메뉴 건너뛰기




Volumn 31, Issue 3, 2013, Pages 169-176

Extracellular matrix scaffolds for cartilage and bone regeneration

Author keywords

[No Author keywords available]

Indexed keywords

BREAST RECONSTRUCTIVE SURGERY; CLINICAL APPLICATION; DECELLULARIZED TISSUES; EXTRACELLULAR MATRICES; NATURAL BIOMATERIALS; OSTEOCHONDRAL REPAIRS; OSTEOCHONDRAL TISSUE ENGINEERING; REGENERATIVE MEDICINE;

EID: 84875265038     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2012.12.004     Document Type: Review
Times cited : (455)

References (73)
  • 1
    • 84875268642 scopus 로고    scopus 로고
    • Orthoworld (2009-2010) The Orthopaedic Industry Annual Report, Orthoworld Inc.
    • Orthoworld (2009-2010) The Orthopaedic Industry Annual Report, Orthoworld Inc.
  • 2
    • 39749153720 scopus 로고    scopus 로고
    • Autologous chondrocyte implantation - technique and long-term follow-up
    • Brittberg M. Autologous chondrocyte implantation - technique and long-term follow-up. Injury 2008, 39(Suppl. 1):S40-S49.
    • (2008) Injury , vol.39 , Issue.SUPPL. 1
    • Brittberg, M.1
  • 3
    • 34247503154 scopus 로고    scopus 로고
    • Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment
    • Zheng M.H., et al. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng. 2007, 13:737-746.
    • (2007) Tissue Eng. , vol.13 , pp. 737-746
    • Zheng, M.H.1
  • 4
    • 0031829049 scopus 로고    scopus 로고
    • Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice
    • Hangody L., et al. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 1998, 21:751-756.
    • (1998) Orthopedics , vol.21 , pp. 751-756
    • Hangody, L.1
  • 5
    • 84866241744 scopus 로고    scopus 로고
    • Osteochondral allograft transplantation in the knee
    • Bugbee W., et al. Osteochondral allograft transplantation in the knee. J. Knee Surg. 2012, 25:109-116.
    • (2012) J. Knee Surg. , vol.25 , pp. 109-116
    • Bugbee, W.1
  • 6
    • 0032928048 scopus 로고    scopus 로고
    • Osteochondral allograft transplantation
    • Bugbee W.D., Convery F.R. Osteochondral allograft transplantation. Clin. Sports Med. 1999, 18:67-75.
    • (1999) Clin. Sports Med. , vol.18 , pp. 67-75
    • Bugbee, W.D.1    Convery, F.R.2
  • 7
    • 0036594385 scopus 로고    scopus 로고
    • Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes
    • Steadman J.R., et al. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J. Knee Surg. 2002, 15:170-176.
    • (2002) J. Knee Surg. , vol.15 , pp. 170-176
    • Steadman, J.R.1
  • 8
    • 65249167104 scopus 로고    scopus 로고
    • Cartilage engineering: a crucial combination of cells, biomaterials and biofactors
    • Vinatier C., et al. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 2009, 27:307-314.
    • (2009) Trends Biotechnol. , vol.27 , pp. 307-314
    • Vinatier, C.1
  • 9
    • 70349690480 scopus 로고    scopus 로고
    • Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: a prospective multicenter clinical trial in Japan
    • Tohyama H., et al. Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: a prospective multicenter clinical trial in Japan. J. Orthop. Sci. 2009, 14:579-588.
    • (2009) J. Orthop. Sci. , vol.14 , pp. 579-588
    • Tohyama, H.1
  • 10
    • 84856566414 scopus 로고    scopus 로고
    • The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules
    • Shin H., et al. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 2012, 33:3143-3152.
    • (2012) Biomaterials , vol.33 , pp. 3143-3152
    • Shin, H.1
  • 11
    • 79551523308 scopus 로고    scopus 로고
    • Fibrin glues in combination with mesenchymal stem cells to develop a tissue-engineered cartilage substitute
    • Ahmed T.A., et al. Fibrin glues in combination with mesenchymal stem cells to develop a tissue-engineered cartilage substitute. Tissue Eng. Part A 2011, 17:323-335.
    • (2011) Tissue Eng. Part A , vol.17 , pp. 323-335
    • Ahmed, T.A.1
  • 12
    • 84862767334 scopus 로고    scopus 로고
    • Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification
    • Jeong C.G., et al. Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification. J. Biomed. Mater. Res. A 2012, 100:2088-2096.
    • (2012) J. Biomed. Mater. Res. A , vol.100 , pp. 2088-2096
    • Jeong, C.G.1
  • 13
    • 72249110254 scopus 로고    scopus 로고
    • Variation of mesenchymal cells in polylactic acid scaffold in an osteochondral repair model
    • Oshima Y., et al. Variation of mesenchymal cells in polylactic acid scaffold in an osteochondral repair model. Tissue Eng. Part C: Methods 2009, 15:595-604.
    • (2009) Tissue Eng. Part C: Methods , vol.15 , pp. 595-604
    • Oshima, Y.1
  • 14
    • 84858033844 scopus 로고    scopus 로고
    • Engineered whole organs and complex tissues
    • Badylak S.F., et al. Engineered whole organs and complex tissues. Lancet 2012, 379:943-952.
    • (2012) Lancet , vol.379 , pp. 943-952
    • Badylak, S.F.1
  • 15
    • 33748967069 scopus 로고    scopus 로고
    • Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer
    • Nelson C.M., Bissell M.J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 2006, 22:287-309.
    • (2006) Annu. Rev. Cell Dev. Biol. , vol.22 , pp. 287-309
    • Nelson, C.M.1    Bissell, M.J.2
  • 16
    • 79961211703 scopus 로고    scopus 로고
    • Clinical and hemodynamic outcomes after aortic valve replacement with stented and stentless pericardial xenografts: a propensity-matched analysis
    • discussion 326
    • D'Onofrio A., et al. Clinical and hemodynamic outcomes after aortic valve replacement with stented and stentless pericardial xenografts: a propensity-matched analysis. J. Heart Valve Dis. 2011, 20:319-325. discussion 326.
    • (2011) J. Heart Valve Dis. , vol.20 , pp. 319-325
    • D'Onofrio, A.1
  • 17
    • 57349176894 scopus 로고    scopus 로고
    • Clinical transplantation of a tissue-engineered airway
    • Macchiarini P., et al. Clinical transplantation of a tissue-engineered airway. Lancet 2008, 372:2023-2030.
    • (2008) Lancet , vol.372 , pp. 2023-2030
    • Macchiarini, P.1
  • 18
    • 84855853544 scopus 로고    scopus 로고
    • Scaffold devices for rotator cuff repair
    • Ricchetti E.T., et al. Scaffold devices for rotator cuff repair. J. Shoulder Elbow Surg. 2012, 21:251-265.
    • (2012) J. Shoulder Elbow Surg. , vol.21 , pp. 251-265
    • Ricchetti, E.T.1
  • 19
    • 84905040424 scopus 로고    scopus 로고
    • Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel
    • Martinello T., et al. Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. J. Tissue Eng. Regen. Med. 2012, 10.1002/term.1557.
    • (2012) J. Tissue Eng. Regen. Med.
    • Martinello, T.1
  • 20
    • 33645399983 scopus 로고    scopus 로고
    • A new biocompatible material (Lyoplant) for the therapy of congenital abdominal wall defects: first experimental results in rats
    • Meyer T., et al. A new biocompatible material (Lyoplant) for the therapy of congenital abdominal wall defects: first experimental results in rats. Pediatr. Surg. Int. 2006, 22:369-374.
    • (2006) Pediatr. Surg. Int. , vol.22 , pp. 369-374
    • Meyer, T.1
  • 21
    • 84860369887 scopus 로고    scopus 로고
    • Use of surgisis for treatment of anterior and posterior vaginal prolapse
    • Armitage S., et al. Use of surgisis for treatment of anterior and posterior vaginal prolapse. Obstet. Gynecol. Int. 2012, 2012:376251.
    • (2012) Obstet. Gynecol. Int. , vol.2012 , pp. 376251
    • Armitage, S.1
  • 22
    • 34249819953 scopus 로고    scopus 로고
    • The extracellular matrix as a biologic scaffold material
    • Badylak S.F. The extracellular matrix as a biologic scaffold material. Biomaterials 2007, 28:3587-3593.
    • (2007) Biomaterials , vol.28 , pp. 3587-3593
    • Badylak, S.F.1
  • 23
    • 78349307323 scopus 로고    scopus 로고
    • The effect of source animal age upon extracellular matrix scaffold properties
    • Tottey S., et al. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials 2012, 32:128-136.
    • (2012) Biomaterials , vol.32 , pp. 128-136
    • Tottey, S.1
  • 24
    • 84861052081 scopus 로고    scopus 로고
    • Strategies for tissue and organ decellularization
    • Gilbert T.W. Strategies for tissue and organ decellularization. J. Cell. Biochem. 2012, 113:2217-2222.
    • (2012) J. Cell. Biochem. , vol.113 , pp. 2217-2222
    • Gilbert, T.W.1
  • 25
    • 44649106314 scopus 로고    scopus 로고
    • Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors
    • Gong J., et al. Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp. Eye Res. 2008, 86:957-965.
    • (2008) Exp. Eye Res. , vol.86 , pp. 957-965
    • Gong, J.1
  • 26
    • 34548658749 scopus 로고    scopus 로고
    • Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds
    • Sellaro T.L., et al. Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds. Tissue Eng. 2007, 13:2301-2310.
    • (2007) Tissue Eng. , vol.13 , pp. 2301-2310
    • Sellaro, T.L.1
  • 27
    • 84862833483 scopus 로고    scopus 로고
    • A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering
    • discussion 343
    • Pei M., et al. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur. Cell Mater. 2011, 22:333-343. discussion 343.
    • (2011) Eur. Cell Mater. , vol.22 , pp. 333-343
    • Pei, M.1
  • 28
    • 78649444392 scopus 로고    scopus 로고
    • Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo
    • Vorotnikova E., et al. Extracellular matrix-derived products modulate endothelial and progenitor cell migration and proliferation in vitro and stimulate regenerative healing in vivo. Matrix Biol. 2010, 29:690-700.
    • (2010) Matrix Biol. , vol.29 , pp. 690-700
    • Vorotnikova, E.1
  • 29
    • 42949133342 scopus 로고    scopus 로고
    • Cartilage in normal and osteoarthritis conditions
    • Martel-Pelletier J., et al. Cartilage in normal and osteoarthritis conditions. Best Pract. Res. Clin. Rheumatol. 2008, 22:351-384.
    • (2008) Best Pract. Res. Clin. Rheumatol. , vol.22 , pp. 351-384
    • Martel-Pelletier, J.1
  • 30
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler A.J., et al. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126:677-689.
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1
  • 31
    • 78149234184 scopus 로고    scopus 로고
    • Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction
    • Turner N.J., et al. Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction. Tissue Eng. Part A 2010, 16:3309-3317.
    • (2010) Tissue Eng. Part A , vol.16 , pp. 3309-3317
    • Turner, N.J.1
  • 32
    • 84863982449 scopus 로고    scopus 로고
    • Biologic scaffold remodeling in a dog model of complex musculoskeletal injury
    • Turner N.J., et al. Biologic scaffold remodeling in a dog model of complex musculoskeletal injury. J. Surg. Res. 2012, 176:490-502.
    • (2012) J. Surg. Res. , vol.176 , pp. 490-502
    • Turner, N.J.1
  • 33
    • 82155192265 scopus 로고    scopus 로고
    • Human mesenchymal stem cells seeded on extracellular matrix-scaffold: viability and osteogenic potential
    • Penolazzi L., et al. Human mesenchymal stem cells seeded on extracellular matrix-scaffold: viability and osteogenic potential. J. Cell. Physiol. 2012, 227:857-866.
    • (2012) J. Cell. Physiol. , vol.227 , pp. 857-866
    • Penolazzi, L.1
  • 34
    • 2442425309 scopus 로고    scopus 로고
    • Xenogeneic extracellular matrix as a scaffold for tissue reconstruction
    • Badylak S.F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 2004, 12:367-377.
    • (2004) Transpl. Immunol. , vol.12 , pp. 367-377
    • Badylak, S.F.1
  • 35
    • 84955179731 scopus 로고    scopus 로고
    • Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function
    • Schwarz S., et al. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function. J. Tissue Eng. Regen. Med. 2012, 10.1002/term.1650.
    • (2012) J. Tissue Eng. Regen. Med.
    • Schwarz, S.1
  • 36
    • 79951775415 scopus 로고    scopus 로고
    • An overview of tissue and whole organ decellularization processes
    • Crapo P.M., et al. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32:3233-3243.
    • (2011) Biomaterials , vol.32 , pp. 3233-3243
    • Crapo, P.M.1
  • 37
    • 34547683707 scopus 로고    scopus 로고
    • Identification and characterization of bioactive factors in bladder submucosa matrix
    • Chun S.Y., et al. Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 2007, 28:4251-4256.
    • (2007) Biomaterials , vol.28 , pp. 4251-4256
    • Chun, S.Y.1
  • 38
    • 80052479068 scopus 로고    scopus 로고
    • Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage
    • Han E., et al. Contribution of proteoglycan osmotic swelling pressure to the compressive properties of articular cartilage. Biophys. J. 2011, 101:916-924.
    • (2011) Biophys. J. , vol.101 , pp. 916-924
    • Han, E.1
  • 39
    • 83555178369 scopus 로고    scopus 로고
    • Consequences of ineffective decellularization of biologic scaffolds on the host response
    • Keane T.J., et al. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 2012, 33:1771-1781.
    • (2012) Biomaterials , vol.33 , pp. 1771-1781
    • Keane, T.J.1
  • 40
    • 0030662701 scopus 로고    scopus 로고
    • Identification of extractable growth factors from small intestinal submucosa
    • Voytik-Harbin S.L., et al. Identification of extractable growth factors from small intestinal submucosa. J. Cell. Biochem. 1997, 67:478-491.
    • (1997) J. Cell. Biochem. , vol.67 , pp. 478-491
    • Voytik-Harbin, S.L.1
  • 41
    • 54949155201 scopus 로고    scopus 로고
    • Macrophage phenotype as a determinant of biologic scaffold remodeling
    • Badylak S.F., et al. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 2008, 14:1835-1842.
    • (2008) Tissue Eng. Part A , vol.14 , pp. 1835-1842
    • Badylak, S.F.1
  • 42
    • 79959395051 scopus 로고    scopus 로고
    • Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up
    • Cole B.J., et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am. J. Sports Med. 2011, 39:1170-1179.
    • (2011) Am. J. Sports Med. , vol.39 , pp. 1170-1179
    • Cole, B.J.1
  • 43
    • 80052112420 scopus 로고    scopus 로고
    • Cartilage fragments from osteoarthritic knee promote chondrogenesis of mesenchymal stem cells without exogenous growth factor induction
    • Chen C.C., et al. Cartilage fragments from osteoarthritic knee promote chondrogenesis of mesenchymal stem cells without exogenous growth factor induction. J. Orthop. Res. 2012, 30:393-400.
    • (2012) J. Orthop. Res. , vol.30 , pp. 393-400
    • Chen, C.C.1
  • 44
    • 84859423986 scopus 로고    scopus 로고
    • The rationale for using microscopic units of a donor matrix in cartilage defect repair
    • Ghanavi P., et al. The rationale for using microscopic units of a donor matrix in cartilage defect repair. Cell Tissue Res. 2012, 347:643-648.
    • (2012) Cell Tissue Res. , vol.347 , pp. 643-648
    • Ghanavi, P.1
  • 45
    • 33749077808 scopus 로고    scopus 로고
    • Tissue engineered cartilage integration to live and devitalized cartilage: a study by reflectance mode confocal microscopy and standard histology
    • Peretti G.M., et al. Tissue engineered cartilage integration to live and devitalized cartilage: a study by reflectance mode confocal microscopy and standard histology. Connect. Tissue Res. 2006, 47:190-199.
    • (2006) Connect. Tissue Res. , vol.47 , pp. 190-199
    • Peretti, G.M.1
  • 46
    • 67349248605 scopus 로고    scopus 로고
    • Extraction techniques for the decellularization of tissue engineered articular cartilage constructs
    • Elder B.D., et al. Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials 2009, 30:3749-3756.
    • (2009) Biomaterials , vol.30 , pp. 3749-3756
    • Elder, B.D.1
  • 47
    • 84868536994 scopus 로고    scopus 로고
    • Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications
    • Schwarz S., et al. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications. Tissue Eng. Part A 2012, 18:2195-2209.
    • (2012) Tissue Eng. Part A , vol.18 , pp. 2195-2209
    • Schwarz, S.1
  • 48
    • 40649115896 scopus 로고    scopus 로고
    • A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells
    • Yang Q., et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials 2008, 29:2378-2387.
    • (2008) Biomaterials , vol.29 , pp. 2378-2387
    • Yang, Q.1
  • 49
    • 77957332219 scopus 로고    scopus 로고
    • Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold
    • Yang Z., et al. Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Eng. Part C: Methods 2010, 16:865-876.
    • (2010) Tissue Eng. Part C: Methods , vol.16 , pp. 865-876
    • Yang, Z.1
  • 50
    • 80054068140 scopus 로고    scopus 로고
    • Cultured cell-derived extracellular matrix scaffolds for tissue engineering
    • Lu H., et al. Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials 2011, 32:9658-9666.
    • (2011) Biomaterials , vol.32 , pp. 9658-9666
    • Lu, H.1
  • 51
    • 79251599990 scopus 로고    scopus 로고
    • Autologous extracellular matrix scaffolds for tissue engineering
    • Lu H., et al. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials 2011, 32:2489-2499.
    • (2011) Biomaterials , vol.32 , pp. 2489-2499
    • Lu, H.1
  • 52
    • 78751701181 scopus 로고    scopus 로고
    • A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes
    • Gong Y.Y., et al. A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 2011, 32:2265-2273.
    • (2011) Biomaterials , vol.32 , pp. 2265-2273
    • Gong, Y.Y.1
  • 53
    • 84861758430 scopus 로고    scopus 로고
    • Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets
    • Xue J.X., et al. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Biomaterials 2012, 33:5832-5840.
    • (2012) Biomaterials , vol.33 , pp. 5832-5840
    • Xue, J.X.1
  • 54
    • 0032519990 scopus 로고    scopus 로고
    • Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage
    • Bank R.A., et al. Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem. J. 1998, 330:345-351.
    • (1998) Biochem. J. , vol.330 , pp. 345-351
    • Bank, R.A.1
  • 55
    • 84862830218 scopus 로고    scopus 로고
    • Oriented cartilage extracellular matrix-derived scaffold for cartilage tissue engineering
    • Jia S., et al. Oriented cartilage extracellular matrix-derived scaffold for cartilage tissue engineering. J. Biosci. Bioeng. 2012, 113:647-653.
    • (2012) J. Biosci. Bioeng. , vol.113 , pp. 647-653
    • Jia, S.1
  • 56
    • 84876160645 scopus 로고    scopus 로고
    • Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds
    • Gerhardt L.C., et al. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J. Biomed. Mater. Res. A 2012, 10.1002/jbm.a.34373.
    • (2012) J. Biomed. Mater. Res. A
    • Gerhardt, L.C.1
  • 57
    • 84862955711 scopus 로고    scopus 로고
    • Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model
    • Yang Q., et al. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin. Med. J. (Engl.) 2011, 124:3930-3938.
    • (2011) Chin. Med. J. (Engl.) , vol.124 , pp. 3930-3938
    • Yang, Q.1
  • 58
    • 84860385323 scopus 로고    scopus 로고
    • Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix
    • Sadr N., et al. Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix. Biomaterials 2012, 33:5085-5093.
    • (2012) Biomaterials , vol.33 , pp. 5085-5093
    • Sadr, N.1
  • 59
    • 79959902042 scopus 로고    scopus 로고
    • Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2
    • Kang Y., et al. Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2. Biomaterials 2011, 32:6119-6130.
    • (2011) Biomaterials , vol.32 , pp. 6119-6130
    • Kang, Y.1
  • 60
    • 77049094746 scopus 로고    scopus 로고
    • Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements
    • Thibault R.A., et al. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Eng. Part A 2010, 16:431-440.
    • (2010) Tissue Eng. Part A , vol.16 , pp. 431-440
    • Thibault, R.A.1
  • 61
    • 70349954683 scopus 로고    scopus 로고
    • Tissue engineering of articular cartilage with biomimetic zones
    • Klein T.J., et al. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng. Part B: Rev. 2009, 15:143-157.
    • (2009) Tissue Eng. Part B: Rev. , vol.15 , pp. 143-157
    • Klein, T.J.1
  • 62
    • 84865299945 scopus 로고    scopus 로고
    • Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles
    • Malda J., et al. Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthritis Cartilage 2012, 20:1147-1151.
    • (2012) Osteoarthritis Cartilage , vol.20 , pp. 1147-1151
    • Malda, J.1
  • 63
    • 70449631599 scopus 로고    scopus 로고
    • Strategies for zonal cartilage repair using hydrogels
    • Klein T.J., et al. Strategies for zonal cartilage repair using hydrogels. Macromol. Biosci. 2009, 9:1049-1058.
    • (2009) Macromol. Biosci. , vol.9 , pp. 1049-1058
    • Klein, T.J.1
  • 64
    • 82055196987 scopus 로고    scopus 로고
    • Bioprinting of hybrid tissue constructs with tailorable mechanical properties
    • Schuurman W., et al. Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 2011, 3:021001.
    • (2011) Biofabrication , vol.3 , pp. 021001
    • Schuurman, W.1
  • 65
    • 77954494231 scopus 로고    scopus 로고
    • Bioprinting endothelial cells with alginate for 3D tissue constructs
    • Khalil S., Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. J. Biomech. Eng. 2009, 131:111002.
    • (2009) J. Biomech. Eng. , vol.131 , pp. 111002
    • Khalil, S.1    Sun, W.2
  • 66
    • 84873196000 scopus 로고    scopus 로고
    • Extracellular matrix graft for vascular reconstructive surgery: evidence of autologous regeneration of the neoaorta in a murine model
    • Padalino M.A., et al. Extracellular matrix graft for vascular reconstructive surgery: evidence of autologous regeneration of the neoaorta in a murine model. Eur. J. Cardiothorac. Surg. 2012, 42:e128-e135.
    • (2012) Eur. J. Cardiothorac. Surg. , vol.42
    • Padalino, M.A.1
  • 67
    • 80053047910 scopus 로고    scopus 로고
    • Vaginal paravaginal repair with porcine small intestine submucosa: midterm outcomes
    • Geoffrion R., et al. Vaginal paravaginal repair with porcine small intestine submucosa: midterm outcomes. Female Pelvic Med. Reconstr. Surg. 2011, 17:174-179.
    • (2011) Female Pelvic Med. Reconstr. Surg. , vol.17 , pp. 174-179
    • Geoffrion, R.1
  • 68
    • 77956391258 scopus 로고    scopus 로고
    • Osteoinductive ceramics as a synthetic alternative to autologous bone grafting
    • Yuan H., et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:13614-13619.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 13614-13619
    • Yuan, H.1
  • 69
    • 33847664781 scopus 로고    scopus 로고
    • In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold
    • Jin C.Z., et al. In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold. Artif. Organs 2007, 31:183-192.
    • (2007) Artif. Organs , vol.31 , pp. 183-192
    • Jin, C.Z.1
  • 70
    • 65549119655 scopus 로고    scopus 로고
    • Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects
    • Revell C.M., Athanasiou K.A. Success rates and immunologic responses of autogenic, allogenic, and xenogenic treatments to repair articular cartilage defects. Tissue Eng. Part B: Rev. 2009, 15:1-15.
    • (2009) Tissue Eng. Part B: Rev. , vol.15 , pp. 1-15
    • Revell, C.M.1    Athanasiou, K.A.2
  • 71
    • 84855993582 scopus 로고    scopus 로고
    • Biomechanical factors in osteoarthritis
    • Guilak F. Biomechanical factors in osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2011, 25:815-823.
    • (2011) Best Pract. Res. Clin. Rheumatol. , vol.25 , pp. 815-823
    • Guilak, F.1
  • 72
    • 80053198856 scopus 로고    scopus 로고
    • Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering
    • Kheir E., et al. Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J. Biomed. Mater. Res. A 2011, 99:283-294.
    • (2011) J. Biomed. Mater. Res. A , vol.99 , pp. 283-294
    • Kheir, E.1
  • 73
    • 56349114812 scopus 로고    scopus 로고
    • Extracellular matrix as a biological scaffold material: structure and function
    • Badylak S.F., et al. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009, 5:1-13.
    • (2009) Acta Biomater. , vol.5 , pp. 1-13
    • Badylak, S.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.