메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering

Author keywords

[No Author keywords available]

Indexed keywords

CHONDROITIN SULFATE; CYANOACRYLATE DERIVATIVE; GRAPHITE; POLY(ETHYLCYANOACRYLATE);

EID: 84929179994     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep09879     Document Type: Article
Times cited : (148)

References (55)
  • 2
    • 84868473053 scopus 로고    scopus 로고
    • The use of type i collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair
    • Zhang, W. et al. The use of type I collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials. 34, 713-723 (2013).
    • (2013) Biomaterials , vol.34 , pp. 713-723
    • Zhang, W.1
  • 3
    • 84885937068 scopus 로고    scopus 로고
    • Tissue engineering: Chondrocytes and cartilage
    • Hardingham, T., Tew, S. & Murdoch, A. Tissue engineering: chondrocytes and cartilage. Arthritis. Res. 4, S63-68 (2002).
    • (2002) Arthritis. Res , vol.4 , pp. S63-68
    • Hardingham, T.1    Tew, S.2    Murdoch, A.3
  • 4
    • 84928484351 scopus 로고    scopus 로고
    • Bone tissue engineering via nanostructured calciumphosphate biomaterials and stem cells
    • Wang, P. et al. Bone tissue engineering via nanostructured calciumphosphate biomaterials and stem cells. Bone Res. 2, 14017; doi:10.1038/boneres.2014.17, (2014).
    • (2014) Bone Res , vol.2 , pp. 14017
    • Wang, P.1
  • 5
    • 80055102650 scopus 로고    scopus 로고
    • Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering
    • Bor, W. T., Tung, W. C., Wen, H. C., Hsuan, W. K. & Jiy, M. W. Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta. Biomaterialia. 7, 4187-4194 (2011).
    • (2011) Acta. Biomaterialia , vol.7 , pp. 4187-4194
    • Bor, W.T.1    Tung, W.C.2    Wen, H.C.3    Hsuan, W.K.4    Jiy, M.W.5
  • 6
    • 0036262505 scopus 로고    scopus 로고
    • Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage sefects of the knee
    • Ochi, M., Uchio, Y., Kawasaki, K., Wakitani, S. & Iwasa, J. Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage sefects of the knee. J. Bone Joint. Surg. Br. 84, 571-578 (2002).
    • (2002) J. Bone Joint. Surg. Br , vol.84 , pp. 571-578
    • Ochi, M.1    Uchio, Y.2    Kawasaki, K.3    Wakitani, S.4    Iwasa, J.5
  • 7
    • 0037086744 scopus 로고    scopus 로고
    • Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering
    • Marijnissen, W. J. et al. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials. 23, 1511-1517 (2002).
    • (2002) Biomaterials , vol.23 , pp. 1511-1517
    • Marijnissen, W.J.1
  • 8
    • 48849085713 scopus 로고    scopus 로고
    • Results of chondrocyte implantation with a fibrin-hyaluronan matrix: A preliminary study
    • Nehrer, S., Chiari, C., Domayer, S., Barkay, H. & Yayon, A. Results of chondrocyte implantation with a fibrin-hyaluronan matrix: a preliminary study. Clin. Orthop. Relat. Res. 466, 1849-1855 (2008).
    • (2008) Clin. Orthop. Relat. Res , vol.466 , pp. 1849-1855
    • Nehrer, S.1    Chiari, C.2    Domayer, S.3    Barkay, H.4    Yayon, A.5
  • 9
    • 84857781639 scopus 로고    scopus 로고
    • The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation
    • Teixeira, L. S. M. et al. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation. Biomaterials. 33, 3651-3661 (2012).
    • (2012) Biomaterials , vol.33 , pp. 3651-3661
    • Teixeira, L.S.M.1
  • 10
    • 34548644365 scopus 로고    scopus 로고
    • Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds
    • Zwingmann, J. et al. Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds. Tissue. Eng. 13, 2335-2343 (2007).
    • (2007) Tissue. Eng , vol.13 , pp. 2335-2343
    • Zwingmann, J.1
  • 11
    • 33746301785 scopus 로고    scopus 로고
    • Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineerin0g
    • Lee, C. T., Huang, C. P. & Lee, Y. D. Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineerin0g. Biomacromolecules. 7, 2200-2209 (2006).
    • (2006) Biomacromolecules , vol.7 , pp. 2200-2209
    • Lee, C.T.1    Huang, C.P.2    Lee, Y.D.3
  • 12
    • 84865021298 scopus 로고    scopus 로고
    • Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects
    • Kim, M. et al. Composite system of PLCL scaffold and heparin-based hydrogel for regeneration of partial-thickness cartilage defects. Biomacromolecules. 13, 2287-2298 (2012).
    • (2012) Biomacromolecules , vol.13 , pp. 2287-2298
    • Kim, M.1
  • 13
    • 84892758322 scopus 로고    scopus 로고
    • Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells
    • Izumikawa, T., Sato, B. & Kitagawa, H. Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells. Sci. Rep. 4, 3701-3712 (2014).
    • (2014) Sci. Rep , vol.4 , pp. 3701-3712
    • Izumikawa, T.1    Sato, B.2    Kitagawa, H.3
  • 14
    • 60949111890 scopus 로고    scopus 로고
    • Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering
    • Ko, C. S., Huang, J. P., Huang, C. W. & Chu, I. M. Type II collagen-chondroitin sulfate-hyaluronan scaffold cross-linked by genipin for cartilage tissue engineering. J. Biosci. Bioeng. 107, 177-182 (2009).
    • (2009) J. Biosci. Bioeng , vol.107 , pp. 177-182
    • Ko, C.S.1    Huang, J.P.2    Huang, C.W.3    Chu, I.M.4
  • 15
    • 75149189930 scopus 로고    scopus 로고
    • A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel
    • Strehin, I., Nahas, Z., Arora, K., Nguyen, T. & Elisseeff, J. A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials. 31, 2788-2797 (2010).
    • (2010) Biomaterials , vol.31 , pp. 2788-2797
    • Strehin, I.1    Nahas, Z.2    Arora, K.3    Nguyen, T.4    Elisseeff, J.5
  • 16
    • 33746571494 scopus 로고    scopus 로고
    • Experimental study on gelatin-chondroitin sulfate-sodium hyaluronate tri-copolymer as novel scaffolds for cartilage tissue engineering
    • Fan, H. B., Hu, Y. Y. & Li, X. S. Experimental study on gelatin-chondroitin sulfate-sodium hyaluronate tri-copolymer as novel scaffolds for cartilage tissue engineering. Chin. J. Repara. Reconstr. Surg. 19, 473-477 (2005).
    • (2005) Chin. J. Repara. Reconstr. Surg , vol.19 , pp. 473-477
    • Fan, H.B.1    Hu, Y.Y.2    Li, X.S.3
  • 17
    • 34247863703 scopus 로고    scopus 로고
    • Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration
    • Wang, D. A. et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat. Mater. 6, 385-392 (2007).
    • (2007) Nat. Mater , vol.6 , pp. 385-392
    • Wang, D.A.1
  • 18
    • 0032751119 scopus 로고    scopus 로고
    • Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films
    • Ishaug-Riley, S. L., Okun, L. E., Prado, G., Applegate, M. A. & Ratcliffe, A. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials. 20, 2245-2256 (1999).
    • (1999) Biomaterials , vol.20 , pp. 2245-2256
    • Ishaug-Riley, S.L.1    Okun, L.E.2    Prado, G.3    Applegate, M.A.4    Ratcliffe, A.5
  • 19
    • 44149114767 scopus 로고    scopus 로고
    • A porous PCL scaffold promotes the guman chondrocytes redifferentiation and hyaline-specific extracellular matrix protein synthesis
    • Garcia-Giralt, N. et al. A porous PCL scaffold promotes the guman chondrocytes redifferentiation and hyaline-specific extracellular matrix protein synthesis. J. Biomed. Mater. Res. A. 85, 1082-1089 (2008).
    • (2008) J. Biomed. Mater. Res. A , vol.85 , pp. 1082-1089
    • Garcia-Giralt, N.1
  • 20
    • 0019802018 scopus 로고
    • Aliphatic polyesters II: The degradation of poly(D, L-lactide), Poly(epsilon-caprolactone), and their copolymers in vivo
    • Pitt, G. G., Gratzl, M. M., Kimmel, G. L., Surles, J. & Schindler, A. Aliphatic polyesters II: the degradation of poly(D, L-lactide), Poly(epsilon-caprolactone), and their copolymers in vivo. Biomaterials. 2, 215-220 (1981).
    • (1981) Biomaterials , vol.2 , pp. 215-220
    • Pitt, G.G.1    Gratzl, M.M.2    Kimmel, G.L.3    Surles, J.4    Schindler, A.5
  • 21
    • 70349906286 scopus 로고    scopus 로고
    • Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses
    • Hoque, M. E. et al. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Tissue Eng. A. 15, 3013-3024 (2009).
    • (2009) Tissue Eng. A , vol.15 , pp. 3013-3024
    • Hoque, M.E.1
  • 22
    • 84856200874 scopus 로고    scopus 로고
    • Smart hybrid materials equipped by nanoreservoirs of therapeutics
    • Mendoza-Palomares, C. et al. Smart hybrid materials equipped by nanoreservoirs of therapeutics. ACS. Nano. 6, 483-490 (2012).
    • (2012) ACS. Nano , vol.6 , pp. 483-490
    • Mendoza-Palomares, C.1
  • 23
    • 0036859739 scopus 로고    scopus 로고
    • Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cyto-compatibility of human endothelial cells
    • Zhu, Y., Gao, C., Liu, X. & Shen, J. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cyto-compatibility of human endothelial cells. Biomacromolecules. 3, 1312-1319 (2002).
    • (2002) Biomacromolecules , vol.3 , pp. 1312-1319
    • Zhu, Y.1    Gao, C.2    Liu, X.3    Shen, J.4
  • 24
    • 62149130803 scopus 로고    scopus 로고
    • Synthesis and characterization of biodegradable pH-sensitive hydrogels based on poly(ε-caprolactone), methacrylic acid, and poly(ethylene glycol)
    • Wang, K. et al. Synthesis and characterization of biodegradable pH-sensitive hydrogels based on poly(ε-caprolactone), methacrylic acid, and poly(ethylene glycol). Polym. Degrada. Stab. 94, 730-737 (2009).
    • (2009) Polym. Degrada. Stab , vol.94 , pp. 730-737
    • Wang, K.1
  • 25
    • 5044229560 scopus 로고    scopus 로고
    • Degradation behavior of poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) micelles in aqueous solution
    • Hu, Y. et al. Degradation behavior of poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) micelles in aqueous solution. Biomacromolecules. 4, 1756-1762 (2004).
    • (2004) Biomacromolecules , vol.4 , pp. 1756-1762
    • Hu, Y.1
  • 26
    • 84877803299 scopus 로고    scopus 로고
    • The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs
    • Rowland, C. R., Lennon, D. P., Caplan, A. I. & Guilak, F. The effects of crosslinking of scaffolds engineered from cartilage ECM on the chondrogenic differentiation of MSCs. Biomaterials. 34, 5802-5812 (2013).
    • (2013) Biomaterials , vol.34 , pp. 5802-5812
    • Rowland, C.R.1    Lennon, D.P.2    Caplan, A.I.3    Guilak, F.4
  • 27
    • 0032941232 scopus 로고    scopus 로고
    • Alginate hydrogels as synthetic extracellular matrix materials
    • Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 20, 45-53 (1999).
    • (1999) Biomaterials , vol.20 , pp. 45-53
    • Rowley, J.A.1    Madlambayan, G.2    Mooney, D.J.3
  • 28
    • 34249819953 scopus 로고    scopus 로고
    • The extracellular matrix as a biologic scaffold material
    • Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials. 28, 3587-3593 (2007).
    • (2007) Biomaterials , vol.28 , pp. 3587-3593
    • Badylak, S.F.1
  • 29
    • 84869192722 scopus 로고    scopus 로고
    • Graphene oxide: Preparation, functionalization, and electrochemical applications
    • Chen, D., Feng, H. & Li, J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 12, 6027-6053 (2011).
    • (2011) Chem. Rev , vol.12 , pp. 6027-6053
    • Chen, D.1    Feng, H.2    Li, J.3
  • 30
    • 84880086389 scopus 로고    scopus 로고
    • Large-range control of the microstructures and properties of three-dimensional porous graphene
    • Xie, X. et al. Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 3, 2117 (2013).
    • (2013) Sci. Rep , vol.3 , pp. 2117
    • Xie, X.1
  • 31
    • 84856202952 scopus 로고    scopus 로고
    • Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation
    • Shin, S. R. et al. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano. 6, 362-372 (2012).
    • (2012) ACS Nano , vol.6 , pp. 362-372
    • Shin, S.R.1
  • 32
    • 84881131666 scopus 로고    scopus 로고
    • Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers
    • Ramón-Azcón, J. et al. Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv. Mater. 25, 4028-4034 (2013).
    • (2013) Adv. Mater , vol.25 , pp. 4028-4034
    • Ramón-Azcón, J.1
  • 33
    • 84897867251 scopus 로고    scopus 로고
    • Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells
    • Li, N. et al. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. (UK). 3, 1-6 (2013).
    • (2013) Sci. Rep. (UK) , vol.3 , pp. 1-6
    • Li, N.1
  • 34
    • 33847690144 scopus 로고    scopus 로고
    • The rise of graphene
    • Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183-191 (2007).
    • (2007) Nat. Mater , vol.6 , pp. 183-191
    • Geim, A.K.1    Novoselov, K.S.2
  • 35
    • 67049114637 scopus 로고    scopus 로고
    • Chemical methods for the production of graphene
    • Park, S. & Ruoff, R. S. Chemical methods for the production of graphene. Nat. Nanotechnol. 4, 217-224 (2009).
    • (2009) Nat. Nanotechnol , vol.4 , pp. 217-224
    • Park, S.1    Ruoff, R.S.2
  • 37
    • 84886436563 scopus 로고    scopus 로고
    • A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide
    • Wang, C. et al. A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Adv. Mater. 25, 5785-5790 (2013).
    • (2013) Adv. Mater , vol.25 , pp. 5785-5790
    • Wang, C.1
  • 38
    • 79959787621 scopus 로고    scopus 로고
    • Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells
    • Nayak, T. R. et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 5, 4670-4678 (2011).
    • (2011) ACS Nano , vol.5 , pp. 4670-4678
    • Nayak, T.R.1
  • 39
    • 77649186281 scopus 로고    scopus 로고
    • Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-copoly( ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone
    • Wang, K. et al. Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-copoly( ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone. Int. J. Pharm. 389, 130- 138 (2010).
    • (2010) Int. J. Pharm , vol.389 , pp. 130-138
    • Wang, K.1
  • 40
    • 45749090726 scopus 로고    scopus 로고
    • Evaluation of chondrogenesis in collagen/chitosan/glycosaminoglycan scaffolds for cartilage tissue engineering
    • Lee, J. E. et al. Evaluation of chondrogenesis in collagen/chitosan/glycosaminoglycan scaffolds for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 2, 41-49 (2005).
    • (2005) J. Tissue Eng. Regen. Med , vol.2 , pp. 41-49
    • Lee, J.E.1
  • 41
    • 0034779004 scopus 로고    scopus 로고
    • Sodium alginate sponges with or without sodium hyaluronate: In vitro engineering of cartilage
    • Miralles, G. et al. Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage. J. Biomed. Mater. Res. 57, 268-278 (2001).
    • (2001) J. Biomed. Mater. Res , vol.57 , pp. 268-278
    • Miralles, G.1
  • 42
    • 84897085750 scopus 로고    scopus 로고
    • A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering
    • Mazaki, T. et al. A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering. Sci. Rep. 4, 4457-4458 (2014).
    • (2014) Sci. Rep , vol.4 , pp. 4457-4458
    • Mazaki, T.1
  • 43
    • 21844438003 scopus 로고    scopus 로고
    • Porous scaffold design for tissue engineering
    • Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 4, 518-524 (2015).
    • (2015) Nat. Mater , vol.4 , pp. 518-524
    • Hollister, S.J.1
  • 46
    • 84881662930 scopus 로고    scopus 로고
    • Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering
    • Rennerfeldt, D. A., Renth, A. N., Talata, Z., Gehrke, S. H., & Detamore, M. S. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials. 34, 8241-8257 (2013).
    • (2013) Biomaterials , vol.34 , pp. 8241-8257
    • Rennerfeldt, D.A.1    Renth, A.N.2    Talata, Z.3    Gehrke, S.H.4    Detamore, M.S.5
  • 47
    • 79957879066 scopus 로고    scopus 로고
    • Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering
    • Bhardwaj, N. et al. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials. 32, 5773-5781 (2011).
    • (2011) Biomaterials , vol.32 , pp. 5773-5781
    • Bhardwaj, N.1
  • 48
    • 34247360061 scopus 로고    scopus 로고
    • Cartilage tissue engineering and bio-reactor systems for the cultivation and stimulation of chondrocytes
    • Schulz, R. M. & Bader, A. Cartilage tissue engineering and bio-reactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. Biophys. Lett. 36, 539-568 (2007).
    • (2007) Eur. Biophys. J. Biophys. Lett , vol.36 , pp. 539-568
    • Schulz, R.M.1    Bader, A.2
  • 49
    • 0026756502 scopus 로고
    • Preliminary observations of chondral abrasion in a canine model
    • Altman, R. D., Kates, J., Chun, L. E., Dean, D. D. & Eyre, D. Preliminary observations of chondral abrasion in a canine model. Ann. Rheum. Dis. 51, 1056-1062 (1992).
    • (1992) Ann. Rheum. Dis , vol.51 , pp. 1056-1062
    • Altman, R.D.1    Kates, J.2    Chun, L.E.3    Dean, D.D.4    Eyre, D.5
  • 50
    • 77954383446 scopus 로고    scopus 로고
    • Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells
    • Toh, W. S. et al. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials. 31, 6968-6980 (2010).
    • (2010) Biomaterials , vol.31 , pp. 6968-6980
    • Toh, W.S.1
  • 51
    • 33747048195 scopus 로고    scopus 로고
    • Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold
    • Fan, H. B. et al. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials. 27, 4573-4580 (2006).
    • (2006) Biomaterials , vol.27 , pp. 4573-4580
    • Fan, H.B.1
  • 52
    • 0346335850 scopus 로고    scopus 로고
    • Photocrosslinkable polysaccharides based on chondroitin sulfate
    • Li, Q. et al. Photocrosslinkable polysaccharides based on chondroitin sulfate. J. Biomed. Mater. Res. A. 68, 28-33 (2004).
    • (2004) J. Biomed. Mater. Res. A , vol.68 , pp. 28-33
    • Li, Q.1
  • 53
    • 39149116725 scopus 로고    scopus 로고
    • Degradation behaviors of monomethoxy poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles in aqueous solution
    • Shen, C., Guo, S. & Lu, C. Degradation behaviors of monomethoxy poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles in aqueous solution. Polym. Adv. Technol. 19, 66-72 (2008).
    • (2008) Polym. Adv. Technol , vol.19 , pp. 66-72
    • Shen, C.1    Guo, S.2    Lu, C.3
  • 54
    • 84864496542 scopus 로고    scopus 로고
    • Synthesis and characterization of pH-sensitive hydrogel based on methoxyl poly(ethylene glycol), poly(caprolactone) and itaconic acid for delivery of doxorubicin
    • Song, J. et al. Synthesis and characterization of pH-sensitive hydrogel based on methoxyl poly(ethylene glycol), poly(caprolactone) and itaconic acid for delivery of doxorubicin. Adv. Sci. Lett. 16, 130-136 (2012).
    • (2012) Adv. Sci. Lett , vol.16 , pp. 130-136
    • Song, J.1
  • 55
    • 78650092372 scopus 로고    scopus 로고
    • Improved synthesis of graphene oxide
    • Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano. 4, 4806-4814 (2010).
    • (2010) ACS Nano , vol.4 , pp. 4806-4814
    • Marcano, D.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.