-
1
-
-
67649225738
-
Graphene: status and prospects
-
[1] Geim, A.K., Graphene: status and prospects. Science 324 (2009), 1530–1534.
-
(2009)
Science
, vol.324
, pp. 1530-1534
-
-
Geim, A.K.1
-
2
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
[2] Novoselov, K.S., Geim, A.K., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S.a., Grigorieva, I., Firsov, A., Electric field effect in atomically thin carbon films. Science 306 (2004), 666–669.
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.A.6
Grigorieva, I.7
Firsov, A.8
-
3
-
-
43449107662
-
Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
-
[3] Eda, G., Fanchini, G., Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3 (2008), 270–274.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 270-274
-
-
Eda, G.1
Fanchini, G.2
Chhowalla, M.3
-
4
-
-
57349090160
-
Current saturation in zero-bandgap, top-gated graphene field-effect transistors
-
[4] Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L., Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3 (2008), 654–659.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 654-659
-
-
Meric, I.1
Han, M.Y.2
Young, A.F.3
Ozyilmaz, B.4
Kim, P.5
Shepard, K.L.6
-
5
-
-
85000349745
-
Graphene/poly(aniline-co-pyrrole) nanocomposite: potential candidate for supercapacitor and microwave absorbing applications
-
[5] Sahoo, S., Bhattacharya, P., Dhibar, S., Hatui, G., Das, T., Das, C.K., Graphene/poly(aniline-co-pyrrole) nanocomposite: potential candidate for supercapacitor and microwave absorbing applications. J. Nanosci. Nanotechnol. 15 (2015), 6931–6941.
-
(2015)
J. Nanosci. Nanotechnol.
, vol.15
, pp. 6931-6941
-
-
Sahoo, S.1
Bhattacharya, P.2
Dhibar, S.3
Hatui, G.4
Das, T.5
Das, C.K.6
-
6
-
-
84955304102
-
Hierarchical graphene-containing carbon nanofibers for lithium-ion battery anodes
-
[6] Dufficy, M.K., Khan, S.A., Fedkiw, P., Hierarchical graphene-containing carbon nanofibers for lithium-ion battery anodes. ACS Appl. Mater. Interfaces 8 (2016), 1327–1336.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 1327-1336
-
-
Dufficy, M.K.1
Khan, S.A.2
Fedkiw, P.3
-
7
-
-
84928819603
-
Highly compressible 3D periodic graphene aerogel microlattices
-
[7] Zhu, C., Han, T.Y., Duoss, E.B., Golobic, A.M., Kuntz, J.D., Spadaccini, C.M., Worsley, M.A., Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun., 6, 2015, 6962.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6962
-
-
Zhu, C.1
Han, T.Y.2
Duoss, E.B.3
Golobic, A.M.4
Kuntz, J.D.5
Spadaccini, C.M.6
Worsley, M.A.7
-
8
-
-
77953295630
-
Graphene based electrochemical sensors and biosensors: a review
-
[8] Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y., Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22 (2010), 1027–1036.
-
(2010)
Electroanalysis
, vol.22
, pp. 1027-1036
-
-
Shao, Y.1
Wang, J.2
Wu, H.3
Liu, J.4
Aksay, I.A.5
Lin, Y.6
-
9
-
-
77955497657
-
Graphene for electrochemical sensing and biosensing
-
[9] Pumera, M., Ambrosi, A., Bonanni, A., Chng, E.L.K., Poh, H.L., Graphene for electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 29 (2010), 954–965.
-
(2010)
TrAC Trends Anal. Chem.
, vol.29
, pp. 954-965
-
-
Pumera, M.1
Ambrosi, A.2
Bonanni, A.3
Chng, E.L.K.4
Poh, H.L.5
-
10
-
-
77949396616
-
Carbon nanomaterials in biosensors: should you use nanotubes or graphene?
-
[10] Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., Braet, F., Carbon nanomaterials in biosensors: should you use nanotubes or graphene?. Angew. Chem. Int. Ed. 49 (2010), 2114–2138.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 2114-2138
-
-
Yang, W.1
Ratinac, K.R.2
Ringer, S.P.3
Thordarson, P.4
Gooding, J.J.5
Braet, F.6
-
11
-
-
79952362065
-
Graphene-based nanomaterials for energy storage
-
[11] Pumera, M., Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4 (2011), 668–674.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 668-674
-
-
Pumera, M.1
-
12
-
-
84874642026
-
Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage
-
[12] El-Kady, M.F., Kaner, R.B., Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun., 4, 2013, 1475.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1475
-
-
El-Kady, M.F.1
Kaner, R.B.2
-
13
-
-
84888638734
-
Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide
-
[13] Shin, S.R., Aghaei-Ghareh-Bolagh, B., Dang, T.T., Topkaya, S.N., Gao, X., Yang, S.Y., Jung, S.M., Oh, J.H., Dokmeci, M.R., Tang, X.S., Khademhosseini, A., Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv. Mater. 25 (2013), 6385–6391.
-
(2013)
Adv. Mater.
, vol.25
, pp. 6385-6391
-
-
Shin, S.R.1
Aghaei-Ghareh-Bolagh, B.2
Dang, T.T.3
Topkaya, S.N.4
Gao, X.5
Yang, S.Y.6
Jung, S.M.7
Oh, J.H.8
Dokmeci, M.R.9
Tang, X.S.10
Khademhosseini, A.11
-
14
-
-
84952990086
-
Advances in tissue engineering
-
[14] Langer, R., Vacanti, J., Advances in tissue engineering. J. Pediatr. Surg. 51 (2016), 8–12.
-
(2016)
J. Pediatr. Surg.
, vol.51
, pp. 8-12
-
-
Langer, R.1
Vacanti, J.2
-
15
-
-
84925751144
-
A perspective on the clinical translation of scaffolds for tissue engineering
-
[15] Webber, M.J., Khan, O.F., Sydlik, S.A., Tang, B.C., Langer, R., A perspective on the clinical translation of scaffolds for tissue engineering. Ann. Biomed. Eng. 43 (2015), 641–656.
-
(2015)
Ann. Biomed. Eng.
, vol.43
, pp. 641-656
-
-
Webber, M.J.1
Khan, O.F.2
Sydlik, S.A.3
Tang, B.C.4
Langer, R.5
-
16
-
-
67649218283
-
Progress in tissue engineering
-
[16] Khademhosseini, A., Vacanti, J.P., Langer, R., Progress in tissue engineering. Sci. Am. 300 (2009), 64–71.
-
(2009)
Sci. Am.
, vol.300
, pp. 64-71
-
-
Khademhosseini, A.1
Vacanti, J.P.2
Langer, R.3
-
17
-
-
0028291881
-
Biodegradable polymer scaffolds for tissue engineering
-
[17] Langer, R., Biodegradable polymer scaffolds for tissue engineering. Nat. Biotechnol. 12 (1994), 689–693.
-
(1994)
Nat. Biotechnol.
, vol.12
, pp. 689-693
-
-
Langer, R.1
-
18
-
-
84879412130
-
Fiber-based tissue engineering: progress, challenges, and opportunities
-
[18] Tamayol, A., Akbari, M., Annabi, N., Paul, A., Khademhosseini, A., Juncker, D., Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol. Adv. 31 (2013), 669–687.
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 669-687
-
-
Tamayol, A.1
Akbari, M.2
Annabi, N.3
Paul, A.4
Khademhosseini, A.5
Juncker, D.6
-
19
-
-
84880133779
-
Biomedical applications of graphene and graphene oxide
-
[19] Chung, C., Kim, Y.K., Shin, D., Ryoo, S.R., Hong, B.H., Min, D.H., Biomedical applications of graphene and graphene oxide. Acc. Chem. Res. 46 (2013), 2211–2224.
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 2211-2224
-
-
Chung, C.1
Kim, Y.K.2
Shin, D.3
Ryoo, S.R.4
Hong, B.H.5
Min, D.H.6
-
20
-
-
53849085330
-
Nano-graphene oxide for cellular imaging and drug delivery
-
[20] Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., Dai, H., Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1 (2008), 203–212.
-
(2008)
Nano Res.
, vol.1
, pp. 203-212
-
-
Sun, X.1
Liu, Z.2
Welsher, K.3
Robinson, J.T.4
Goodwin, A.5
Zaric, S.6
Dai, H.7
-
21
-
-
82455205697
-
Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells
-
[21] Wang, C., Li, J., Amatore, C., Chen, Y., Jiang, H., Wang, X.M., Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Ed. Eng. 50 (2011), 11644–11648.
-
(2011)
Angew. Chem. Int. Ed. Eng.
, vol.50
, pp. 11644-11648
-
-
Wang, C.1
Li, J.2
Amatore, C.3
Chen, Y.4
Jiang, H.5
Wang, X.M.6
-
22
-
-
84906673698
-
Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair
-
[22] Paul, A., Hasan, A., Kindi, H.A., Gaharwar, A.K., Rao, V.T., Nikkhah, M., Shin, S.R., Krafft, D., Dokmeci, M.R., Shum-Tim, D., Khademhosseini, A., Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8 (2014), 8050–8062.
-
(2014)
ACS Nano
, vol.8
, pp. 8050-8062
-
-
Paul, A.1
Hasan, A.2
Kindi, H.A.3
Gaharwar, A.K.4
Rao, V.T.5
Nikkhah, M.6
Shin, S.R.7
Krafft, D.8
Dokmeci, M.R.9
Shum-Tim, D.10
Khademhosseini, A.11
-
23
-
-
84929378341
-
Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges
-
[23] Nurunnabi, M., Parvez, K., Nafiujjaman, M., Revuri, V., Khan, H.A., Feng, X., Lee, Y.-k., Bioapplication of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv. 5 (2015), 42141–42161.
-
(2015)
RSC Adv.
, vol.5
, pp. 42141-42161
-
-
Nurunnabi, M.1
Parvez, K.2
Nafiujjaman, M.3
Revuri, V.4
Khan, H.A.5
Feng, X.6
Lee, Y.-K.7
-
24
-
-
84887653585
-
Graphene-based nanomaterials for drug delivery and tissue engineering
-
[24] Goenka, S., Sant, V., Sant, S., Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173 (2014), 75–88.
-
(2014)
J. Control. Release
, vol.173
, pp. 75-88
-
-
Goenka, S.1
Sant, V.2
Sant, S.3
-
25
-
-
80052113573
-
Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response
-
[25] Depan, J.S.D., Misra, R.D.K., Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C 31 (2011), 1305–1312.
-
(2011)
Mater. Sci. Eng. C
, vol.31
, pp. 1305-1312
-
-
Depan, J.S.D.1
Misra, R.D.K.2
-
26
-
-
84896902847
-
Nano graphene oxide-hyaluronic acid conjugate for target specifc cancer drug delivery
-
[26] Jung, H.S., Lee, M.-Y., Kong, W.H., Do, I.H., Hahn, S.K., Nano graphene oxide-hyaluronic acid conjugate for target specifc cancer drug delivery. RSC Adv. 4 (2014), 14197–14200.
-
(2014)
RSC Adv.
, vol.4
, pp. 14197-14200
-
-
Jung, H.S.1
Lee, M.-Y.2
Kong, W.H.3
Do, I.H.4
Hahn, S.K.5
-
27
-
-
84859141806
-
Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ
-
[27] Hu, S.H., Chen, Y.W., Hung, W.T., Chen, I.W., Chen, S.Y., Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv. Mater. 24 (2012), 1748–1754.
-
(2012)
Adv. Mater.
, vol.24
, pp. 1748-1754
-
-
Hu, S.H.1
Chen, Y.W.2
Hung, W.T.3
Chen, I.W.4
Chen, S.Y.5
-
28
-
-
84856134644
-
Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties
-
[28] Schinwald, A., Murphy, F.A., Jones, A., MacNee, W., Donaldson, K., Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties. ACS Nano 6 (2012), 736–746.
-
(2012)
ACS Nano
, vol.6
, pp. 736-746
-
-
Schinwald, A.1
Murphy, F.A.2
Jones, A.3
MacNee, W.4
Donaldson, K.5
-
29
-
-
79960901303
-
Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films
-
[29] Yang, X., Qiu, L., Cheng, C., Wu, Y., Ma, Z.F., Li, D., Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem. Int. Ed. Eng. 50 (2011), 7325–7328.
-
(2011)
Angew. Chem. Int. Ed. Eng.
, vol.50
, pp. 7325-7328
-
-
Yang, X.1
Qiu, L.2
Cheng, C.3
Wu, Y.4
Ma, Z.F.5
Li, D.6
-
30
-
-
79960185896
-
High strength graphene oxide/polyvinyl alcohol composite hydrogels
-
[30] Zhang, L., Wang, Z., Xu, C., Li, Y., Gao, J., Wang, W., Liu, Y., High strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem. 21 (2011), 10399–10406.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 10399-10406
-
-
Zhang, L.1
Wang, Z.2
Xu, C.3
Li, Y.4
Gao, J.5
Wang, W.6
Liu, Y.7
-
31
-
-
84863078567
-
Mechanical, thermal and swelling properties of poly (acrylic acid)–graphene oxide composite hydrogels
-
[31] Shen, J., Yan, B., Li, T., Long, Y., Li, N., Ye, M., Mechanical, thermal and swelling properties of poly (acrylic acid)–graphene oxide composite hydrogels. Soft Matter 8 (2012), 1831–1836.
-
(2012)
Soft Matter
, vol.8
, pp. 1831-1836
-
-
Shen, J.1
Yan, B.2
Li, T.3
Long, Y.4
Li, N.5
Ye, M.6
-
32
-
-
84893490707
-
Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide
-
[32] Cha, C., Shin, S.R., Gao, X., Annabi, N., Dokmeci, M.R., Tang, X.S., Khademhosseini, A., Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small 10 (2014), 514–523.
-
(2014)
Small
, vol.10
, pp. 514-523
-
-
Cha, C.1
Shin, S.R.2
Gao, X.3
Annabi, N.4
Dokmeci, M.R.5
Tang, X.S.6
Khademhosseini, A.7
-
33
-
-
55849104293
-
Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes
-
[33] Shang, N.G., Papakonstantinou, P., McMullan, M., Chu, M., Stamboulis, A., Potenza, A., Dhesi, S.S., Marchetto, H., Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18 (2008), 3506–3514.
-
(2008)
Adv. Funct. Mater.
, vol.18
, pp. 3506-3514
-
-
Shang, N.G.1
Papakonstantinou, P.2
McMullan, M.3
Chu, M.4
Stamboulis, A.5
Potenza, A.6
Dhesi, S.S.7
Marchetto, H.8
-
34
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
[34] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Electric field effect in atomically thin carbon films. Science 306 (2004), 666–669.
-
(2004)
Science
, vol.306
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
35
-
-
45449092408
-
One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite
-
[35] Liu, N., Luo, F., Wu, H., Liu, Y., Zhang, C., Chen, J., One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18 (2008), 1518–1525.
-
(2008)
Adv. Funct. Mater.
, vol.18
, pp. 1518-1525
-
-
Liu, N.1
Luo, F.2
Wu, H.3
Liu, Y.4
Zhang, C.5
Chen, J.6
-
37
-
-
84858174698
-
Twinning and twisting of tri-and bilayer graphene
-
[37] Brown, L., Hovden, R., Huang, P., Wojcik, M., Muller, D.A., Park, J., Twinning and twisting of tri-and bilayer graphene. Nano Lett. 12 (2012), 1609–1615.
-
(2012)
Nano Lett.
, vol.12
, pp. 1609-1615
-
-
Brown, L.1
Hovden, R.2
Huang, P.3
Wojcik, M.4
Muller, D.A.5
Park, J.6
-
38
-
-
79952903526
-
Single-layer behavior and its breakdown in twisted graphene layers
-
[38] Luican, A., Li, G., Reina, A., Kong, J., Nair, R.R., Novoselov, K.S., Geim, A.K., Andrei, E.Y., Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett., 106, 2011, 126802.
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 126802
-
-
Luican, A.1
Li, G.2
Reina, A.3
Kong, J.4
Nair, R.R.5
Novoselov, K.S.6
Geim, A.K.7
Andrei, E.Y.8
-
39
-
-
79961101084
-
Electronic structure of graphene twist stacks
-
[39] Shallcross, S., Sharma, S., Landgraf, W., Pankratov, O., Electronic structure of graphene twist stacks. Phys. Rev. B, 83, 2011, 153402.
-
(2011)
Phys. Rev. B
, vol.83
, pp. 153402
-
-
Shallcross, S.1
Sharma, S.2
Landgraf, W.3
Pankratov, O.4
-
40
-
-
82655168245
-
Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields
-
[40] Suárez Morell, E., Vargas, P., Chico, L., Brey, L., Charge redistribution and interlayer coupling in twisted bilayer graphene under electric fields. Phys. Rev. B, 84, 2011, 195421.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 195421
-
-
Suárez Morell, E.1
Vargas, P.2
Chico, L.3
Brey, L.4
-
41
-
-
34047266170
-
Unique chemical reactivity of a graphene nanoribbon's zigzag edge
-
[41] Jiang, D.E., Sumpter, B.G., Dai, S., Unique chemical reactivity of a graphene nanoribbon's zigzag edge. J. Chem. Phys., 126, 2007, 134701.
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 134701
-
-
Jiang, D.E.1
Sumpter, B.G.2
Dai, S.3
-
42
-
-
45249108851
-
px,y-orbital counterpart of graphene: cold atoms in the honeycomb optical lattice
-
[42] Wu, C., Sarma, S.D., px,y-orbital counterpart of graphene: cold atoms in the honeycomb optical lattice. Phys. Rev. B 77 (2008), 235107–235113.
-
(2008)
Phys. Rev. B
, vol.77
, pp. 235107-235113
-
-
Wu, C.1
Sarma, S.D.2
-
43
-
-
47749150628
-
Measurement of the elastic properties and intrinsic strength of monolayer graphene
-
[43] Lee, C., Wei, X., Kysar, J.W., Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 (2008), 385–388.
-
(2008)
Science
, vol.321
, pp. 385-388
-
-
Lee, C.1
Wei, X.2
Kysar, J.W.3
Hone, J.4
-
44
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
[44] Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Superior thermal conductivity of single-layer graphene. Nano Lett. 8 (2008), 902–907.
-
(2008)
Nano Lett.
, vol.8
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
Miao, F.6
Lau, C.N.7
-
45
-
-
77952403320
-
Optical transparency of graphene as determined by the fine-structure constant
-
[45] Sheehy, D.E., Schmalian, J., Optical transparency of graphene as determined by the fine-structure constant. Phys. Rev. B, 80, 2009, 193411.
-
(2009)
Phys. Rev. B
, vol.80
, pp. 193411
-
-
Sheehy, D.E.1
Schmalian, J.2
-
46
-
-
84863116524
-
Pi-bond maximization of graphene in hydrogen addition reactions
-
[46] Gao, X., Zhao, Y., Liu, B., Xiang, H., Zhang, S.B., Pi-bond maximization of graphene in hydrogen addition reactions. Nanoscale 4 (2012), 1171–1176.
-
(2012)
Nanoscale
, vol.4
, pp. 1171-1176
-
-
Gao, X.1
Zhao, Y.2
Liu, B.3
Xiang, H.4
Zhang, S.B.5
-
47
-
-
84918582512
-
Fluorescent sensors using DNA-functionalized graphene oxide
-
[47] Liu, Z., Liu, B., Ding, J., Liu, J., Fluorescent sensors using DNA-functionalized graphene oxide. Anal. Bioanal. Chem. 406 (2014), 6885–6902.
-
(2014)
Anal. Bioanal. Chem.
, vol.406
, pp. 6885-6902
-
-
Liu, Z.1
Liu, B.2
Ding, J.3
Liu, J.4
-
48
-
-
84932198332
-
Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite
-
[48] Weaver, C.L., Cui, X.T., Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite. Adv. Healthcare Mater. 4 (2015), 1408–1416.
-
(2015)
Adv. Healthcare Mater.
, vol.4
, pp. 1408-1416
-
-
Weaver, C.L.1
Cui, X.T.2
-
49
-
-
84949293173
-
Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer
-
[49] Hou, L., Feng, Q., Wang, Y., Yang, X., Ren, J., Shi, Y., Shan, X., Yuan, Y., Zhang, Z., Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer. Nanotechnology, 27, 2016, 015701.
-
(2016)
Nanotechnology
, vol.27
, pp. 015701
-
-
Hou, L.1
Feng, Q.2
Wang, Y.3
Yang, X.4
Ren, J.5
Shi, Y.6
Shan, X.7
Yuan, Y.8
Zhang, Z.9
-
50
-
-
36749039718
-
Electronic transport properties of individual chemically reduced graphene oxide sheets
-
[50] Gomez-Navarro, C., Weitz, R.T., Bittner, A.M., Scolari, M., Mews, A., Burghard, M., Kern, K., Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7 (2007), 3499–3503.
-
(2007)
Nano Lett.
, vol.7
, pp. 3499-3503
-
-
Gomez-Navarro, C.1
Weitz, R.T.2
Bittner, A.M.3
Scolari, M.4
Mews, A.5
Burghard, M.6
Kern, K.7
-
51
-
-
50249122647
-
Metal to insulator transition in epitaxial graphene induced by molecular doping
-
[51] Zhou, S.Y., Siegel, D.A., Fedorov, A.V., Lanzara, A., Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys. Rev. Lett., 101, 2008, 086402.
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 086402
-
-
Zhou, S.Y.1
Siegel, D.A.2
Fedorov, A.V.3
Lanzara, A.4
-
52
-
-
43149118786
-
Charged-impurity scattering in graphene
-
[52] Chen, J.-H., Jang, C., Adam, S., Fuhrer, M.S., Williams, E.D., Ishigami, M., Charged-impurity scattering in graphene. Nat. Phys. 4 (2008), 377–381.
-
(2008)
Nat. Phys.
, vol.4
, pp. 377-381
-
-
Chen, J.-H.1
Jang, C.2
Adam, S.3
Fuhrer, M.S.4
Williams, E.D.5
Ishigami, M.6
-
53
-
-
79951938480
-
Chemical doping of graphene
-
[53] Liu, H., Liu, Y., Zhua, D., Chemical doping of graphene. J. Mater. Chem. 21 (2011), 3335–3345.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 3335-3345
-
-
Liu, H.1
Liu, Y.2
Zhua, D.3
-
54
-
-
33947461960
-
Preparation of graphitic oxide
-
[54] Hummers, W.S. Jr, Offeman, R.E., Preparation of graphitic oxide. J. Am. Chem. Soc., 80, 1958, 1339.
-
(1958)
J. Am. Chem. Soc.
, vol.80
, pp. 1339
-
-
Hummers, W.S.1
Offeman, R.E.2
-
55
-
-
77951678756
-
Graphene oxide as a matrix for enzyme immobilization
-
[55] Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J., Guo, S., Graphene oxide as a matrix for enzyme immobilization. Langmuir 26 (2010), 6083–6085.
-
(2010)
Langmuir
, vol.26
, pp. 6083-6085
-
-
Zhang, J.1
Zhang, F.2
Yang, H.3
Huang, X.4
Liu, H.5
Zhang, J.6
Guo, S.7
-
56
-
-
77953306236
-
Graphene oxide sheets at interfaces
-
[56] Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., Huang, J., Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 132 (2010), 8180–8186.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 8180-8186
-
-
Kim, J.1
Cote, L.J.2
Kim, F.3
Yuan, W.4
Shull, K.R.5
Huang, J.6
-
57
-
-
77957930639
-
Scalable templated growth of graphene nanoribbons on SiC
-
[57] Sprinkle, M., Ruan, M., Hu, Y., Hankinson, J., Rubio-Roy, M., Zhang, B., Wu, X., Berger, C., de Heer, W.A., Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5 (2010), 727–731.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 727-731
-
-
Sprinkle, M.1
Ruan, M.2
Hu, Y.3
Hankinson, J.4
Rubio-Roy, M.5
Zhang, B.6
Wu, X.7
Berger, C.8
de Heer, W.A.9
-
58
-
-
69249127843
-
Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA
-
[58] Patil, A.J., Vickery, J.L., Scott, T.B., Mann, S., Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 21 (2009), 3159–3164.
-
(2009)
Adv. Mater.
, vol.21
, pp. 3159-3164
-
-
Patil, A.J.1
Vickery, J.L.2
Scott, T.B.3
Mann, S.4
-
59
-
-
77952861540
-
Peptide/graphene hybrid assembly into core/shell nanowires
-
[59] Han, T.H., Lee, W.J., Lee, D.H., Kim, J.E., Choi, E.Y., Kim, S.O., Peptide/graphene hybrid assembly into core/shell nanowires. Adv. Mater. 22 (2010), 2060–2064.
-
(2010)
Adv. Mater.
, vol.22
, pp. 2060-2064
-
-
Han, T.H.1
Lee, W.J.2
Lee, D.H.3
Kim, J.E.4
Choi, E.Y.5
Kim, S.O.6
-
60
-
-
84903515939
-
Protein adsorption to graphene surfaces controlled by chemical modification of the substrate surfaces
-
[60] Kamiya, Y., Yamazaki, K., Ogino, T., Protein adsorption to graphene surfaces controlled by chemical modification of the substrate surfaces. J. Colloid Interface Sci. 431 (2014), 77–81.
-
(2014)
J. Colloid Interface Sci.
, vol.431
, pp. 77-81
-
-
Kamiya, Y.1
Yamazaki, K.2
Ogino, T.3
-
61
-
-
84861073899
-
Structure of a peptide adsorbed on graphene and graphite
-
[61] Katoch, J., Kim, S.N., Kuang, Z., Farmer, B.L., Naik, R.R., Tatulian, S.A., Ishigami, M., Structure of a peptide adsorbed on graphene and graphite. Nano Lett. 12 (2012), 2342–2346.
-
(2012)
Nano Lett.
, vol.12
, pp. 2342-2346
-
-
Katoch, J.1
Kim, S.N.2
Kuang, Z.3
Farmer, B.L.4
Naik, R.R.5
Tatulian, S.A.6
Ishigami, M.7
-
62
-
-
65249111782
-
Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents
-
[62] Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A., Ruoff, R.S., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9 (2009), 1593–1597.
-
(2009)
Nano Lett.
, vol.9
, pp. 1593-1597
-
-
Park, S.1
An, J.2
Jung, I.3
Piner, R.D.4
An, S.J.5
Li, X.6
Velamakanni, A.7
Ruoff, R.S.8
-
63
-
-
33744471173
-
Functionalized single graphene sheets derived from splitting graphite oxide
-
[63] Schniepp, H.C., Li, J.L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud'homme, R.K., Car, R., Saville, D.A., Aksay, I.A., Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110 (2006), 8535–8539.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 8535-8539
-
-
Schniepp, H.C.1
Li, J.L.2
McAllister, M.J.3
Sai, H.4
Herrera-Alonso, M.5
Adamson, D.H.6
Prud'homme, R.K.7
Car, R.8
Saville, D.A.9
Aksay, I.A.10
-
64
-
-
76249106647
-
Reduction of graphene oxide via L-ascorbic acid
-
[64] Zhang, J., Yang, H., Shen, G., Cheng, P., Guo, S., Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. (Camb.) 46 (2010), 1112–1114.
-
(2010)
Chem. Commun. (Camb.)
, vol.46
, pp. 1112-1114
-
-
Zhang, J.1
Yang, H.2
Shen, G.3
Cheng, P.4
Guo, S.5
-
65
-
-
84904295113
-
Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide
-
[65] Kanayama, I., Miyaji, H., Takita, H., Nishida, E., Tsuji, M., Fugetsu, B., Sun, L., Inoue, K., Ibara, A., Akasaka, T., Sugaya, T., Kawanami, M., Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide. Int. J. Nanomedicine 9 (2014), 3363–3373.
-
(2014)
Int. J. Nanomedicine
, vol.9
, pp. 3363-3373
-
-
Kanayama, I.1
Miyaji, H.2
Takita, H.3
Nishida, E.4
Tsuji, M.5
Fugetsu, B.6
Sun, L.7
Inoue, K.8
Ibara, A.9
Akasaka, T.10
Sugaya, T.11
Kawanami, M.12
-
66
-
-
84952304332
-
High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors
-
[66] Liu, Q., Zhang, M., Huang, L., Li, Y., Chen, J., Li, C., Shi, G., High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors. ACS Nano 9 (2015), 12320–12326.
-
(2015)
ACS Nano
, vol.9
, pp. 12320-12326
-
-
Liu, Q.1
Zhang, M.2
Huang, L.3
Li, Y.4
Chen, J.5
Li, C.6
Shi, G.7
-
67
-
-
0029007273
-
Biomaterials in tissue engineering
-
[67] Hubbell, J.A., Biomaterials in tissue engineering. Nat. Biotechnol. 13 (1995), 565–576.
-
(1995)
Nat. Biotechnol.
, vol.13
, pp. 565-576
-
-
Hubbell, J.A.1
-
68
-
-
19644367664
-
Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
-
[68] Lutolf, M., Hubbell, J., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23 (2005), 47–55.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 47-55
-
-
Lutolf, M.1
Hubbell, J.2
-
69
-
-
33744469329
-
Electronic confinement and coherence in patterned epitaxial graphene
-
[69] Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., Electronic confinement and coherence in patterned epitaxial graphene. Science 312 (2006), 1191–1196.
-
(2006)
Science
, vol.312
, pp. 1191-1196
-
-
Berger, C.1
Song, Z.2
Li, X.3
Wu, X.4
Brown, N.5
Naud, C.6
Mayou, D.7
Li, T.8
Hass, J.9
Marchenkov, A.N.10
Conrad, E.H.11
First, P.N.12
de Heer, W.A.13
-
70
-
-
77951854031
-
Using graphene to protect DNA from cleavage during cellular delivery
-
[70] Lu, C.H., Zhu, C.L., Li, J., Liu, J.J., Chen, X., Yang, H.H., Using graphene to protect DNA from cleavage during cellular delivery. Chem. Commun. (Camb.) 46 (2010), 3116–3118.
-
(2010)
Chem. Commun. (Camb.)
, vol.46
, pp. 3116-3118
-
-
Lu, C.H.1
Zhu, C.L.2
Li, J.3
Liu, J.J.4
Chen, X.5
Yang, H.H.6
-
71
-
-
77953157239
-
Constraint of DNA on functionalized graphene improves its biostability and specificity
-
[71] Tang, Z., Wu, H., Cort, J.R., Buchko, G.W., Zhang, Y., Shao, Y., Aksay, I.A., Liu, J., Lin, Y., Constraint of DNA on functionalized graphene improves its biostability and specificity. Small 6 (2010), 1205–1209.
-
(2010)
Small
, vol.6
, pp. 1205-1209
-
-
Tang, Z.1
Wu, H.2
Cort, J.R.3
Buchko, G.W.4
Zhang, Y.5
Shao, Y.6
Aksay, I.A.7
Liu, J.8
Lin, Y.9
-
72
-
-
64549134676
-
Nonviral vectors for gene delivery
-
[72] Mintzer, M.A., Simanek, E.E., Nonviral vectors for gene delivery. Chem. Rev. 109 (2009), 259–302.
-
(2009)
Chem. Rev.
, vol.109
, pp. 259-302
-
-
Mintzer, M.A.1
Simanek, E.E.2
-
73
-
-
84875341955
-
Viral and nonviral delivery systems for gene delivery
-
[73] Nayerossadat, N., Maedeh, T., Ali, P.A., Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 1, 2012, 27.
-
(2012)
Adv. Biomed. Res.
, vol.1
, pp. 27
-
-
Nayerossadat, N.1
Maedeh, T.2
Ali, P.A.3
-
74
-
-
79956287360
-
Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector
-
[74] Chen, B., Liu, M., Zhang, L., Huang, J., Yao, J., Zhang, Z., Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J. Mater. Chem. 21 (2011), 7736–7741.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 7736-7741
-
-
Chen, B.1
Liu, M.2
Zhang, L.3
Huang, J.4
Yao, J.5
Zhang, Z.6
-
75
-
-
77957167374
-
Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells
-
[75] Kalbacova, M., Broz, A., Kong, J., Kalbac, M., Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48 (2010), 4323–4329.
-
(2010)
Carbon
, vol.48
, pp. 4323-4329
-
-
Kalbacova, M.1
Broz, A.2
Kong, J.3
Kalbac, M.4
-
76
-
-
84867455117
-
Method to impart electro- and biofunctionality to neural scaffolds using graphene-polyelectrolyte multilayers
-
[76] Zhou, K., Thouas, G.A., Bernard, C.C., Nisbet, D.R., Finkelstein, D.I., Li, D., Forsythe, J.S., Method to impart electro- and biofunctionality to neural scaffolds using graphene-polyelectrolyte multilayers. ACS Appl. Mater. Interfaces 4 (2012), 4524–4531.
-
(2012)
ACS Appl. Mater. Interfaces
, vol.4
, pp. 4524-4531
-
-
Zhou, K.1
Thouas, G.A.2
Bernard, C.C.3
Nisbet, D.R.4
Finkelstein, D.I.5
Li, D.6
Forsythe, J.S.7
-
77
-
-
84879412130
-
Fiber-based tissue engineering: progress, challenges, and opportunities
-
[77] Tamayol, A., Akbari, M., Annabi, N., Paul, A., Khademhosseini, A., Juncker, D., Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol. Adv. 31 (2013), 669–687.
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 669-687
-
-
Tamayol, A.1
Akbari, M.2
Annabi, N.3
Paul, A.4
Khademhosseini, A.5
Juncker, D.6
-
78
-
-
79961079830
-
Transverse permeability of fibrous porous media
-
[78] Tamayol, A., Bahrami, M., Transverse permeability of fibrous porous media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 83, 2011, 046314.
-
(2011)
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
, vol.83
, pp. 046314
-
-
Tamayol, A.1
Bahrami, M.2
-
79
-
-
84872110652
-
Ultrastrong fibers assembled from giant graphene oxide sheets
-
[79] Xu, Z., Sun, H., Zhao, X., Gao, C., Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25 (2013), 188–193.
-
(2013)
Adv. Mater.
, vol.25
, pp. 188-193
-
-
Xu, Z.1
Sun, H.2
Zhao, X.3
Gao, C.4
-
80
-
-
84887832235
-
Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles
-
[80] Jalili, R., Aboutalebi, S.H., Esrafilzadeh, D., Shepherd, R.L., Chen, J., Aminorroaya-Yamini, S., Konstantinov, K., Minett, A.I., Razal, J.M., Wallace, G.G., Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles. Adv. Funct. Mater. 23 (2013), 5345–5354.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 5345-5354
-
-
Jalili, R.1
Aboutalebi, S.H.2
Esrafilzadeh, D.3
Shepherd, R.L.4
Chen, J.5
Aminorroaya-Yamini, S.6
Konstantinov, K.7
Minett, A.I.8
Razal, J.M.9
Wallace, G.G.10
-
81
-
-
84878326830
-
Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures
-
[81] Jalili, R., Aboutalebi, S.H., Esrafilzadeh, D., Konstantinov, K., Moulton, S.E., Razal, J.M., Wallace, G.G., Organic solvent-based graphene oxide liquid crystals: a facile route toward the next generation of self-assembled layer-by-layer multifunctional 3D architectures. ACS Nano 7 (2013), 3981–3990.
-
(2013)
ACS Nano
, vol.7
, pp. 3981-3990
-
-
Jalili, R.1
Aboutalebi, S.H.2
Esrafilzadeh, D.3
Konstantinov, K.4
Moulton, S.E.5
Razal, J.M.6
Wallace, G.G.7
-
82
-
-
84924079970
-
Printing in three dimensions with graphene
-
[82] Garcia-Tunon, E., Barg, S., Franco, J., Bell, R., Eslava, S., D'Elia, E., Maher, R.C., Guitian, F., Saiz, E., Printing in three dimensions with graphene. Adv. Mater. 27 (2015), 1688–1693.
-
(2015)
Adv. Mater.
, vol.27
, pp. 1688-1693
-
-
Garcia-Tunon, E.1
Barg, S.2
Franco, J.3
Bell, R.4
Eslava, S.5
D'Elia, E.6
Maher, R.C.7
Guitian, F.8
Saiz, E.9
-
83
-
-
84863027299
-
Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes
-
[83] Shin, M.K., Lee, B., Kim, S.H., Lee, J.A., Spinks, G.M., Gambhir, S., Wallace, G.G., Kozlov, M.E., Baughman, R.H., Kim, S.J., Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun., 3, 2012, 650.
-
(2012)
Nat. Commun.
, vol.3
, pp. 650
-
-
Shin, M.K.1
Lee, B.2
Kim, S.H.3
Lee, J.A.4
Spinks, G.M.5
Gambhir, S.6
Wallace, G.G.7
Kozlov, M.E.8
Baughman, R.H.9
Kim, S.J.10
-
84
-
-
84892970486
-
Scalable enhancement of graphene oxide properties by thermally driven phase transformation
-
[84] Kumar, P.V., Bardhan, N.M., Tongay, S., Wu, J., Belcher, A.M., Grossman, J.C., Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat. Chem. 6 (2014), 151–158.
-
(2014)
Nat. Chem.
, vol.6
, pp. 151-158
-
-
Kumar, P.V.1
Bardhan, N.M.2
Tongay, S.3
Wu, J.4
Belcher, A.M.5
Grossman, J.C.6
-
85
-
-
84928964264
-
Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications
-
[85] Jakus, A.E., Secor, E.B., Rutz, A.L., Jordan, S.W., Hersam, M.C., Shah, R.N., Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9 (2015), 4636–4648.
-
(2015)
ACS Nano
, vol.9
, pp. 4636-4648
-
-
Jakus, A.E.1
Secor, E.B.2
Rutz, A.L.3
Jordan, S.W.4
Hersam, M.C.5
Shah, R.N.6
-
86
-
-
0026808558
-
Extraordinary unremitting endurance exercise and permanent injury to normal heart
-
[86] Rowe, W.J., Extraordinary unremitting endurance exercise and permanent injury to normal heart. Lancet 340 (1992), 712–714.
-
(1992)
Lancet
, vol.340
, pp. 712-714
-
-
Rowe, W.J.1
-
87
-
-
84877794737
-
Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes
-
[87] Zhang, D., Shadrin, I.Y., Lam, J., Xian, H.Q., Snodgrass, H.R., Bursac, N., Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34 (2013), 5813–5820.
-
(2013)
Biomaterials
, vol.34
, pp. 5813-5820
-
-
Zhang, D.1
Shadrin, I.Y.2
Lam, J.3
Xian, H.Q.4
Snodgrass, H.R.5
Bursac, N.6
-
88
-
-
84869484685
-
Living cardiac patch: the elixir for cardiac regeneration
-
[88] Lakshmanan, R., Krishnan, U.M., Sethuraman, S., Living cardiac patch: the elixir for cardiac regeneration. Expert. Opin. Biol. Ther. 12 (2012), 1623–1640.
-
(2012)
Expert. Opin. Biol. Ther.
, vol.12
, pp. 1623-1640
-
-
Lakshmanan, R.1
Krishnan, U.M.2
Sethuraman, S.3
-
89
-
-
80052808771
-
Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression
-
[89] You, J.-O., Rafat, M., Ye, G.J., Auguste, D.T., Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett. 11 (2011), 3643–3648.
-
(2011)
Nano Lett.
, vol.11
, pp. 3643-3648
-
-
You, J.-O.1
Rafat, M.2
Ye, G.J.3
Auguste, D.T.4
-
90
-
-
80755190040
-
Nanowired three-dimensional cardiac patches
-
[90] Dvir, T., Timko, B.P., Brigham, M.D., Naik, S.R., Karajanagi, S.S., Levy, O., Jin, H., Parker, K.K., Langer, R., Kohane, D.S., Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 6 (2011), 720–725.
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 720-725
-
-
Dvir, T.1
Timko, B.P.2
Brigham, M.D.3
Naik, S.R.4
Karajanagi, S.S.5
Levy, O.6
Jin, H.7
Parker, K.K.8
Langer, R.9
Kohane, D.S.10
-
91
-
-
84863252347
-
Functional cardiac tissue engineering
-
[91] Liau, B., Zhang, D., Bursac, N., Functional cardiac tissue engineering. Regen. Med. 7 (2012), 187–206.
-
(2012)
Regen. Med.
, vol.7
, pp. 187-206
-
-
Liau, B.1
Zhang, D.2
Bursac, N.3
-
92
-
-
84929861434
-
Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering
-
[92] Paul, A., Nanocomposite hydrogels: an emerging biomimetic platform for myocardial therapy and tissue engineering. Nanomedicine (London) 10 (2015), 1371–1374.
-
(2015)
Nanomedicine (London)
, vol.10
, pp. 1371-1374
-
-
Paul, A.1
-
93
-
-
84893434584
-
Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules
-
[93] Park, J., Park, S., Ryu, S., Bhang, S.H., Kim, J., Yoon, J.K., Park, Y.H., Cho, S.P., Lee, S., Hong, B.H., Kim, B.S., Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv. Healthcare Mater. 3 (2014), 176–181.
-
(2014)
Adv. Healthcare Mater.
, vol.3
, pp. 176-181
-
-
Park, J.1
Park, S.2
Ryu, S.3
Bhang, S.H.4
Kim, J.5
Yoon, J.K.6
Park, Y.H.7
Cho, S.P.8
Lee, S.9
Hong, B.H.10
Kim, B.S.11
-
94
-
-
84988603070
-
Graphene based scaffolds effects on stem cells commitment
-
[94] Bressan, E., Ferroni, L., Gardin, C., Sbricoli, L., Gobbato, L., Ludovichetti, F.S., Tocco, I., Carraro, A., Piattelli, A., Zavan, B., Graphene based scaffolds effects on stem cells commitment. J. Transl. Med., 12, 2014, 296.
-
(2014)
J. Transl. Med.
, vol.12
, pp. 296
-
-
Bressan, E.1
Ferroni, L.2
Gardin, C.3
Sbricoli, L.4
Gobbato, L.5
Ludovichetti, F.S.6
Tocco, I.7
Carraro, A.8
Piattelli, A.9
Zavan, B.10
-
95
-
-
84930645205
-
Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair
-
[95] Park, J., Kim, B., Han, J., Oh, J., Park, S., Ryu, S., Jung, S., Shin, J.-Y., Lee, B.S., Hong, B.H., Choi, D., Kim, B.-S., Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair. ACS Nano 9 (2015), 4987–4999.
-
(2015)
ACS Nano
, vol.9
, pp. 4987-4999
-
-
Park, J.1
Kim, B.2
Han, J.3
Oh, J.4
Park, S.5
Ryu, S.6
Jung, S.7
Shin, J.-Y.8
Lee, B.S.9
Hong, B.H.10
Choi, D.11
Kim, B.-S.12
-
96
-
-
85027943541
-
Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and Gap Junction protein
-
[96] Park, J., Kim, Y.S., Ryu, S., Kang, W.S., Park, S., Han, J., Jeong, H.C., Hong, B.H., Ahn, Y., Kim, B.-S., Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and Gap Junction protein. Adv. Funct. Mater. 25 (2015), 2590–2600.
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 2590-2600
-
-
Park, J.1
Kim, Y.S.2
Ryu, S.3
Kang, W.S.4
Park, S.5
Han, J.6
Jeong, H.C.7
Hong, B.H.8
Ahn, Y.9
Kim, B.-S.10
-
97
-
-
84915808083
-
Layer-by-layer assembly of 3D tissue constructs with functionalized graphene
-
[97] Shin, S.R., Aghaei-Ghareh-Bolagh, B., Gao, X., Nikkhah, M., Jung, S.M., Dolatshahi-Pirouz, A., Kim, S.B., Kim, S.M., Dokmeci, M.R., Tang, X.S., Khademhosseini, A., Layer-by-layer assembly of 3D tissue constructs with functionalized graphene. Adv. Funct. Mater. 24 (2014), 6136–6144.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 6136-6144
-
-
Shin, S.R.1
Aghaei-Ghareh-Bolagh, B.2
Gao, X.3
Nikkhah, M.4
Jung, S.M.5
Dolatshahi-Pirouz, A.6
Kim, S.B.7
Kim, S.M.8
Dokmeci, M.R.9
Tang, X.S.10
Khademhosseini, A.11
-
98
-
-
84955192137
-
Highly elastic and conductive human-based protein hybrid hydrogels
-
[98] Annabi, N., Shin, S.R., Tamayol, A., Miscuglio, M., Bakooshli, M.A., Assmann, A., Mostafalu, P., Sun, J.Y., Mithieux, S., Cheung, L., Tang, X.S., Weiss, A.S., Khademhosseini, A., Highly elastic and conductive human-based protein hybrid hydrogels. Adv. Mater. 28 (2016), 40–49.
-
(2016)
Adv. Mater.
, vol.28
, pp. 40-49
-
-
Annabi, N.1
Shin, S.R.2
Tamayol, A.3
Miscuglio, M.4
Bakooshli, M.A.5
Assmann, A.6
Mostafalu, P.7
Sun, J.Y.8
Mithieux, S.9
Cheung, L.10
Tang, X.S.11
Weiss, A.S.12
Khademhosseini, A.13
-
99
-
-
84867127593
-
Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior
-
[99] Picciotto, M.R., Higley, M.J., Mineur, Y.S., Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76 (2012), 116–129.
-
(2012)
Neuron
, vol.76
, pp. 116-129
-
-
Picciotto, M.R.1
Higley, M.J.2
Mineur, Y.S.3
-
100
-
-
77749323301
-
Graphene nanomesh
-
[100] Bai, J., Zhong, X., Jiang, S., Huang, Y., Duan, X., Graphene nanomesh. Nat. Nanotechnol. 5 (2010), 190–194.
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 190-194
-
-
Bai, J.1
Zhong, X.2
Jiang, S.3
Huang, Y.4
Duan, X.5
-
101
-
-
0032962164
-
Human embryonic stem cells: the future is now
-
[101] Keller, G., Snodgrass, H.R., Human embryonic stem cells: the future is now. Nat. Med. 5 (1999), 151–152.
-
(1999)
Nat. Med.
, vol.5
, pp. 151-152
-
-
Keller, G.1
Snodgrass, H.R.2
-
102
-
-
84918508852
-
Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons
-
[102] Yang, D., Li, T., Xu, M., Gao, F., Yang, J., Yang, Z., Le, W., Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine (London) 9 (2014), 2445–2455.
-
(2014)
Nanomedicine (London)
, vol.9
, pp. 2445-2455
-
-
Yang, D.1
Li, T.2
Xu, M.3
Gao, F.4
Yang, J.5
Yang, Z.6
Le, W.7
-
103
-
-
19644367664
-
Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
-
[103] Lutolf, M.P., Hubbell, J.A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23 (2005), 47–55.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 47-55
-
-
Lutolf, M.P.1
Hubbell, J.A.2
-
104
-
-
84944278563
-
Effects of biomaterial-derived fibroblast conditioned medium on the alpha-amylase expression of parotid gland acinar cells
-
[104] Chou, Y.S., Young, T.H., Lou, P.J., Effects of biomaterial-derived fibroblast conditioned medium on the alpha-amylase expression of parotid gland acinar cells. Acta Biomater. 27 (2015), 214–223.
-
(2015)
Acta Biomater.
, vol.27
, pp. 214-223
-
-
Chou, Y.S.1
Young, T.H.2
Lou, P.J.3
-
105
-
-
84886751016
-
Stem cell therapy in stroke: a review literature
-
[105] Meamar, R., Dehghani, L., Ghasemi, M., Khorvash, F., Shaygannejad, V., Stem cell therapy in stroke: a review literature. Int. J. Prev. Med. 4 (2013), S139–S146.
-
(2013)
Int. J. Prev. Med.
, vol.4
, pp. S139-S146
-
-
Meamar, R.1
Dehghani, L.2
Ghasemi, M.3
Khorvash, F.4
Shaygannejad, V.5
-
106
-
-
84888437103
-
A neural stem/precursor cell monolayer for neural tissue engineering
-
[106] Li, Y.C., Tsai, L.K., Wang, J.H., Young, T.H., A neural stem/precursor cell monolayer for neural tissue engineering. Biomaterials 35 (2014), 1192–1204.
-
(2014)
Biomaterials
, vol.35
, pp. 1192-1204
-
-
Li, Y.C.1
Tsai, L.K.2
Wang, J.H.3
Young, T.H.4
-
107
-
-
84872079355
-
Role of neural precursor cells in promoting repair following stroke
-
[107] Dibajnia, P., Morshead, C.M., Role of neural precursor cells in promoting repair following stroke. Acta Pharmacol. Sin. 34 (2013), 78–90.
-
(2013)
Acta Pharmacol. Sin.
, vol.34
, pp. 78-90
-
-
Dibajnia, P.1
Morshead, C.M.2
-
108
-
-
80053211267
-
Enhanced differentiation of human neural stem cells into neurons on graphene
-
[108] Park, S.Y., Park, J., Sim, S.H., Sung, M.G., Kim, K.S., Hong, B.H., Hong, S., Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23 (2011), H263–H267.
-
(2011)
Adv. Mater.
, vol.23
, pp. H263-H267
-
-
Park, S.Y.1
Park, J.2
Sim, S.H.3
Sung, M.G.4
Kim, K.S.5
Hong, B.H.6
Hong, S.7
-
109
-
-
84859880099
-
The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo
-
[109] Li, X., Liu, H., Niu, X., Yu, B., Fan, Y., Feng, Q., Cui, F.Z., Watari, F., The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials 33 (2012), 4818–4827.
-
(2012)
Biomaterials
, vol.33
, pp. 4818-4827
-
-
Li, X.1
Liu, H.2
Niu, X.3
Yu, B.4
Fan, Y.5
Feng, Q.6
Cui, F.Z.7
Watari, F.8
-
110
-
-
67649195858
-
Control of stem cell fate by physical interactions with the extracellular matrix
-
[110] Guilak, F., Cohen, D.M., Estes, B.T., Gimble, J.M., Liedtke, W., Chen, C.S., Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5 (2009), 17–26.
-
(2009)
Cell Stem Cell
, vol.5
, pp. 17-26
-
-
Guilak, F.1
Cohen, D.M.2
Estes, B.T.3
Gimble, J.M.4
Liedtke, W.5
Chen, C.S.6
-
111
-
-
0344912596
-
Cell locomotion and focal adhesions are regulated by substrate flexibility
-
[111] Pelham, R.J. Jr., Wang, Y., Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U. S. A. 94 (1997), 13661–13665.
-
(1997)
Proc. Natl. Acad. Sci. U. S. A.
, vol.94
, pp. 13661-13665
-
-
Pelham, R.J.1
Wang, Y.2
-
112
-
-
84903520458
-
Stem cell responses to plasma surface modified electrospun polyurethane scaffolds
-
[112] Zanden, C., Hellstrom Erkenstam, N., Padel, T., Wittgenstein, J., Liu, J., Kuhn, H.G., Stem cell responses to plasma surface modified electrospun polyurethane scaffolds. Nanomedicine 10 (2014), 949–958.
-
(2014)
Nanomedicine
, vol.10
, pp. 949-958
-
-
Zanden, C.1
Hellstrom Erkenstam, N.2
Padel, T.3
Wittgenstein, J.4
Liu, J.5
Kuhn, H.G.6
-
113
-
-
84888365649
-
Effects of surface charges of graphene oxide on neuronal outgrowth and branching
-
[113] Tu, Q., Pang, L., Chen, Y., Zhang, Y., Zhang, R., Lu, B., Wang, J., Effects of surface charges of graphene oxide on neuronal outgrowth and branching. Analyst 139 (2014), 105–115.
-
(2014)
Analyst
, vol.139
, pp. 105-115
-
-
Tu, Q.1
Pang, L.2
Chen, Y.3
Zhang, Y.4
Zhang, R.5
Lu, B.6
Wang, J.7
-
114
-
-
84891445114
-
Biomimetic choline-like graphene oxide composites for neurite sprouting and outgrowth
-
[114] Tu, Q., Pang, L., Wang, L., Zhang, Y., Zhang, R., Wang, J., Biomimetic choline-like graphene oxide composites for neurite sprouting and outgrowth. ACS Appl. Mater. Interfaces 5 (2013), 13188–13197.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 13188-13197
-
-
Tu, Q.1
Pang, L.2
Wang, L.3
Zhang, Y.4
Zhang, R.5
Wang, J.6
-
115
-
-
79957747747
-
Electroconductive polymeric nanowire templates facilitates in vitro C17.2 neural stem cell line adhesion, proliferation and differentiation
-
[115] Bechara, S., Wadman, L., Popat, K.C., Electroconductive polymeric nanowire templates facilitates in vitro C17.2 neural stem cell line adhesion, proliferation and differentiation. Acta Biomater. 7 (2011), 2892–2901.
-
(2011)
Acta Biomater.
, vol.7
, pp. 2892-2901
-
-
Bechara, S.1
Wadman, L.2
Popat, K.C.3
-
116
-
-
56249129313
-
Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2
-
[116] Sher, F., Rossler, R., Brouwer, N., Balasubramaniyan, V., Boddeke, E., Copray, S., Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2. Stem Cells 26 (2008), 2875–2883.
-
(2008)
Stem Cells
, vol.26
, pp. 2875-2883
-
-
Sher, F.1
Rossler, R.2
Brouwer, N.3
Balasubramaniyan, V.4
Boddeke, E.5
Copray, S.6
-
117
-
-
77950443579
-
Axon guidance by growth-rate modulation
-
[117] Mortimer, D., Pujic, Z., Vaughan, T., Thompson, A.W., Feldner, J., Vetter, I., Goodhill, G.J., Axon guidance by growth-rate modulation. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 5202–5207.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 5202-5207
-
-
Mortimer, D.1
Pujic, Z.2
Vaughan, T.3
Thompson, A.W.4
Feldner, J.5
Vetter, I.6
Goodhill, G.J.7
-
118
-
-
84885456435
-
Simple and effective graphene laser processing for neuron patterning application
-
[118] Lorenzoni, M., Brandi, F., Dante, S., Giugni, A., Torre, B., Simple and effective graphene laser processing for neuron patterning application. Sci. Rep., 3, 2013, 1954.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1954
-
-
Lorenzoni, M.1
Brandi, F.2
Dante, S.3
Giugni, A.4
Torre, B.5
-
119
-
-
84885862560
-
Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures
-
[119] Solanki, A., Chueng, S.T., Yin, P.T., Kappera, R., Chhowalla, M., Lee, K.B., Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv. Mater. 25 (2013), 5477–5482.
-
(2013)
Adv. Mater.
, vol.25
, pp. 5477-5482
-
-
Solanki, A.1
Chueng, S.T.2
Yin, P.T.3
Kappera, R.4
Chhowalla, M.5
Lee, K.B.6
-
120
-
-
80053314360
-
Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide
-
[120] Lee, W.C., Lim, C.H., Shi, H., Tang, L.A., Wang, Y., Lim, C.T., Loh, K.P., Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5 (2011), 7334–7341.
-
(2011)
ACS Nano
, vol.5
, pp. 7334-7341
-
-
Lee, W.C.1
Lim, C.H.2
Shi, H.3
Tang, L.A.4
Wang, Y.5
Lim, C.T.6
Loh, K.P.7
-
121
-
-
84927155236
-
Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications
-
[121] Yin, P.T., Shah, S., Chhowalla, M., Lee, K.B., Design, synthesis, and characterization of graphene-nanoparticle hybrid materials for bioapplications. Chem. Rev. 115 (2015), 2483–2531.
-
(2015)
Chem. Rev.
, vol.115
, pp. 2483-2531
-
-
Yin, P.T.1
Shah, S.2
Chhowalla, M.3
Lee, K.B.4
-
122
-
-
77951958990
-
Graphene oxide: surface activity and two-dimensional assembly
-
[122] Kim, F., Cote, L.J., Huang, J., Graphene oxide: surface activity and two-dimensional assembly. Adv. Mater. 22 (2010), 1954–1958.
-
(2010)
Adv. Mater.
, vol.22
, pp. 1954-1958
-
-
Kim, F.1
Cote, L.J.2
Huang, J.3
-
123
-
-
78650646566
-
Graphene oxide as surfactant sheets
-
[123] Cote, L.J., Kim, J., Tung, V.C., Luo, J., Kim, F., Huang, J., Graphene oxide as surfactant sheets. Pure Appl. Chem. 83 (2011), 95–110.
-
(2011)
Pure Appl. Chem.
, vol.83
, pp. 95-110
-
-
Cote, L.J.1
Kim, J.2
Tung, V.C.3
Luo, J.4
Kim, F.5
Huang, J.6
-
124
-
-
84928978900
-
Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays
-
[124] Kim, T.H., Shah, S., Yang, L., Yin, P.T., Hossain, M.K., Conley, B., Choi, J.W., Lee, K.B., Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 9 (2015), 3780–3790.
-
(2015)
ACS Nano
, vol.9
, pp. 3780-3790
-
-
Kim, T.H.1
Shah, S.2
Yang, L.3
Yin, P.T.4
Hossain, M.K.5
Conley, B.6
Choi, J.W.7
Lee, K.B.8
-
125
-
-
58149149845
-
Neuronal differentiation potential of human adipose-derived mesenchymal stem cells
-
[125] Anghileri, E., Marconi, S., Pignatelli, A., Cifelli, P., Galie, M., Sbarbati, A., Krampera, M., Belluzzi, O., Bonetti, B., Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 17 (2008), 909–916.
-
(2008)
Stem Cells Dev.
, vol.17
, pp. 909-916
-
-
Anghileri, E.1
Marconi, S.2
Pignatelli, A.3
Cifelli, P.4
Galie, M.5
Sbarbati, A.6
Krampera, M.7
Belluzzi, O.8
Bonetti, B.9
-
126
-
-
84887108360
-
Differentiation of human neural stem cells into neural networks on graphene nanogrids
-
[126] Akhavan, O., Ghaderi, E., Differentiation of human neural stem cells into neural networks on graphene nanogrids. J. Mater. Chem. B 1 (2013), 6291–6301.
-
(2013)
J. Mater. Chem. B
, vol.1
, pp. 6291-6301
-
-
Akhavan, O.1
Ghaderi, E.2
-
127
-
-
81255173334
-
Graphene transistor arrays for recording action potentials from electrogenic cells
-
(4968)
-
[127] Hess, L.H., Jansen, M., Maybeck, V., Hauf, M.V., Seifert, M., Stutzmann, M., Sharp, I.D., Offenhausser, A., Garrido, J.A., Graphene transistor arrays for recording action potentials from electrogenic cells. Adv. Mater. 23 (2011), 5045–5049 (4968).
-
(2011)
Adv. Mater.
, vol.23
, pp. 5045-5049
-
-
Hess, L.H.1
Jansen, M.2
Maybeck, V.3
Hauf, M.V.4
Seifert, M.5
Stutzmann, M.6
Sharp, I.D.7
Offenhausser, A.8
Garrido, J.A.9
-
128
-
-
84897113046
-
A review of organic and inorganic biomaterials for neural interfaces
-
[128] Fattahi, P., Yang, G., Kim, G., Abidian, M.R., A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26 (2014), 1846–1885.
-
(2014)
Adv. Mater.
, vol.26
, pp. 1846-1885
-
-
Fattahi, P.1
Yang, G.2
Kim, G.3
Abidian, M.R.4
-
129
-
-
29244472857
-
Neuroscience nanotechnology: progress, opportunities and challenges
-
[129] Silva, G.A., Neuroscience nanotechnology: progress, opportunities and challenges. Nat. Rev. Neurosci. 7 (2006), 65–74.
-
(2006)
Nat. Rev. Neurosci.
, vol.7
, pp. 65-74
-
-
Silva, G.A.1
-
130
-
-
84879108421
-
Enhancement of electrical signaling in neural networks on graphene films
-
[130] Tang, M., Song, Q., Li, N., Jiang, Z., Huang, R., Cheng, G., Enhancement of electrical signaling in neural networks on graphene films. Biomaterials 34 (2013), 6402–6411.
-
(2013)
Biomaterials
, vol.34
, pp. 6402-6411
-
-
Tang, M.1
Song, Q.2
Li, N.3
Jiang, Z.4
Huang, R.5
Cheng, G.6
-
131
-
-
84954446263
-
Implantable graphene-based neural electrode interfaces for electrophysiology & neurochemistry in In vivo hyperacute stroke model
-
[131] Liu, T.C., Chuang, M.C., Chu, C.Y., Huang, W.C., Lai, H.Y., Wang, C.T., Chu, W.L., Chen, S.Y., Chen, Y.Y., Implantable graphene-based neural electrode interfaces for electrophysiology & neurochemistry in In vivo hyperacute stroke model. ACS Appl. Mater. Interfaces 8 (2016), 187–196.
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 187-196
-
-
Liu, T.C.1
Chuang, M.C.2
Chu, C.Y.3
Huang, W.C.4
Lai, H.Y.5
Wang, C.T.6
Chu, W.L.7
Chen, S.Y.8
Chen, Y.Y.9
-
132
-
-
84946017059
-
Soft graphene nanofibers designed for the acceleration of nerve growth and development
-
[132] Feng, Z.Q., Wang, T., Zhao, B., Li, J., Jin, L., Soft graphene nanofibers designed for the acceleration of nerve growth and development. Adv. Mater. 27 (2015), 6462–6468.
-
(2015)
Adv. Mater.
, vol.27
, pp. 6462-6468
-
-
Feng, Z.Q.1
Wang, T.2
Zhao, B.3
Li, J.4
Jin, L.5
-
133
-
-
0642366759
-
Neural tissue engineering: strategies for repair and regeneration
-
[133] Schmidt, C.E., Leach, J.B., Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5 (2003), 293–347.
-
(2003)
Annu. Rev. Biomed. Eng.
, vol.5
, pp. 293-347
-
-
Schmidt, C.E.1
Leach, J.B.2
-
134
-
-
0002207123
-
Erfahrungen mit der Mikrochirurgie peripherer Nerven
-
W. Axhausen D.m.D. Buck-Gramcko Springer Berlin Heidelberg
-
[134] Millesi, H., Ganglberger, J., Berger, A., Erfahrungen mit der Mikrochirurgie peripherer Nerven. Axhausen, W., Buck-Gramcko, D.m.D., (eds.) Chirurgia Plastica et Reconstructiva, 1967, Springer Berlin, Heidelberg, 47–55.
-
(1967)
Chirurgia Plastica et Reconstructiva
, pp. 47-55
-
-
Millesi, H.1
Ganglberger, J.2
Berger, A.3
-
135
-
-
0011864944
-
An electrophysiological study of the early stages of peripheral nerve regeneration
-
[135] Jacobson, S., Guth, L., An electrophysiological study of the early stages of peripheral nerve regeneration. Exp. Neurol. 11 (1965), 48–60.
-
(1965)
Exp. Neurol.
, vol.11
, pp. 48-60
-
-
Jacobson, S.1
Guth, L.2
-
136
-
-
84896825451
-
Enhanced neural cell adhesion and neurite outgrowth on graphene-based biomimetic substrates
-
[136] Hong, S.W., Lee, J.H., Kang, S.H., Hwang, E.Y., Hwang, Y.S., Lee, M.H., Han, D.W., Park, J.C., Enhanced neural cell adhesion and neurite outgrowth on graphene-based biomimetic substrates. Biomed. Res. Int., 2014, 2014, 212149.
-
(2014)
Biomed. Res. Int.
, vol.2014
, pp. 212149
-
-
Hong, S.W.1
Lee, J.H.2
Kang, S.H.3
Hwang, E.Y.4
Hwang, Y.S.5
Lee, M.H.6
Han, D.W.7
Park, J.C.8
-
137
-
-
75749087997
-
Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes
-
[137] Abidian, M.R., Corey, J.M., Kipke, D.R., Martin, D.C., Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small 6 (2010), 421–429.
-
(2010)
Small
, vol.6
, pp. 421-429
-
-
Abidian, M.R.1
Corey, J.M.2
Kipke, D.R.3
Martin, D.C.4
-
138
-
-
84884820715
-
Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes
-
[138] Jain, S., Sharma, A., Basu, B., Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes. Biomaterials 34 (2013), 9252–9263.
-
(2013)
Biomaterials
, vol.34
, pp. 9252-9263
-
-
Jain, S.1
Sharma, A.2
Basu, B.3
-
139
-
-
84876537531
-
Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells
-
[139] Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., Liu, L., Dai, J., Tang, M., Cheng, G., Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep., 3, 2013, 1604.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1604
-
-
Li, N.1
Zhang, Q.2
Gao, S.3
Song, Q.4
Huang, R.5
Wang, L.6
Liu, L.7
Dai, J.8
Tang, M.9
Cheng, G.10
-
140
-
-
0028152464
-
Modulation of axon diameter and neurofilaments by hypomyelinating Schwann cells in transgenic mice
-
[140] Cole, J.S., Messing, A., Trojanowski, J.Q., Lee, V.M., Modulation of axon diameter and neurofilaments by hypomyelinating Schwann cells in transgenic mice. J. Neurosci. 14 (1994), 6956–6966.
-
(1994)
J. Neurosci.
, vol.14
, pp. 6956-6966
-
-
Cole, J.S.1
Messing, A.2
Trojanowski, J.Q.3
Lee, V.M.4
-
141
-
-
84863121379
-
Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states
-
[141] Shi, X., Chang, H., Chen, S., Lai, C., Khademhosseini, A., Wu, H., Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states. Adv. Funct. Mater. 22 (2012), 751–759.
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 751-759
-
-
Shi, X.1
Chang, H.2
Chen, S.3
Lai, C.4
Khademhosseini, A.5
Wu, H.6
-
142
-
-
84905660656
-
Applications of carbon nanomaterials in bone tissue engineering
-
[142] Venkatesan, J., Pallela, R., Kim, S.-K., Applications of carbon nanomaterials in bone tissue engineering. J. Biomed. Nanotechnol. 10 (2014), 3105–3123.
-
(2014)
J. Biomed. Nanotechnol.
, vol.10
, pp. 3105-3123
-
-
Venkatesan, J.1
Pallela, R.2
Kim, S.-K.3
-
143
-
-
33747152561
-
Matrix elasticity directs stem cell lineage specification
-
[143] Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., Matrix elasticity directs stem cell lineage specification. Cell 126 (2006), 677–689.
-
(2006)
Cell
, vol.126
, pp. 677-689
-
-
Engler, A.J.1
Sen, S.2
Sweeney, H.L.3
Discher, D.E.4
-
144
-
-
79959787621
-
Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells
-
[144] Nayak, T.R., Andersen, H., Makam, V.S., Khaw, C., Bae, S., Xu, X., Ee, P.-L.R., Ahn, J.-H., Hong, B.H., Pastorin, G., Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5 (2011), 4670–4678.
-
(2011)
ACS Nano
, vol.5
, pp. 4670-4678
-
-
Nayak, T.R.1
Andersen, H.2
Makam, V.S.3
Khaw, C.4
Bae, S.5
Xu, X.6
Ee, P.-L.R.7
Ahn, J.-H.8
Hong, B.H.9
Pastorin, G.10
-
145
-
-
84877693689
-
Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells
-
[145] Akhavan, O., Ghaderi, E., Shahsavar, M., Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells. Carbon 59 (2013), 200–211.
-
(2013)
Carbon
, vol.59
, pp. 200-211
-
-
Akhavan, O.1
Ghaderi, E.2
Shahsavar, M.3
-
146
-
-
79955542078
-
Graphene–biomineral hybrid materials
-
[146] Kim, S., Ku, S.H., Lim, S.Y., Kim, J.H., Park, C.B., Graphene–biomineral hybrid materials. Adv. Mater. 23 (2011), 2009–2014.
-
(2011)
Adv. Mater.
, vol.23
, pp. 2009-2014
-
-
Kim, S.1
Ku, S.H.2
Lim, S.Y.3
Kim, J.H.4
Park, C.B.5
-
147
-
-
84880592798
-
Self-supporting graphene hydrogel film as an experimental platform to evaluate the potential of graphene for bone regeneration
-
[147] Lu, J., He, Y.S., Cheng, C., Wang, Y., Qiu, L., Li, D., Zou, D., Self-supporting graphene hydrogel film as an experimental platform to evaluate the potential of graphene for bone regeneration. Adv. Funct. Mater. 23 (2013), 3494–3502.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 3494-3502
-
-
Lu, J.1
He, Y.S.2
Cheng, C.3
Wang, Y.4
Qiu, L.5
Li, D.6
Zou, D.7
-
148
-
-
84938584498
-
Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells
-
[148] Xie, H., Cao, T., Gomes, J.V., Neto, A.H.l.C., Rosa, V., Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells. Carbon 93 (2015), 266–275.
-
(2015)
Carbon
, vol.93
, pp. 266-275
-
-
Xie, H.1
Cao, T.2
Gomes, J.V.3
Neto, A.H.L.C.4
Rosa, V.5
-
149
-
-
84951299076
-
Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites
-
[149] Lee, J.H., Shin, Y.C., Lee, S.-M., Jin, O.S., Kang, S.H., Hong, S.W., Jeong, C.-M., Huh, J.B., Han, D.-W., Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci. Rep., 5, 2015, 18833.
-
(2015)
Sci. Rep.
, vol.5
, pp. 18833
-
-
Lee, J.H.1
Shin, Y.C.2
Lee, S.-M.3
Jin, O.S.4
Kang, S.H.5
Hong, S.W.6
Jeong, C.-M.7
Huh, J.B.8
Han, D.-W.9
-
150
-
-
84942926734
-
Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells
-
[150] Lee, J.H., Shin, Y.C., Jin, O.S., Kang, S.H., Hwang, Y.-S., Park, J.-C., Hong, S., Han, D.-W., Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 7 (2015), 11642–11651.
-
(2015)
Nanoscale
, vol.7
, pp. 11642-11651
-
-
Lee, J.H.1
Shin, Y.C.2
Jin, O.S.3
Kang, S.H.4
Hwang, Y.-S.5
Park, J.-C.6
Hong, S.7
Han, D.-W.8
-
151
-
-
84896336871
-
Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide
-
[151] Liu, H., Cheng, J., Chen, F., Hou, F., Bai, D., Xi, P., Zeng, Z., Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide. ACS Appl. Mater. Interfaces 6 (2014), 3132–3140.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 3132-3140
-
-
Liu, H.1
Cheng, J.2
Chen, F.3
Hou, F.4
Bai, D.5
Xi, P.6
Zeng, Z.7
-
152
-
-
84929460691
-
Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering
-
[152] Xie, X., Hu, K., Fang, D., Shang, L., Tran, S.D., Cerruti, M., Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale 7 (2015), 7992–8002.
-
(2015)
Nanoscale
, vol.7
, pp. 7992-8002
-
-
Xie, X.1
Hu, K.2
Fang, D.3
Shang, L.4
Tran, S.D.5
Cerruti, M.6
-
153
-
-
84879846957
-
Facile one-step synthesis of a 3D macroscopic SnO 2–graphene aerogel and its application as a superior anode material for Li-ion batteries
-
[153] Liang, J., Liu, Y., Guo, L., Li, L., Facile one-step synthesis of a 3D macroscopic SnO 2–graphene aerogel and its application as a superior anode material for Li-ion batteries. RSC Adv. 3 (2013), 11489–11492.
-
(2013)
RSC Adv.
, vol.3
, pp. 11489-11492
-
-
Liang, J.1
Liu, Y.2
Guo, L.3
Li, L.4
-
154
-
-
84859127853
-
Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process
-
[154] Cong, H.-P., Ren, X.-C., Wang, P., Yu, S.-H., Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6 (2012), 2693–2703.
-
(2012)
ACS Nano
, vol.6
, pp. 2693-2703
-
-
Cong, H.-P.1
Ren, X.-C.2
Wang, P.3
Yu, S.-H.4
-
155
-
-
84942926734
-
Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells
-
[155] Lee, J.H., Shin, Y.C., Jin, O.S., Kang, S.H., Hwang, Y.S., Park, J.C., Hong, S.W., Han, D.W., Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 7 (2015), 11642–11651.
-
(2015)
Nanoscale
, vol.7
, pp. 11642-11651
-
-
Lee, J.H.1
Shin, Y.C.2
Jin, O.S.3
Kang, S.H.4
Hwang, Y.S.5
Park, J.C.6
Hong, S.W.7
Han, D.W.8
-
156
-
-
84951299076
-
Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites
-
[156] Lee, J.H., Shin, Y.C., Lee, S.M., Jin, O.S., Kang, S.H., Hong, S.W., Jeong, C.M., Huh, J.B., Han, D.W., Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci. Rep., 5, 2015, 18833.
-
(2015)
Sci. Rep.
, vol.5
, pp. 18833
-
-
Lee, J.H.1
Shin, Y.C.2
Lee, S.M.3
Jin, O.S.4
Kang, S.H.5
Hong, S.W.6
Jeong, C.M.7
Huh, J.B.8
Han, D.W.9
-
157
-
-
84921735988
-
Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold
-
[157] Kumar, S., Chatterjee, K., Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold. Nanoscale 7 (2015), 2023–2033.
-
(2015)
Nanoscale
, vol.7
, pp. 2023-2033
-
-
Kumar, S.1
Chatterjee, K.2
-
158
-
-
84896994544
-
Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate–reduced graphene oxide composites
-
[158] Mehrali, M., Moghaddam, E., Shirazi, S.F.S., Baradaran, S., Mehrali, M., Latibari, S.T., Metselaar, H.S.C., Kadri, N.A., Zandi, K., Osman, N.A.A., Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate–reduced graphene oxide composites. ACS Appl. Mater. Interfaces 6 (2014), 3947–3962.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 3947-3962
-
-
Mehrali, M.1
Moghaddam, E.2
Shirazi, S.F.S.3
Baradaran, S.4
Mehrali, M.5
Latibari, S.T.6
Metselaar, H.S.C.7
Kadri, N.A.8
Zandi, K.9
Osman, N.A.A.10
-
159
-
-
84898680239
-
Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance
-
[159] Gao, C., Liu, T., Shuai, C., Peng, S., Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Sci. Rep., 4, 2014.
-
(2014)
Sci. Rep.
, vol.4
-
-
Gao, C.1
Liu, T.2
Shuai, C.3
Peng, S.4
-
160
-
-
33750490078
-
Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro
-
[160] Balani, K., Anderson, R., Laha, T., Andara, M., Tercero, J., Crumpler, E., Agarwal, A., Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 28 (2007), 618–624.
-
(2007)
Biomaterials
, vol.28
, pp. 618-624
-
-
Balani, K.1
Anderson, R.2
Laha, T.3
Andara, M.4
Tercero, J.5
Crumpler, E.6
Agarwal, A.7
-
161
-
-
78649332532
-
Carbon nanotube toughened hydroxyapatite by spark plasma sintering: microstructural evolution and multiscale tribological properties
-
[161] Lahiri, D., Singh, V., Keshri, A.K., Seal, S., Agarwal, A., Carbon nanotube toughened hydroxyapatite by spark plasma sintering: microstructural evolution and multiscale tribological properties. Carbon 48 (2010), 3103–3120.
-
(2010)
Carbon
, vol.48
, pp. 3103-3120
-
-
Lahiri, D.1
Singh, V.2
Keshri, A.K.3
Seal, S.4
Agarwal, A.5
-
162
-
-
84896868025
-
Graphene-reinforced calcium silicate coatings for load-bearing implants
-
[162] Xie, Y., Li, H., Zhang, C., Gu, X., Zheng, X., Huang, L., Graphene-reinforced calcium silicate coatings for load-bearing implants. Biomed. Mater., 9, 2014, 025009.
-
(2014)
Biomed. Mater.
, vol.9
, pp. 025009
-
-
Xie, Y.1
Li, H.2
Zhang, C.3
Gu, X.4
Zheng, X.5
Huang, L.6
-
163
-
-
79960901303
-
Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films
-
[163] Yang, X., Qiu, L., Cheng, C., Wu, Y., Ma, Z.F., Li, D., Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew. Chem. Int. Ed. Eng. 50 (2011), 7325–7328.
-
(2011)
Angew. Chem. Int. Ed. Eng.
, vol.50
, pp. 7325-7328
-
-
Yang, X.1
Qiu, L.2
Cheng, C.3
Wu, Y.4
Ma, Z.F.5
Li, D.6
-
164
-
-
84934918501
-
Graphene: a versatile carbon-based material for bone tissue engineering
-
[164] Dubey, N., Bentini, R., Islam, I., Cao, T., Castro Neto, A.H., Rosa, V., Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int., 2015, 2015, 804213.
-
(2015)
Stem Cells Int.
, vol.2015
, pp. 804213
-
-
Dubey, N.1
Bentini, R.2
Islam, I.3
Cao, T.4
Castro Neto, A.H.5
Rosa, V.6
-
165
-
-
84855833077
-
Biological interactions of graphene-family nanomaterials: an interdisciplinary review
-
[165] Sanchez, V.C., Jachak, A., Hurt, R.H., Kane, A.B., Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25 (2011), 15–34.
-
(2011)
Chem. Res. Toxicol.
, vol.25
, pp. 15-34
-
-
Sanchez, V.C.1
Jachak, A.2
Hurt, R.H.3
Kane, A.B.4
-
166
-
-
84867340609
-
Nanoscale graphene oxide (nGO) as artificial receptors: implications for biomolecular interactions and sensing
-
[166] Chou, S.S., De, M., Luo, J., Rotello, V.M., Huang, J., Dravid, V.P., Nanoscale graphene oxide (nGO) as artificial receptors: implications for biomolecular interactions and sensing. J. Am. Chem. Soc. 134 (2012), 16725–16733.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 16725-16733
-
-
Chou, S.S.1
De, M.2
Luo, J.3
Rotello, V.M.4
Huang, J.5
Dravid, V.P.6
-
167
-
-
78650276835
-
Graphene oxide nanocolloids
-
[167] Luo, J., Cote, L.J., Tung, V.C., Tan, A.T., Goins, P.E., Wu, J., Huang, J., Graphene oxide nanocolloids. J. Am. Chem. Soc. 132 (2010), 17667–17669.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 17667-17669
-
-
Luo, J.1
Cote, L.J.2
Tung, V.C.3
Tan, A.T.4
Goins, P.E.5
Wu, J.6
Huang, J.7
-
168
-
-
84901851737
-
Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas
-
[168] Russo, C.J., Passmore, L.A., Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat. Methods 11 (2014), 649–652.
-
(2014)
Nat. Methods
, vol.11
, pp. 649-652
-
-
Russo, C.J.1
Passmore, L.A.2
-
169
-
-
54949098149
-
Mechanically strong, electrically conductive, and biocompatible graphene paper
-
[169] Chen, H., Müller, M.B., Gilmore, K.J., Wallace, G.G., Li, D., Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20 (2008), 3557–3561.
-
(2008)
Adv. Mater.
, vol.20
, pp. 3557-3561
-
-
Chen, H.1
Müller, M.B.2
Gilmore, K.J.3
Wallace, G.G.4
Li, D.5
-
170
-
-
84865325163
-
Two dimensional soft material: new faces of graphene oxide
-
[170] Kim, J., Cote, L.J., Huang, J., Two dimensional soft material: new faces of graphene oxide. Acc. Chem. Res. 45 (2012), 1356–1364.
-
(2012)
Acc. Chem. Res.
, vol.45
, pp. 1356-1364
-
-
Kim, J.1
Cote, L.J.2
Huang, J.3
-
171
-
-
84900405009
-
Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration
-
[171] La, W.-G., Jin, M., Park, S., Yoon, H.-H., Jeong, G.-J., Bhang, S.H., Park, H., Char, K., Kim, B.-S., Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int. J. Nanomedicine, 9, 2014, 107.
-
(2014)
Int. J. Nanomedicine
, vol.9
, pp. 107
-
-
La, W.-G.1
Jin, M.2
Park, S.3
Yoon, H.-H.4
Jeong, G.-J.5
Bhang, S.H.6
Park, H.7
Char, K.8
Kim, B.-S.9
-
172
-
-
20544465861
-
Articular cartilage and osteoarthritis
-
[172] Buckwalter, J.A., Mankin, H.J., Grodzinsky, A.J., Articular cartilage and osteoarthritis. Instr. Course Lect., 54, 2005, 465.
-
(2005)
Instr. Course Lect.
, vol.54
, pp. 465
-
-
Buckwalter, J.A.1
Mankin, H.J.2
Grodzinsky, A.J.3
-
173
-
-
84923305433
-
Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation
-
[173] Lee, W.C., Lim, C.H., Su, C., Loh, K.P., Lim, C.T., Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11 (2015), 963–969.
-
(2015)
Small
, vol.11
, pp. 963-969
-
-
Lee, W.C.1
Lim, C.H.2
Su, C.3
Loh, K.P.4
Lim, C.T.5
-
174
-
-
84927125250
-
Dual Roles of graphene oxide in chondrogenic differentiation of Adult stem cells: Cell-Adhesion substrate and growth Factor-Delivery carrier
-
[174] Yoon, H.H., Bhang, S.H., Kim, T., Yu, T., Hyeon, T., Kim, B.S., Dual Roles of graphene oxide in chondrogenic differentiation of Adult stem cells: Cell-Adhesion substrate and growth Factor-Delivery carrier. Adv. Funct. Mater. 24 (2014), 6455–6464.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 6455-6464
-
-
Yoon, H.H.1
Bhang, S.H.2
Kim, T.3
Yu, T.4
Hyeon, T.5
Kim, B.S.6
-
175
-
-
84929179994
-
Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering
-
[175] Liao, J., Qu, Y., Chu, B., Zhang, X., Qian, Z., Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Sci. Rep., 5, 2015, 9879.
-
(2015)
Sci. Rep.
, vol.5
, pp. 9879
-
-
Liao, J.1
Qu, Y.2
Chu, B.3
Zhang, X.4
Qian, Z.5
-
176
-
-
84923305433
-
Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation
-
[176] Lee, W.C., Lim, C.H., Kenry, Su, C., Loh, K.P., Lim, C.T., Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11 (2015), 963–969.
-
(2015)
Small
, vol.11
, pp. 963-969
-
-
Lee, W.C.1
Lim, C.H.2
Kenry3
Su, C.4
Loh, K.P.5
Lim, C.T.6
-
177
-
-
84880767200
-
Design of three-dimensional porous carbon materials: from Static to dynamic Skeletons
-
[177] Lu, A.H., Hao, G.P., Sun, Q., Design of three-dimensional porous carbon materials: from Static to dynamic Skeletons. Angew. Chem. Int. Ed. Eng. 52 (2013), 7930–7932.
-
(2013)
Angew. Chem. Int. Ed. Eng.
, vol.52
, pp. 7930-7932
-
-
Lu, A.H.1
Hao, G.P.2
Sun, Q.3
-
178
-
-
84893928579
-
Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films
-
[178] Ahadian, S., Ramón-Azcón, J., Chang, H., Liang, X., Kaji, H., Shiku, H., Nakajima, K., Ramalingam, M., Wu, H., Matsue, T., Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Adv. 4 (2014), 9534–9541.
-
(2014)
RSC Adv.
, vol.4
, pp. 9534-9541
-
-
Ahadian, S.1
Ramón-Azcón, J.2
Chang, H.3
Liang, X.4
Kaji, H.5
Shiku, H.6
Nakajima, K.7
Ramalingam, M.8
Wu, H.9
Matsue, T.10
-
179
-
-
84903961176
-
Graphene-based patterning and differentiation of C2C12 myoblasts
-
[179] Bajaj, P., Rivera, J.A., Marchwiany, D., Solovyeva, V., Bashir, R., Graphene-based patterning and differentiation of C2C12 myoblasts. Adv. Healthcare Mater. 3 (2014), 995–1000.
-
(2014)
Adv. Healthcare Mater.
, vol.3
, pp. 995-1000
-
-
Bajaj, P.1
Rivera, J.A.2
Marchwiany, D.3
Solovyeva, V.4
Bashir, R.5
-
180
-
-
85039033883
-
Origami-inspired active graphene-based paper for programmable instant self-folding walking devices
-
e1500533
-
[180] Mu, J., Hou, C., Wang, H., Li, Y., Zhang, Q., Zhu, M., Origami-inspired active graphene-based paper for programmable instant self-folding walking devices. Sci. Adv., 1, 2015, e1500533.
-
(2015)
Sci. Adv.
, vol.1
-
-
Mu, J.1
Hou, C.2
Wang, H.3
Li, Y.4
Zhang, Q.5
Zhu, M.6
-
181
-
-
84977944222
-
Graphene oxide-decorated PLGA/collagen hybrid fiber sheets for application to tissue engineering scaffolds
-
[181] Lee, E.J., Lee, J.H., Shin, Y.C., Hwang, D.-G., Kim, J.S., Jin, O.S., Jin, L., Hong, S.W., Han, D.-W., Graphene oxide-decorated PLGA/collagen hybrid fiber sheets for application to tissue engineering scaffolds. Biomater. Res. 18 (2014), 18–24.
-
(2014)
Biomater. Res.
, vol.18
, pp. 18-24
-
-
Lee, E.J.1
Lee, J.H.2
Shin, Y.C.3
Hwang, D.-G.4
Kim, J.S.5
Jin, O.S.6
Jin, L.7
Hong, S.W.8
Han, D.-W.9
-
182
-
-
84952331529
-
Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring
-
[182] Li, Z., Wang, H., Yang, B., Sun, Y., Huo, R., Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater. Sci. Eng., C 57 (2015), 181–188.
-
(2015)
Mater. Sci. Eng., C
, vol.57
, pp. 181-188
-
-
Li, Z.1
Wang, H.2
Yang, B.3
Sun, Y.4
Huo, R.5
-
183
-
-
84886728875
-
Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells
-
[183] Kim, J., Choi, K.S., Kim, Y., Lim, K.T., Seonwoo, H., Park, Y., Kim, D.H., Choung, P.H., Cho, C.S., Kim, S.Y., Choung, Y.H., Chung, J.H., Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. J. Biomed. Mater. Res. A 101 (2013), 3520–3530.
-
(2013)
J. Biomed. Mater. Res. A
, vol.101
, pp. 3520-3530
-
-
Kim, J.1
Choi, K.S.2
Kim, Y.3
Lim, K.T.4
Seonwoo, H.5
Park, Y.6
Kim, D.H.7
Choung, P.H.8
Cho, C.S.9
Kim, S.Y.10
Choung, Y.H.11
Chung, J.H.12
-
184
-
-
33745597580
-
Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety
-
[184] Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., Alexander, A., Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92 (2006), 5–22.
-
(2006)
Toxicol. Sci.
, vol.92
, pp. 5-22
-
-
Donaldson, K.1
Aitken, R.2
Tran, L.3
Stone, V.4
Duffin, R.5
Forrest, G.6
Alexander, A.7
-
185
-
-
84877711849
-
Graphene: safe or toxic? The two faces of the medal
-
[185] Bianco, A., Graphene: safe or toxic? The two faces of the medal. Angew. Chem. Int. Ed. Eng. 52 (2013), 4986–4997.
-
(2013)
Angew. Chem. Int. Ed. Eng.
, vol.52
, pp. 4986-4997
-
-
Bianco, A.1
-
186
-
-
78650730366
-
DNA cleavage system of nanosized graphene oxide sheets and copper ions
-
[186] Ren, H., Wang, C., Zhang, J., Zhou, X., Xu, D., Zheng, J., Guo, S., DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 4 (2010), 7169–7174.
-
(2010)
ACS Nano
, vol.4
, pp. 7169-7174
-
-
Ren, H.1
Wang, C.2
Zhang, J.3
Zhou, X.4
Xu, D.5
Zheng, J.6
Guo, S.7
-
187
-
-
77955821689
-
Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells
-
[187] Wang, Y., Li, Z., Hu, D., Lin, C.T., Li, J., Lin, Y., Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132 (2010), 9274–9276.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 9274-9276
-
-
Wang, Y.1
Li, Z.2
Hu, D.3
Lin, C.T.4
Li, J.5
Lin, Y.6
-
188
-
-
84928945084
-
Thrombogenicity and biocompatibility studies of reduced graphene oxide modified acellular pulmonary valve tissue
-
[188] Wilczek, P., Major, R., Lipinska, L., Lackner, J., Mzyk, A., Thrombogenicity and biocompatibility studies of reduced graphene oxide modified acellular pulmonary valve tissue. Mater. Sci. Eng., C 53 (2015), 310–321.
-
(2015)
Mater. Sci. Eng., C
, vol.53
, pp. 310-321
-
-
Wilczek, P.1
Major, R.2
Lipinska, L.3
Lackner, J.4
Mzyk, A.5
-
189
-
-
78650251003
-
Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration
-
[189] Zhang, X., Yin, J., Peng, C., Hu, W., Zhu, Z., Li, W., Fan, C., Huang, Q., Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49 (2011), 986–995.
-
(2011)
Carbon
, vol.49
, pp. 986-995
-
-
Zhang, X.1
Yin, J.2
Peng, C.3
Hu, W.4
Zhu, Z.5
Li, W.6
Fan, C.7
Huang, Q.8
-
190
-
-
84923263730
-
Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties
-
[190] Wang, L., Wang, Y., Xu, T., Liao, H., Yao, C., Liu, Y., Li, Z., Chen, Z., Pan, D., Sun, L., Wu, M., Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun., 5, 2014, 5357.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5357
-
-
Wang, L.1
Wang, Y.2
Xu, T.3
Liao, H.4
Yao, C.5
Liu, Y.6
Li, Z.7
Chen, Z.8
Pan, D.9
Sun, L.10
Wu, M.11
-
191
-
-
84930211248
-
A bio-friendly green route to processable, biocompatible graphene/polymer composites
-
[191] Murray, E., Sayyar, S., Thompson, B.C. Gorkin, R., Officer, D.L., Wallace, G.G., A bio-friendly green route to processable, biocompatible graphene/polymer composites. RSC Adv. 5 (2015), 45284–45290.
-
(2015)
RSC Adv.
, vol.5
, pp. 45284-45290
-
-
Murray, E.1
Sayyar, S.2
Thompson, B.C.3
Gorkin, R.4
Officer, D.L.5
Wallace, G.G.6
-
192
-
-
78650721733
-
Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels
-
[192] Xu, Y., Wu, Q., Sun, Y., Bai, H., Shi, G., Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4 (2010), 7358–7362.
-
(2010)
ACS Nano
, vol.4
, pp. 7358-7362
-
-
Xu, Y.1
Wu, Q.2
Sun, Y.3
Bai, H.4
Shi, G.5
-
193
-
-
79952578010
-
In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice
-
[193] Yang, K., Wan, J., Zhang, S., Zhang, Y., Lee, S.T., Liu, Z., In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5 (2011), 516–522.
-
(2011)
ACS Nano
, vol.5
, pp. 516-522
-
-
Yang, K.1
Wan, J.2
Zhang, S.3
Zhang, Y.4
Lee, S.T.5
Liu, Z.6
-
194
-
-
84928975757
-
In vivo compatibility of graphene oxide with differing oxidation states
-
[194] Sydlik, S.A., Jhunjhunwala, S., Webber, M.J., Anderson, D.G., Langer, R., In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano 9 (2015), 3866–3874.
-
(2015)
ACS Nano
, vol.9
, pp. 3866-3874
-
-
Sydlik, S.A.1
Jhunjhunwala, S.2
Webber, M.J.3
Anderson, D.G.4
Langer, R.5
|