al. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Biomed Mater 2015; 10: 015020.
    • (2015) Biomed Mater , vol.10 , pp. 015020
    • Lewandowska-Acucka, J.1    Fiejdasz, S.2    Rodzik3
  • 290
    • 84977557920 scopus 로고    scopus 로고
    • Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects
    • Vishnu Priya M, Sivshanmugam A, Boccaccini AR et al. Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Biomed Mater 2016; 11: 035017.
    • (2016) Biomed Mater , vol.11 , pp. 035017
    • Vishnu Priya, M.1    Sivshanmugam, A.2    Boccaccini, A.R.3
  • 291
    • 85020055529 scopus 로고    scopus 로고
    • In situ forming glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering
    • Ren K, He C, Li G et al. In situ forming glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. J Control Release 2015; 213: E64-E65.
    • (2015) J Control Release , vol.213 , pp. E64-E65
    • Ren, K.1    He, C.2    Li, G.3
  • 292
    • 84925134881 scopus 로고    scopus 로고
    • Injectable silk-polyethylene glycol hydrogels
    • Wang X, Partlow B, Liu J et al. Injectable silk-polyethylene glycol hydrogels. Acta Biomater 2015; 12: 51-61.
    • (2015) Acta Biomater , vol.12 , pp. 51-61
    • Wang, X.1    Partlow, B.2    Liu, J.3
  • 293
    • 84928301240 scopus 로고    scopus 로고
    • Chondrogenic potential of injectable kappa-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue engineering applications
    • Popa EG, Caridade SG, Mano JF et al. Chondrogenic potential of injectable kappa-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue engineering applications. J Tissue Eng Regen Med 2015; 9: 550-563.
    • (2015) J Tissue Eng Regen Med , vol.9 , pp. 550-563
    • Popa, E.G.1    Caridade, S.G.2    Mano, J.F.3
  • 294
    • 79955409005 scopus 로고    scopus 로고
    • Pectin-based injectable biomaterials for bone tissue engineering
    • Munarin F, Guerreiro SG, Grellier MA et al. Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules 2011; 12: 568-577.
    • (2011) Biomacromolecules , vol.12 , pp. 568-577
    • Munarin, F.1    Guerreiro, S.G.2    Grellier, M.A.3
  • 295
    • 84930628090 scopus 로고    scopus 로고
    • An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration
    • Wu J, Ding Q, Dutta A et al. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomater 2015; 16: 49-59.
    • (2015) Acta Biomater , vol.16 , pp. 49-59
    • Wu, J.1    Ding, Q.2    Dutta, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.