메뉴 건너뛰기




Volumn 11, Issue 1, 2016, Pages 3-18

Aligned biomimetic scaffolds as a new tendency in tissue engineering

Author keywords

Aligned biomimetic scaffolds; Biomaterials; Electrospinning; Freeze drying; Microgroove; Tissue engineering

Indexed keywords

AMPHOPHILE; BIOMIMETIC MATERIAL; COLLAGEN; GELATIN; LACTIC ACID; POLYCAPROLACTONE; POLYGLYCOLIC ACID; POLYLACTIC ACID; POLYURETHAN; SILK FIBROIN; BIOMATERIAL;

EID: 84959354785     PISSN: 1574888X     EISSN: None     Source Type: Journal    
DOI: 10.2174/1574888X10666150220155921     Document Type: Review
Times cited : (20)

References (142)
  • 1
    • 84878282396 scopus 로고    scopus 로고
    • Shape-dependent cellmigration and focal adhesion organization on suspended and aligned nanofiber scaffolds
    • Sheets K, Wunsch S, Ng C, Nain AS. Shape-dependent cellmigration and focal adhesion organization on suspended and aligned nanofiber scaffolds. Acta Biomater 2013; 9: 7169-77.
    • (2013) Acta Biomater , vol.9 , pp. 7169-7177
    • Sheets, K.1    Wunsch, S.2    Ng, C.3    Nain, A.S.4
  • 2
    • 84888172561 scopus 로고    scopus 로고
    • Biophysical regulation ofepigenetic state and cell reprogramming
    • Downing TL, Soto J, Morez C, et al. Biophysical regulation ofepigenetic state and cell reprogramming. Nat Mater 2013; 12: 1154-62.
    • (2013) Nat Mater , vol.12 , pp. 1154-1162
    • Downing, T.L.1    Soto, J.2    Morez, C.3
  • 3
    • 74449088993 scopus 로고    scopus 로고
    • The regulation of tendon stem celldifferentiation by the alignment of nanofibers
    • Yin Z, Chen X, Chen JL, et al. The regulation of tendon stem celldifferentiation by the alignment of nanofibers. Biomaterials 2010; 31: 2163-75.
    • (2010) Biomaterials , vol.31 , pp. 2163-2175
    • Yin, Z.1    Chen, X.2    Chen, J.L.3
  • 4
    • 77955498819 scopus 로고    scopus 로고
    • TheEffect of Electrospun Fibre Alignment on the Behaviour of Rat Periodontal Ligament Cells
    • Shang SH, Yang F, Cheng XR, Walboomers XF, Jansen JA. TheEffect of Electrospun Fibre Alignment on the Behaviour of Rat Periodontal Ligament Cells. Eur Cell Mater 2010; 19: 180-92.
    • (2010) Eur Cell Mater , vol.19 , pp. 180-192
    • Shang, S.H.1    Yang, F.2    Cheng, X.R.3    Walboomers, X.F.4    Jansen, J.A.5
  • 5
    • 84879080205 scopus 로고    scopus 로고
    • PGS: Gelatinnanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues
    • Kharaziha M, Nikkhah M, Shin SR, et al. PGS: Gelatinnanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 2013; 34: 6355-66.
    • (2013) Biomaterials , vol.34 , pp. 6355-6366
    • Kharaziha, M.1    Nikkhah, M.2    Shin, S.R.3
  • 6
    • 0030700389 scopus 로고    scopus 로고
    • Physicochemical changes in degradingpolylactide films
    • Burg KJ, Shalaby SW. Physicochemical changes in degradingpolylactide films. J Biomater Sci Polym Ed 1997; 9: 15-29.
    • (1997) J Biomater Sci Polym Ed , vol.9 , pp. 15-29
    • Burg, K.J.1    Shalaby, S.W.2
  • 7
    • 0032976670 scopus 로고    scopus 로고
    • Hydrolytic degradation characteristics of aliphatic polyestersderived from lactic and glycolic acids
    • Li S. Hydrolytic degradation characteristics of aliphatic polyestersderived from lactic and glycolic acids. J Biomed Mater Res 1999; 48: 342-53.
    • (1999) J Biomed Mater Res , vol.48 , pp. 342-353
    • Li, S.1
  • 8
    • 13444259693 scopus 로고    scopus 로고
    • Biocompatibility and resorptionof a brushite calcium phosphate cement
    • Theiss F, Apelt D, Brand B, et al. Biocompatibility and resorptionof a brushite calcium phosphate cement. Biomaterials 2005; 26: 4383-94.
    • (2005) Biomaterials , vol.26 , pp. 4383-4394
    • Theiss, F.1    Apelt, D.2    Brand, B.3
  • 9
    • 0029868090 scopus 로고    scopus 로고
    • Lateral ridge augmentationusing autografts and barrier membranes: A clinical study with 40 partially edentulous patients
    • discussion 32-3
    • Buser D, Dula K, Hirt HP, Schenk RK. Lateral ridge augmentationusing autografts and barrier membranes: a clinical study with 40 partially edentulous patients. J Oral Maxillofac Surg 1996; 54: 420-32; discussion 32-3.
    • (1996) J Oral Maxillofac Surg , vol.54 , pp. 420-432
    • Buser, D.1    Dula, K.2    Hirt, H.P.3    Schenk, R.K.4
  • 10
    • 33746374986 scopus 로고    scopus 로고
    • Horizontal ridge augmentation usingautogenous block grafts and the guided bone regeneration technique with collagen membranes: A clinical study with 42 patients
    • von Arx T, Buser D. Horizontal ridge augmentation usingautogenous block grafts and the guided bone regeneration technique with collagen membranes: a clinical study with 42 patients. Clin Oral Implants Res 2006; 17: 359-66.
    • (2006) Clin Oral Implants Res , vol.17 , pp. 359-366
    • Von Arx, T.1    Buser, D.2
  • 11
    • 0032213812 scopus 로고    scopus 로고
    • Maturation-related compressiveproperties of rabbit knee articular cartilage and volume fraction of subchondral tissue
    • Wei X, Rasanen T, Messner K. Maturation-related compressiveproperties of rabbit knee articular cartilage and volume fraction of subchondral tissue. Osteoarthritis Cartilage 1998; 6: 400-9.
    • (1998) Osteoarthritis Cartilage , vol.6 , pp. 400-409
    • Wei, X.1    Rasanen, T.2    Messner, K.3
  • 12
    • 0034992940 scopus 로고    scopus 로고
    • Compressiveproperties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite
    • Orr TE, Villars PA, Mitchell SL, Hsu HP, Spector M. Compressiveproperties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite. Biomaterials 2001; 22: 1953-9.
    • (2001) Biomaterials , vol.22 , pp. 1953-1959
    • Orr, T.E.1    Villars, P.A.2    Mitchell, S.L.3    Hsu, H.P.4    Spector, M.5
  • 13
    • 84911963141 scopus 로고    scopus 로고
    • The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: An in vitro evaluation
    • Zhang X, Chen X, Yang T, et al. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation. Cell Tissue Bank 2014;
    • (2014) Cell Tissue Bank
    • Zhang, X.1    Chen, X.2    Yang, T.3
  • 14
    • 84893351084 scopus 로고    scopus 로고
    • Effects ofphotochemical riboflavin-mediated crosslinks on the physical properties of collagen constructs and fibrils
    • Rich H, Odlyha M, Cheema U, Mudera V, Bozec L. Effects ofphotochemical riboflavin-mediated crosslinks on the physical properties of collagen constructs and fibrils. J Mater Sci Mater Med 2014; 25: 11-21.
    • (2014) J Mater Sci Mater Med , vol.25 , pp. 11-21
    • Rich, H.1    Odlyha, M.2    Cheema, U.3    Mudera, V.4    Bozec, L.5
  • 15
    • 77957960546 scopus 로고    scopus 로고
    • The relationshipbetween collagen scaffold cross-linking agents and neutrophils in the foreign body reaction
    • Ye QS, Harmsen MC, van Luyn MJA, Bank RA. The relationshipbetween collagen scaffold cross-linking agents and neutrophils in the foreign body reaction. Biomaterials 2010; 31: 9192-201.
    • (2010) Biomaterials , vol.31 , pp. 9192-9201
    • Ye, Q.S.1    Harmsen, M.C.2    Van Luyn, M.3    Bank, R.A.4
  • 16
    • 84899549303 scopus 로고    scopus 로고
    • SeamlessVascularized Large-Diameter Tubular Collagen Scaffolds Reinforced with Polymer Knittings for Esophageal Regenerative Medicine
    • Hoogenkamp HR, Koens MJW, Geutjes PJ, et al. SeamlessVascularized Large-Diameter Tubular Collagen Scaffolds Reinforced with Polymer Knittings for Esophageal Regenerative Medicine. Tissue Engineering Part C-Methods 2014; 20: 423-30.
    • (2014) Tissue Engineering Part C-Methods , vol.20 , pp. 423-430
    • Hoogenkamp, H.R.1    Koens, M.2    Geutjes, P.J.3
  • 17
    • 84901241154 scopus 로고    scopus 로고
    • In Vitro Cytotoxicityand In Vivo Effects of a Decellularized Xenogeneic Collagen Scaffold in Nasal Cartilage Repair
    • Elsaesser AF, Bermueller C, Schwarz S, et al. In Vitro Cytotoxicityand In Vivo Effects of a Decellularized Xenogeneic Collagen Scaffold in Nasal Cartilage Repair. Tissue Engineering Part A 2014; 20: 1668-78.
    • (2014) Tissue Engineering Part A , vol.20 , pp. 1668-1678
    • Elsaesser, A.F.1    Bermueller, C.2    Schwarz, S.3
  • 18
    • 84875000354 scopus 로고    scopus 로고
    • The modulation of endothelialcell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds
    • Huang NF, Okogbaa J, Lee JC, et al. The modulation of endothelialcell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds. Biomaterials 2013; 34: 4038-47.
    • (2013) Biomaterials , vol.34 , pp. 4038-4047
    • Huang, N.F.1    Okogbaa, J.2    Lee, J.C.3
  • 19
    • 80051599047 scopus 로고    scopus 로고
    • Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering
    • Timnak A, Gharebaghi FY, Shariati RP, et al. Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering. J Mater Sci Mater Med 2011; 22: 1555-67.
    • (2011) J Mater Sci Mater Med , vol.22 , pp. 1555-1567
    • Timnak, A.1    Gharebaghi, F.Y.2    Shariati, R.P.3
  • 20
    • 84873835078 scopus 로고    scopus 로고
    • Characterization of cross-linkedporous gelatin carriers and their interaction with corneal endothelium: Biopolymer concentration effect
    • Lai JY, Ma DH, Lai MH, et al. Characterization of cross-linkedporous gelatin carriers and their interaction with corneal endothelium: biopolymer concentration effect. PLoS One 2013; 8: e54058.
    • (2013) Plos One , vol.8
    • Lai, J.Y.1    Ma, D.H.2    Lai, M.H.3
  • 21
    • 77952195319 scopus 로고    scopus 로고
    • Functional assessment of cross-linked porousgelatin hydrogels for bioengineered cell sheet carriers
    • Lai JY, Li YT. Functional assessment of cross-linked porousgelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules 2010; 11: 1387-97.
    • (2010) Biomacromolecules , vol.11 , pp. 1387-1397
    • Lai, J.Y.1    Li, Y.T.2
  • 22
    • 84925281874 scopus 로고    scopus 로고
    • A biomimetic honeycomb-likescaffold prepared by flow-focusing technology for cartilage regeneration
    • Wang CC, Yang KC, Lin KH, et al. A biomimetic honeycomb-likescaffold prepared by flow-focusing technology for cartilage regeneration. Biotechnol Bioeng 2014;
    • (2014) Biotechnol Bioeng
    • Wang, C.C.1    Yang, K.C.2    Lin, K.H.3
  • 23
    • 78751582123 scopus 로고    scopus 로고
    • Crosslinking of gelatin-based drug carriers by genipin induces changes in drug kinetic profiles in vitro
    • Thakur G, Mitra A, Rousseau D, et al. Crosslinking of gelatin-based drug carriers by genipin induces changes in drug kinetic profiles in vitro. J Mater Sci Mater Med 2011; 22: 115-23.
    • (2011) J Mater Sci Mater Med , vol.22 , pp. 115-123
    • Thakur, G.1    Mitra, A.2    Rousseau, D.3
  • 24
    • 12444255160 scopus 로고    scopus 로고
    • Hydroxyapatite and gelatincomposite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds
    • Kim HW, Knowles JC, Kim HE. Hydroxyapatite and gelatincomposite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J Biomed Mater Res A 2005; 72: 136-45.
    • (2005) J Biomed Mater Res A , vol.72 , pp. 136-145
    • Kim, H.W.1    Knowles, J.C.2    Kim, H.E.3
  • 25
    • 79952189383 scopus 로고    scopus 로고
    • Electrospun gelatinnanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water
    • Panzavolta S, Gioffre M, Focarete ML, et al. Electrospun gelatinnanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 2011; 7: 1702-9.
    • (2011) Acta Biomater , vol.7 , pp. 1702-1709
    • Panzavolta, S.1    Gioffre, M.2    Focarete, M.L.3
  • 26
    • 84876685986 scopus 로고    scopus 로고
    • In vitro and in vivoevaluation of chitosan-gelatin scaffolds for cartilage tissue engineering
    • Whu SW, Hung KC, Hsieh KH, et al. In vitro and in vivoevaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 2013; 33: 2855-63.
    • (2013) Mater Sci Eng C Mater Biol Appl , vol.33 , pp. 2855-2863
    • Whu, S.W.1    Hung, K.C.2    Hsieh, K.H.3
  • 27
    • 84863182014 scopus 로고    scopus 로고
    • In vitro and in vivo characterization ofsilk fibroin/gelatin composite scaffolds for liver tissue engineering
    • Yang Z, Xu LS, Yin F, et al. In vitro and in vivo characterization ofsilk fibroin/gelatin composite scaffolds for liver tissue engineering. J Dig Dis 2012; 13: 168-78.
    • (2012) J Dig Dis , vol.13 , pp. 168-178
    • Yang, Z.1    Xu, L.S.2    Yin, F.3
  • 28
    • 84857395764 scopus 로고    scopus 로고
    • Mechanical properties andin vitro behavior of nanofiber-hydrogel composites for tissue engineering applications
    • Kai D, Prabhakaran MP, Stahl B, et al. Mechanical properties andin vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 2012; 23: 95705.
    • (2012) Nanotechnology , vol.23 , pp. 95705
    • Kai, D.1    Prabhakaran, M.P.2    Stahl, B.3
  • 29
    • 77649202832 scopus 로고    scopus 로고
    • Study of theelectrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering
    • Gui-Bo Y, You-Zhu Z, Shu-Dong W, et al. Study of theelectrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. J Biomed Mater Res A 2010; 93: 158-63.
    • (2010) J Biomed Mater Res A , vol.93 , pp. 158-163
    • Gui-Bo, Y.1    You-Zhu, Z.2    Shu-Dong, W.3
  • 30
    • 84871342931 scopus 로고    scopus 로고
    • Transplantation ofnano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna
    • Hafezi F, Hosseinnejad F, Fooladi AA, et al. Transplantation ofnano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J Mater Sci Mater Med 2012; 23: 2783-92.
    • (2012) J Mater Sci Mater Med , vol.23 , pp. 2783-2792
    • Hafezi, F.1    Hosseinnejad, F.2    Fooladi, A.A.3
  • 31
    • 84891122569 scopus 로고    scopus 로고
    • Fabrication of photo-crosslinkedchitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture
    • Zhao P, Deng C, Xu H, et al. Fabrication of photo-crosslinkedchitosan- gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Biomed Mater Eng 2014; 24: 633-41.
    • (2014) Biomed Mater Eng , vol.24 , pp. 633-641
    • Zhao, P.1    Deng, C.2    Xu, H.3
  • 32
    • 0007488634 scopus 로고    scopus 로고
    • Initial and 6-month results ofbiodegradable poly-l-lactic acid coronary stents in humans
    • Tamai H, Igaki K, Kyo E, et al. Initial and 6-month results ofbiodegradable poly-l-lactic acid coronary stents in humans. Circulation 2000; 102: 399-404.
    • (2000) Circulation , vol.102 , pp. 399-404
    • Tamai, H.1    Igaki, K.2    Kyo, E.3
  • 34
    • 84878307620 scopus 로고    scopus 로고
    • Poly-(L-lactic acid) and citricacid-crosslinked gelatin composite matrices as a drug-eluting stent coating material with endothelialization, antithrombogenic, and drug release properties
    • Inoue M, Sasaki M, Katada Y, et al. Poly-(L-lactic acid) and citricacid-crosslinked gelatin composite matrices as a drug-eluting stent coating material with endothelialization, antithrombogenic, and drug release properties. J Biomed Mater Res A 2013; 101: 2049-57.
    • (2013) J Biomed Mater Res A , vol.101 , pp. 2049-2057
    • Inoue, M.1    Sasaki, M.2    Katada, Y.3
  • 35
    • 84899649523 scopus 로고    scopus 로고
    • Mechanical properties of electrospunbilayer fibrous membranes as potential scaffolds for tissue engineering
    • Pu J, Komvopoulos K. Mechanical properties of electrospunbilayer fibrous membranes as potential scaffolds for tissue engineering. Acta Biomater 2014; 10: 2718-26.
    • (2014) Acta Biomater , vol.10 , pp. 2718-2726
    • Pu, J.1    Komvopoulos, K.2
  • 36
    • 84859428638 scopus 로고    scopus 로고
    • The use of an electrostatic lens toenhance the efficiency of the electrospinning process
    • Vaquette C, Cooper-White J. The use of an electrostatic lens toenhance the efficiency of the electrospinning process. Cell Tissue Res 2012; 347: 815-26.
    • (2012) Cell Tissue Res , vol.347 , pp. 815-826
    • Vaquette, C.1    Cooper-White, J.2
  • 37
    • 26944471657 scopus 로고    scopus 로고
    • Architecture andproperties of anisotropic polymer composite scaffolds for bone tissue engineering
    • Mathieu LM, Mueller TL, Bourban PE, et al. Architecture andproperties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 2006; 27: 905-16.
    • (2006) Biomaterials , vol.27 , pp. 905-916
    • Mathieu, L.M.1    Mueller, T.L.2    Bourban, P.E.3
  • 38
    • 84861625759 scopus 로고    scopus 로고
    • Strut size and surface areaeffects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds
    • Saito E, Liu Y, Migneco F, Hollister SJ. Strut size and surface areaeffects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds. Acta Biomater 2012; 8: 2568-77.
    • (2012) Acta Biomater , vol.8 , pp. 2568-2577
    • Saito, E.1    Liu, Y.2    Migneco, F.3    Hollister, S.J.4
  • 39
    • 0034124199 scopus 로고    scopus 로고
    • In vitro and in vivo degradationof porous poly(DL-lactic-co-glycolic acid) foams
    • Lu L, Peter SJ, Lyman MD, et al. In vitro and in vivo degradationof porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 2000; 21: 1837-45.
    • (2000) Biomaterials , vol.21 , pp. 1837-1845
    • Lu, L.1    Peter, S.J.2    Lyman, M.D.3
  • 40
    • 0347294709 scopus 로고    scopus 로고
    • An initialinvestigation of photocurable three-dimensional lactic acid basedscaffolds in a critical-sized cranial defect
    • Burdick JA, Frankel D, Dernell WS, Anseth KS. An initialinvestigation of photocurable three-dimensional lactic acid basedscaffolds in a critical-sized cranial defect. Biomaterials 2003; 24: 1613-20.
    • (2003) Biomaterials , vol.24 , pp. 1613-1620
    • Burdick, J.A.1    Frankel, D.2    Dernell, W.S.3    Anseth, K.S.4
  • 41
    • 33646353199 scopus 로고    scopus 로고
    • The effect of surface area on the degradation rateof nano-fibrous poly(L-lactic acid) foams
    • Chen VJ, Ma PX. The effect of surface area on the degradation rateof nano-fibrous poly(L-lactic acid) foams. Biomaterials 2006; 27: 3708-15.
    • (2006) Biomaterials , vol.27 , pp. 3708-3715
    • Chen, V.J.1    Ma, P.X.2
  • 42
    • 84871380026 scopus 로고    scopus 로고
    • Biomimetichydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds
    • Deplaine H, Lebourg M, Ripalda P, et al. Biomimetichydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. J Biomed Mater Res B Appl Biomater 2013; 101: 173-86.
    • (2013) J Biomed Mater Res B Appl Biomater , vol.101 , pp. 173-186
    • Deplaine, H.1    Lebourg, M.2    Ripalda, P.3
  • 43
    • 14944382968 scopus 로고    scopus 로고
    • Repair of osteochondraldefects with hyaluronan- and polyester-based scaffolds
    • Solchaga LA, Temenoff JS, Gao J, et al. Repair of osteochondraldefects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage 2005; 13: 297-309.
    • (2005) Osteoarthritis Cartilage , vol.13 , pp. 297-309
    • Solchaga, L.A.1    Temenoff, J.S.2    Gao, J.3
  • 44
    • 0035985045 scopus 로고    scopus 로고
    • Evaluation of cellular affinity andcompatibility to biodegradable polyesters and Type-II collagen- modified scaffolds using immortalized rat chondrocytes
    • Hsu SH, Tsai CL, Tang CM. Evaluation of cellular affinity andcompatibility to biodegradable polyesters and Type-II collagen- modified scaffolds using immortalized rat chondrocytes. Artif Organs 2002; 26: 647-58.
    • (2002) Artif Organs , vol.26 , pp. 647-658
    • Hsu, S.H.1    Tsai, C.L.2    Tang, C.M.3
  • 45
    • 84861574016 scopus 로고    scopus 로고
    • In vivo biofunctionalitycomparison of different topographic PLLA scaffolds
    • Lee BN, Kim da Y, Kang HJ, et al. In vivo biofunctionalitycomparison of different topographic PLLA scaffolds. J Biomed Mater Res A 2012; 100: 1751-60.
    • (2012) J Biomed Mater Res A , vol.100 , pp. 1751-1760
    • Lee, B.N.1    Kim Da, Y.2    Kang, H.J.3
  • 46
    • 79958087793 scopus 로고    scopus 로고
    • Preparation and characterization ofbiodegradable and electroactive polymer blend materials based on mPEG/tetraaniline and PLLA
    • Liu Y, Hu J, Zhuang X, et al. Preparation and characterization ofbiodegradable and electroactive polymer blend materials based on mPEG/tetraaniline and PLLA. Macromol Biosci 2011; 11: 806-13.
    • (2011) Macromol Biosci , vol.11 , pp. 806-813
    • Liu, Y.1    Hu, J.2    Zhuang, X.3
  • 47
    • 79952118427 scopus 로고    scopus 로고
    • A novel basalt fiber-reinforced polylactic acidcomposite for hard tissue repair
    • Chen X, Li Y, Gu N. A novel basalt fiber-reinforced polylactic acidcomposite for hard tissue repair. Biomed Mater 2010; 5: 44104.
    • (2010) Biomed Mater , vol.5 , pp. 44104
    • Chen, X.1    Li, Y.2    Gu, N.3
  • 48
    • 84863320556 scopus 로고    scopus 로고
    • Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications
    • Delabarde C, Plummer CJ, Bourban PE, Manson JA.Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications. J Mater Sci Mater Med 2012; 23: 1371-85.
    • (2012) J Mater Sci Mater Med , vol.23 , pp. 1371-1385
    • Delabarde, C.1    Plummer, C.J.2    Bourban, P.E.3    Manson, J.A.4
  • 49
    • 84870526369 scopus 로고    scopus 로고
    • Noninvasivecharacterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging
    • Solorio L, Olear AM, Hamilton JI, et al. Noninvasivecharacterization of the effect of varying PLGA molecular weight blends on in situ forming implant behavior using ultrasound imaging. Theranostics 2012; 2: 1064-77.
    • (2012) Theranostics , vol.2 , pp. 1064-1077
    • Solorio, L.1    Olear, A.M.2    Hamilton, J.I.3
  • 50
    • 79960558804 scopus 로고    scopus 로고
    • Incorporation of PLGAnanoparticles into porous chitosan-gelatin scaffolds: Influence on the physical properties and cell behavior
    • Nandagiri VK, Gentile P, Chiono V, et al. Incorporation of PLGAnanoparticles into porous chitosan-gelatin scaffolds: Influence on the physical properties and cell behavior. J Mech Behav Biomed Mater 2011; 4: 1318-27.
    • (2011) J Mech Behav Biomed Mater , vol.4 , pp. 1318-1327
    • Nandagiri, V.K.1    Gentile, P.2    Chiono, V.3
  • 51
    • 84903318160 scopus 로고    scopus 로고
    • Nanoindentation analysis ofalphatricalcium phosphate-poly(Lactide-co-glycolide) nanocomposite degradation
    • Barrett CE, Cameron RE. Nanoindentation analysis ofalphatricalcium phosphate-poly(lactide-co-glycolide) nanocomposite degradation. Mater Sci Eng C Mater Biol Appl 2014; 42: 587-94.
    • (2014) Mater Sci Eng C Mater Biol Appl , vol.42 , pp. 587-594
    • Barrett, C.E.1    Cameron, R.E.2
  • 52
    • 80051551017 scopus 로고    scopus 로고
    • Degradation,bioactivity, and osteogenic potential of composites made of PLGA and two different sol-gel bioactive glasses
    • Pamula E, Kokoszka J, Cholewa-Kowalska K, et al. Degradation,bioactivity, and osteogenic potential of composites made of PLGA and two different sol-gel bioactive glasses. Ann Biomed Eng 2011; 39: 2114-29.
    • (2011) Ann Biomed Eng , vol.39 , pp. 2114-2129
    • Pamula, E.1    Kokoszka, J.2    Cholewa-Kowalska, K.3
  • 53
    • 33644908463 scopus 로고    scopus 로고
    • Characterization ofa novel polymeric scaffold for potential application in tendon/ligament tissue engineering
    • Sahoo S, Ouyang H, Goh JC, Tay TE, Toh SL. Characterization ofa novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng 2006; 12: 91-9.
    • (2006) Tissue Eng , vol.12 , pp. 91-99
    • Sahoo, S.1    Ouyang, H.2    Goh, J.C.3    Tay, T.E.4    Toh, S.L.5
  • 54
    • 79952110839 scopus 로고    scopus 로고
    • Fabricating a pearl/PLGA compositescaffold by the low-temperature deposition manufacturing technique for bone tissue engineering
    • Xu M, Li Y, Suo H, et al. Fabricating a pearl/PLGA compositescaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Biofabrication 2010; 2: 25002.
    • (2010) Biofabrication , vol.2 , pp. 25002
    • Xu, M.1    Li, Y.2    Suo, H.3
  • 55
    • 70349105908 scopus 로고    scopus 로고
    • Injectablepoly(Lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering
    • Krebs MD, Sutter KA, Lin AS, Guldberg RE, Alsberg E. Injectablepoly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering. Acta Biomater 2009; 5: 2847-59.
    • (2009) Acta Biomater , vol.5 , pp. 2847-2859
    • Krebs, M.D.1    Sutter, K.A.2    Lin, A.S.3    Guldberg, R.E.4    Alsberg, E.5
  • 56
    • 77956625045 scopus 로고    scopus 로고
    • Influences of tensile load on in vitrodegradation of an electrospun poly(L-lactide-co-glycolide) scaffold
    • Li P, Feng X, Jia X, Fan Y. Influences of tensile load on in vitrodegradation of an electrospun poly(L-lactide-co-glycolide) scaffold. Acta Biomater 2010; 6: 2991-6.
    • (2010) Acta Biomater , vol.6 , pp. 2991-2996
    • Li, P.1    Feng, X.2    Jia, X.3    Fan, Y.4
  • 57
    • 33847163945 scopus 로고    scopus 로고
    • Influenceof the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro
    • Rohman G, Pettit JJ, Isaure F, Cameron NR, Southgate J. Influenceof the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro. Biomaterials 2007; 28: 2264-74.
    • (2007) Biomaterials , vol.28 , pp. 2264-2274
    • Rohman, G.1    Pettit, J.J.2    Isaure, F.3    Cameron, N.R.4    Southgate, J.5
  • 58
    • 0033060411 scopus 로고    scopus 로고
    • In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films
    • Lu L, Garcia CA, Mikos AG. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. J Biomed Mater Res 1999; 46: 236-44.
    • (1999) J Biomed Mater Res , vol.46 , pp. 236-244
    • Lu, L.1    Garcia, C.A.2    Mikos, A.G.3
  • 59
    • 85026937216 scopus 로고    scopus 로고
    • Effect of fiber orientation ofcollagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications
    • Full SM, Delman C, Gluck JM, et al. Effect of fiber orientation ofcollagen-based electrospun meshes on human fibroblasts for ligament tissue engineering applications. J Biomed Mater Res B Appl Biomater 2014;
    • (2014) J Biomed Mater Res B Appl Biomater
    • Full, S.M.1    Delman, C.2    Gluck, J.M.3
  • 60
    • 17644392090 scopus 로고    scopus 로고
    • Development of fibrousbiodegradable polymer conduits for guided nerve regeneration
    • Bini TB, Gao S, Wang S, Ramakrishna S. Development of fibrousbiodegradable polymer conduits for guided nerve regeneration. J Mater Sci Mater Med 2005; 16: 367-75.
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 367-375
    • Bini, T.B.1    Gao, S.2    Wang, S.3    Ramakrishna, S.4
  • 61
    • 68949164550 scopus 로고    scopus 로고
    • The evaluationof the possibilities of using PLGA co-polymer and its composites with carbon fibers or hydroxyapatite in the bone tissue regeneration process - In vitro and in vivo examinations
    • Cieslik M, Mertas A, Morawska-Chochol A, et al. The evaluationof the possibilities of using PLGA co-polymer and its composites with carbon fibers or hydroxyapatite in the bone tissue regeneration process - in vitro and in vivo examinations. Int J Mol Sci 2009; 10: 3224-34.
    • (2009) Int J Mol Sci , vol.10 , pp. 3224-3234
    • Cieslik, M.1    Mertas, A.2    Morawska-Chochol, A.3
  • 62
    • 79952186692 scopus 로고    scopus 로고
    • Enhanced attachment,growth and migration of smooth muscle cells on microcarriers produced using thermally induced phase separation
    • Ahmadi R, Mordan N, Forbes A, Day RM. Enhanced attachment,growth and migration of smooth muscle cells on microcarriers produced using thermally induced phase separation. Acta Biomater 2011; 7: 1542-9.
    • (2011) Acta Biomater , vol.7 , pp. 1542-1549
    • Ahmadi, R.1    Mordan, N.2    Forbes, A.3    Day, R.M.4
  • 63
    • 10044252141 scopus 로고    scopus 로고
    • Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications
    • Pattison MA, Wurster S, Webster TJ, Haberstroh KM. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 2005; 26: 2491-500.
    • (2005) Biomaterials , vol.26 , pp. 2491-2500
    • Pattison, M.A.1    Wurster, S.2    Webster, T.J.3    Haberstroh, K.M.4
  • 64
    • 55049119970 scopus 로고    scopus 로고
    • Blendingpolysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends
    • Garcia Cruz DM, Coutinho DF, Costa Martinez E, et al. Blendingpolysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. J Biomed Mater Res B Appl Biomater 2008; 87: 544-54.
    • (2008) J Biomed Mater Res B Appl Biomater , vol.87 , pp. 544-554
    • Garcia Cruz, D.M.1    Coutinho, D.F.2    Costa Martinez, E.3
  • 65
    • 78649436890 scopus 로고    scopus 로고
    • Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair
    • Neves SC, Moreira Teixeira LS, Moroni L, et al.Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 2011; 32: 1068-79.
    • (2011) Biomaterials , vol.32 , pp. 1068-1079
    • Neves, S.C.1    Moreira Teixeira, L.S.2    Moroni, L.3
  • 66
    • 79952049151 scopus 로고    scopus 로고
    • Electrospun nanofiber mesheswith tailored architectures and patterns as potential tissue- engineering scaffolds
    • Wang Y, Wang G, Chen L, et al. Electrospun nanofiber mesheswith tailored architectures and patterns as potential tissue- engineering scaffolds. Biofabrication 2009; 1: 15001.
    • (2009) Biofabrication , vol.1 , pp. 15001
    • Wang, Y.1    Wang, G.2    Chen, L.3
  • 67
    • 76949091192 scopus 로고    scopus 로고
    • Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning
    • Soliman S, Pagliari S, Rinaldi A, et al. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater 2010; 6: 1227-37.
    • (2010) Acta Biomater , vol.6 , pp. 1227-1237
    • Soliman, S.1    Pagliari, S.2    Rinaldi, A.3
  • 68
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21: 2529-43.
    • (2000) Biomaterials , vol.21 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 69
    • 34249938497 scopus 로고    scopus 로고
    • Matrices and scaffolds for delivery of bioactivemolecules in bone and cartilage tissue engineering
    • Lee SH, Shin H. Matrices and scaffolds for delivery of bioactivemolecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 2007; 59: 339-59.
    • (2007) Adv Drug Deliv Rev , vol.59 , pp. 339-359
    • Lee, S.H.1    Shin, H.2
  • 70
    • 2442426201 scopus 로고    scopus 로고
    • The effect of scaffolddegradation rate on three-dimensional cell growth and angiogenesis
    • Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffolddegradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 2004; 25: 5735-42.
    • (2004) Biomaterials , vol.25 , pp. 5735-5742
    • Sung, H.J.1    Meredith, C.2    Johnson, C.3    Galis, Z.S.4
  • 71
    • 84858862640 scopus 로고    scopus 로고
    • In vivobiocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(Epsilon-caprolactone)
    • Seyednejad H, Gawlitta D, Kuiper RV, et al. In vivobiocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials 2012; 33: 4309-18.
    • (2012) Biomaterials , vol.33 , pp. 4309-4318
    • Seyednejad, H.1    Gawlitta, D.2    Kuiper, R.V.3
  • 72
    • 84878628636 scopus 로고    scopus 로고
    • Development of novel alignednanofibrous composite membranes for guided bone regeneration
    • Kharaziha M, Fathi MH, Edris H. Development of novel alignednanofibrous composite membranes for guided bone regeneration. J Mech Behav Biomed Mater 2013; 24: 9-20.
    • (2013) J Mech Behav Biomed Mater , vol.24 , pp. 9-20
    • Kharaziha, M.1    Fathi, M.H.2    Edris, H.3
  • 73
    • 84862767334 scopus 로고    scopus 로고
    • Three-dimensionalpolycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification
    • Jeong CG, Zhang H, Hollister SJ. Three-dimensionalpolycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification. J Biomed Mater Res A 2012; 100: 2088-96.
    • (2012) J Biomed Mater Res A , vol.100 , pp. 2088-2096
    • Jeong, C.G.1    Zhang, H.2    Hollister, S.J.3
  • 74
    • 83055173928 scopus 로고    scopus 로고
    • Cellular response of limbalepithelial cells on electrospun poly-epsilon-caprolactone nanofibrous scaffolds for ocular surface bioengineering: A preliminary in vitro study
    • Sharma S, Mohanty S, Gupta D, et al. Cellular response of limbalepithelial cells on electrospun poly-epsilon-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol Vis 2011; 17: 2898-910.
    • (2011) Mol Vis , vol.17 , pp. 2898-2910
    • Sharma, S.1    Mohanty, S.2    Gupta, D.3
  • 75
    • 84867097728 scopus 로고    scopus 로고
    • Biocompatibility andbiodegradation studies of PCL/beta-TCP bone tissue scaffold fabricated by structural porogen method
    • Lu L, Zhang Q, Wootton D, et al. Biocompatibility andbiodegradation studies of PCL/beta-TCP bone tissue scaffold fabricated by structural porogen method. J Mater Sci Mater Med 2012; 23: 2217-26.
    • (2012) J Mater Sci Mater Med , vol.23 , pp. 2217-2226
    • Lu, L.1    Zhang, Q.2    Wootton, D.3
  • 76
    • 84896549204 scopus 로고    scopus 로고
    • Artificial neuralnetwork for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds
    • Vatankhah E, Semnani D, Prabhakaran MP, et al. Artificial neuralnetwork for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater 2014; 10: 709-21.
    • (2014) Acta Biomater , vol.10 , pp. 709-721
    • Vatankhah, E.1    Semnani, D.2    Prabhakaran, M.P.3
  • 77
    • 34147109865 scopus 로고    scopus 로고
    • Evaluation of electrospunPCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution
    • Chong EJ, Phan TT, Lim IJ, et al. Evaluation of electrospunPCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 2007; 3: 321-30.
    • (2007) Acta Biomater , vol.3 , pp. 321-330
    • Chong, E.J.1    Phan, T.T.2    Lim, I.J.3
  • 78
    • 55049126465 scopus 로고    scopus 로고
    • Customizing the degradation andload-bearing profile of 3D polycaprolactone-tricalcium phosphate scaffolds under enzymatic and hydrolytic conditions
    • Yeo A, Sju E, Rai B, Teoh SH. Customizing the degradation andload-bearing profile of 3D polycaprolactone-tricalcium phosphate scaffolds under enzymatic and hydrolytic conditions. J Biomed Mater Res B Appl Biomater 2008; 87: 562-9.
    • (2008) J Biomed Mater Res B Appl Biomater , vol.87 , pp. 562-569
    • Yeo, A.1    Sju, E.2    Rai, B.3    Teoh, S.H.4
  • 79
    • 59049101008 scopus 로고    scopus 로고
    • Effect ofsterilisation by gamma irradiation on the ability of polycaprolactone (PCL) to act as a scaffold material
    • Cottam E, Hukins DW, Lee K, Hewitt C, Jenkins MJ. Effect ofsterilisation by gamma irradiation on the ability of polycaprolactone (PCL) to act as a scaffold material. Med Eng Phys 2009; 31: 221-6.
    • (2009) Med Eng Phys , vol.31 , pp. 221-226
    • Cottam, E.1    Hukins, D.W.2    Lee, K.3    Hewitt, C.4    Jenkins, M.J.5
  • 80
    • 84884960881 scopus 로고    scopus 로고
    • Fabrication ofhigh-density collagen fibril matrix gels by renaturation of triple- helix collagen from gelatin
    • Ohyabu Y, Yunoki S, Hatayama H, Teranishi Y. Fabrication ofhigh-density collagen fibril matrix gels by renaturation of triple- helix collagen from gelatin. Int J Biol Macromol 2013; 62: 296-303.
    • (2013) Int J Biol Macromol , vol.62 , pp. 296-303
    • Ohyabu, Y.1    Yunoki, S.2    Hatayama, H.3    Teranishi, Y.4
  • 81
    • 33846939297 scopus 로고    scopus 로고
    • Compressiveproperties and degradability of poly(Epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation
    • Ang KC, Leong KF, Chua CK, Chandrasekaran M. Compressiveproperties and degradability of poly(epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. J Biomed Mater Res A 2007; 80: 655-60.
    • (2007) J Biomed Mater Res A , vol.80 , pp. 655-660
    • Ang, K.C.1    Leong, K.F.2    Chua, C.K.3    Chandrasekaran, M.4
  • 82
    • 69049088741 scopus 로고    scopus 로고
    • Aligned and randomnanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering
    • Gupta D, Venugopal J, Prabhakaran MP, et al. Aligned and randomnanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 2009; 5: 2560-9.
    • (2009) Acta Biomater , vol.5 , pp. 2560-2569
    • Gupta, D.1    Venugopal, J.2    Prabhakaran, M.P.3
  • 83
    • 84915758136 scopus 로고    scopus 로고
    • In vitro and in vivo studiesof BMP-2 loaded PCL-Gelatin-BCP electrospun scaffolds
    • Kim BR, Nguyen LT, Min YK, Lee BT. In vitro and in vivo studiesof BMP-2 loaded PCL-Gelatin-BCP electrospun scaffolds. Tissue Eng Part A 2014;
    • (2014) Tissue Eng Part A
    • Kim, B.R.1    Nguyen, L.T.2    Min, Y.K.3    Lee, B.T.4
  • 84
    • 84906658962 scopus 로고    scopus 로고
    • Instructive NanofibrousScaffold Comprising Runt-Related Transcription Factor 2 Gene Delivery for Bone Tissue Engineering
    • Monteiro N, Ribeiro D, Martins A, et al. Instructive NanofibrousScaffold Comprising Runt-Related Transcription Factor 2 Gene Delivery for Bone Tissue Engineering. ACS Nano 2014;
    • (2014) ACS Nano
    • Monteiro, N.1    Ribeiro, D.2    Martins, A.3
  • 85
    • 84929990153 scopus 로고    scopus 로고
    • Effect of hydroxyapatite-containing microspheresembedded into three-dimensional magnesium phosphate scaffolds on the controlled release of lysozyme and in vitro biodegradation
    • Lee J, Yun HS. Effect of hydroxyapatite-containing microspheresembedded into three-dimensional magnesium phosphate scaffolds on the controlled release of lysozyme and in vitro biodegradation. Int J Nanomedicine 2014; 9: 4177-89.
    • (2014) Int J Nanomedicine , vol.9 , pp. 4177-4189
    • Lee, J.1    Yun, H.S.2
  • 86
    • 84883888366 scopus 로고    scopus 로고
    • Synthesis andcharacterization of novel elastomeric poly(D,L-lactide urethane) maleate composites for bone tissue engineering
    • Mercado-Pagan AE, Kang Y, Ker DF, et al. Synthesis andcharacterization of novel elastomeric poly(D,L-lactide urethane) maleate composites for bone tissue engineering. Eur Polym J 2013; 49: 3337-49.
    • (2013) Eur Polym J , vol.49 , pp. 3337-3349
    • Mercado-Pagan, A.E.1    Kang, Y.2    Ker, D.F.3
  • 87
    • 84876491174 scopus 로고    scopus 로고
    • Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea
    • Tonsomboon K, Oyen ML. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea. J Mech Behav Biomed Mater 2013; 21: 185-94.
    • (2013) J Mech Behav Biomed Mater , vol.21 , pp. 185-194
    • Tonsomboon, K.1    Oyen, M.L.2
  • 88
    • 84655170037 scopus 로고    scopus 로고
    • Effect of fiber alignment inelectrospun scaffolds on keratocytes and corneal epithelial cells behavior
    • Yan J, Qiang L, Gao Y, et al. Effect of fiber alignment inelectrospun scaffolds on keratocytes and corneal epithelial cells behavior. J Biomed Mater Res A 2011;
    • (2011) J Biomed Mater Res A
    • Yan, J.1    Qiang, L.2    Gao, Y.3
  • 89
    • 84870197482 scopus 로고    scopus 로고
    • Genipin crosslinkingelevates the strength of electrochemically aligned collagen to the level of tendons
    • Alfredo Uquillas J, Kishore V, Akkus O. Genipin crosslinkingelevates the strength of electrochemically aligned collagen to the level of tendons. J Mech Behav Biomed Mater 2012; 15: 176-89.
    • (2012) J Mech Behav Biomed Mater , vol.15 , pp. 176-189
    • Alfredo Uquillas, J.1    Kishore, V.2    Akkus, O.3
  • 91
    • 0037159296 scopus 로고    scopus 로고
    • Micro- andnanostructured surface morphology on electrospun polymer fibers
    • Megelski S, Stephens JS, Chase DB, Rabolt JF. Micro- andnanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002; 35: 8456-66.
    • (2002) Macromolecules , vol.35 , pp. 8456-8466
    • Megelski, S.1    Stephens, J.S.2    Chase, D.B.3    Rabolt, J.F.4
  • 92
    • 16244423734 scopus 로고    scopus 로고
    • Role of chainentanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit
    • Shenoy SL, Bates WD, Frisch HL, Wnek GE. Role of chainentanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer 2005; 46: 3372-84.
    • (2005) Polymer , vol.46 , pp. 3372-3384
    • Shenoy, S.L.1    Bates, W.D.2    Frisch, H.L.3    Wnek, G.E.4
  • 93
    • 4444243637 scopus 로고    scopus 로고
    • Preparation of Core Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning
    • Yanzhong Zhang Z-MH, Xiaojing Xu, Chwee Teck Lim, SeeramRamakrishna. Preparation of Core Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning. Chemistry of Materials 2004; 16: 3406-9.
    • (2004) Chemistry of Materials , vol.16 , pp. 3406-3409
    • Yanzhong Zhang, Z.-M.1    Xiaojing, X.2    Chwee Teck, L.3    Ramakrishna, S.4
  • 94
    • 33846267342 scopus 로고    scopus 로고
    • Cell electrospinning: Aunique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds
    • Townsend-Nicholson A, Jayasinghe SN. Cell electrospinning: aunique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 2006; 7: 3364-9.
    • (2006) Biomacromolecules , vol.7 , pp. 3364-3369
    • Townsend-Nicholson, A.1    Jayasinghe, S.N.2
  • 95
    • 77957804271 scopus 로고    scopus 로고
    • Use of aninsulating mask for controlling anisotropy in multilayer electrospun scaffolds for tissue engineering
    • Garrigues NW, Little D, O'Conor CJ, Guilak F. Use of aninsulating mask for controlling anisotropy in multilayer electrospun scaffolds for tissue engineering. J Mater Chem 2010; 20: 8962-8.
    • (2010) J Mater Chem , vol.20 , pp. 8962-8968
    • Garrigues, N.W.1    Little, D.2    O'conor, C.J.3    Guilak, F.4
  • 96
    • 35548988907 scopus 로고    scopus 로고
    • Synthesis andcharacterization of photocurable elastomers from poly(Glycerol-co- sebacate)
    • Nijst CLE, Bruggeman JP, Karp JM, et al. Synthesis andcharacterization of photocurable elastomers from poly(glycerol-co- sebacate). Biomacromolecules 2007; 8: 3067-73.
    • (2007) Biomacromolecules , vol.8 , pp. 3067-3073
    • Nijst, C.1    Bruggeman, J.P.2    Karp, J.M.3
  • 97
    • 56049084692 scopus 로고    scopus 로고
    • Poly(Glycerol sebacate) nanofiber scaffolds bycore/shell electrospinning
    • Yi F, Lavan DA. Poly(glycerol sebacate) nanofiber scaffolds bycore/shell electrospinning. Macromol Biosci 2008; 8: 803-6.
    • (2008) Macromol Biosci , vol.8 , pp. 803-806
    • Yi, F.1    Lavan, D.A.2
  • 98
    • 80053329727 scopus 로고    scopus 로고
    • Biomedical exploitation of chitin and chitosan viamechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying
    • Muzzarelli RA. Biomedical exploitation of chitin and chitosan viamechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drugs 2011; 9: 1510-33.
    • (2011) Mar Drugs , vol.9 , pp. 1510-1533
    • Muzzarelli, R.A.1
  • 99
    • 0242438580 scopus 로고    scopus 로고
    • Influence of freezingrate on pore structure in freeze-dried collagen-GAG scaffolds
    • O'Brien FJ, Harley BA, Yannas IV, Gibson L. Influence of freezingrate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 2004; 25: 1077-86.
    • (2004) Biomaterials , vol.25 , pp. 1077-1086
    • O'brien, F.J.1    Harley, B.A.2    Yannas, I.V.3    Gibson, L.4
  • 100
    • 3242707718 scopus 로고    scopus 로고
    • The effect of poresize on cell adhesion in collagen-GAG scaffolds
    • O'Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of poresize on cell adhesion in collagen-GAG scaffolds. Biomaterials 2005; 26: 433-41.
    • (2005) Biomaterials , vol.26 , pp. 433-441
    • O'brien, F.J.1    Harley, B.A.2    Yannas, I.V.3    Gibson, L.J.4
  • 101
    • 84875615287 scopus 로고    scopus 로고
    • Composite growth factor supplementationstrategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds
    • Caliari SR, Harley BA. Composite growth factor supplementationstrategies to enhance tenocyte bioactivity in aligned collagen-GAG scaffolds. Tissue Eng Part A 2013; 19: 1100-12.
    • (2013) Tissue Eng Part A , vol.19 , pp. 1100-1112
    • Caliari, S.R.1    Harley, B.A.2
  • 102
    • 21844475885 scopus 로고    scopus 로고
    • Alignment of osteoblast-likecells and cell-produced collagen matrix induced by nanogrooves
    • Zhu B, Lu Q, Yin J, Hu J, Wang Z. Alignment of osteoblast-likecells and cell-produced collagen matrix induced by nanogrooves. Tissue Eng 2005; 11: 825-34.
    • (2005) Tissue Eng , vol.11 , pp. 825-834
    • Zhu, B.1    Lu, Q.2    Yin, J.3    Hu, J.4    Wang, Z.5
  • 103
    • 84869840229 scopus 로고    scopus 로고
    • Engineered contractileskeletal muscle tissue on a microgrooved methacrylated gelatin substrate
    • Hosseini V, Ahadian S, Ostrovidov S, et al. Engineered contractileskeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Tissue Eng Part A 2012; 18: 2453-65.
    • (2012) Tissue Eng Part A , vol.18 , pp. 2453-2465
    • Hosseini, V.1    Ahadian, S.2    Ostrovidov, S.3
  • 104
    • 77954387498 scopus 로고    scopus 로고
    • The regulation of phenotype of culturedtenocytes by microgrooved surface structure
    • Zhu J, Li J, Wang B, et al. The regulation of phenotype of culturedtenocytes by microgrooved surface structure. Biomaterials 2010; 31: 6952-8.
    • (2010) Biomaterials , vol.31 , pp. 6952-6958
    • Zhu, J.1    Li, J.2    Wang, B.3
  • 105
    • 84918789587 scopus 로고    scopus 로고
    • A microgroove patternedmultiwell cell culture plate for high-throughput studies of cell alignment
    • Lucker PB, Javaherian S, Soleas JP, et al. A microgroove patternedmultiwell cell culture plate for high-throughput studies of cell alignment. Biotechnol Bioeng 2014;
    • (2014) Biotechnol Bioeng
    • Lucker, P.B.1    Javaherian, S.2    Soleas, J.P.3
  • 106
    • 58249084559 scopus 로고    scopus 로고
    • Correlation of anisotropiccell behaviors with topographic aspect ratio
    • Crouch AS, Miller D, Luebke KJ, Hu W. Correlation of anisotropiccell behaviors with topographic aspect ratio. Biomaterials 2009; 30: 1560-7.
    • (2009) Biomaterials , vol.30 , pp. 1560-1567
    • Crouch, A.S.1    Miller, D.2    Luebke, K.J.3    Hu, W.4
  • 107
    • 84867550227 scopus 로고    scopus 로고
    • Photocured biodegradablepolymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation
    • Cai L, Zhang L, Dong J, Wang S. Photocured biodegradablepolymer substrates of varying stiffness and microgroove dimensions for promoting nerve cell guidance and differentiation. Langmuir 2012; 28: 12557-68.
    • (2012) Langmuir , vol.28 , pp. 12557-12568
    • Cai, L.1    Zhang, L.2    Dong, J.3    Wang, S.4
  • 108
    • 84878117340 scopus 로고    scopus 로고
    • Biodegradable photo-crosslinked polymer substrates with concentric microgrooves for regulating MC3T3-E1 cell behavior
    • Wang K, Cai L, Zhang L, Dong J, Wang S. Biodegradable photo-crosslinked polymer substrates with concentric microgrooves for regulating MC3T3-E1 cell behavior. Adv Healthc Mater 2012; 1: 292-301.
    • (2012) Adv Healthc Mater , vol.1 , pp. 292-301
    • Wang, K.1    Cai, L.2    Zhang, L.3    Dong, J.4    Wang, S.5
  • 109
    • 0037133313 scopus 로고    scopus 로고
    • Engineering geneexpression and protein synthesis by modulation of nuclear shape
    • Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering geneexpression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA 2002; 99: 1972-7.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 1972-1977
    • Thomas, C.H.1    Collier, J.H.2    Sfeir, C.S.3    Healy, K.E.4
  • 111
    • 84893692397 scopus 로고    scopus 로고
    • Engineeringhybrid polymer-protein super-aligned nanofibers via rotary jet spinning
    • Badrossamay MR, Balachandran K, Capulli AK, et al. Engineeringhybrid polymer-protein super-aligned nanofibers via rotary jet spinning. Biomaterials 2014; 35: 3188-97.
    • (2014) Biomaterials , vol.35 , pp. 3188-3197
    • Badrossamay, M.R.1    Balachandran, K.2    Capulli, A.K.3
  • 112
    • 84870255306 scopus 로고    scopus 로고
    • Incorporation of an aggrecan mimicprevents proteolytic degradation of anisotropic cartilage analogs
    • Sharma S, Panitch A, Neu CP. Incorporation of an aggrecan mimicprevents proteolytic degradation of anisotropic cartilage analogs. Acta Biomater 2013; 9: 4618-25.
    • (2013) Acta Biomater , vol.9 , pp. 4618-4625
    • Sharma, S.1    Panitch, A.2    Neu, C.P.3
  • 113
    • 84876308427 scopus 로고    scopus 로고
    • Regulation offibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds
    • Zhong W, Zhang W, Wang S, Qin J. Regulation offibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds. PLoS One 2013; 8: e61283.
    • (2013) Plos One , vol.8
    • Zhong, W.1    Zhang, W.2    Wang, S.3    Qin, J.4
  • 114
    • 84861347499 scopus 로고    scopus 로고
    • Tubular hydrogels of circumferentiallyaligned nanofibers to encapsulate and orient vascular cells
    • McClendon MT, Stupp SI. Tubular hydrogels of circumferentiallyaligned nanofibers to encapsulate and orient vascular cells. Biomaterials 2012; 33: 5713-22.
    • (2012) Biomaterials , vol.33 , pp. 5713-5722
    • McClendon, M.T.1    Stupp, S.I.2
  • 115
    • 84902538079 scopus 로고    scopus 로고
    • Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs
    • Kharaziha M, Shin SR, Nikkhah M, et al. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 2014; 35: 7346-54.
    • (2014) Biomaterials , vol.35 , pp. 7346-7354
    • Kharaziha, M.1    Shin, S.R.2    Nikkhah, M.3
  • 116
    • 84901784090 scopus 로고    scopus 로고
    • Electrospun PGS: PCLMicrofibers Align Human Valvular Interstitial Cells and Provide Tunable Scaffold Anisotropy
    • Masoumi N, Larson BL, Annabi N, et al. Electrospun PGS: PCLMicrofibers Align Human Valvular Interstitial Cells and Provide Tunable Scaffold Anisotropy. Adv Healthc Mater 2014; 3: 929-39.
    • (2014) Adv Healthc Mater , vol.3 , pp. 929-939
    • Masoumi, N.1    Larson, B.L.2    Annabi, N.3
  • 117
    • 84903452228 scopus 로고    scopus 로고
    • Tri-layered elastomericscaffolds for engineering heart valve leaflets
    • Masoumi N, Annabi N, Assmann A, et al. Tri-layered elastomericscaffolds for engineering heart valve leaflets. Biomaterials 2014; 35: 7774-85.
    • (2014) Biomaterials , vol.35 , pp. 7774-7785
    • Masoumi, N.1    Annabi, N.2    Assmann, A.3
  • 118
    • 84890168113 scopus 로고    scopus 로고
    • The potential ofanisotropic matrices as substrate for heart valve engineering
    • Sohier J, Carubelli I, Sarathchandra P, et al. The potential ofanisotropic matrices as substrate for heart valve engineering. Biomaterials 2014; 35: 1833-44.
    • (2014) Biomaterials , vol.35 , pp. 1833-1844
    • Sohier, J.1    Carubelli, I.2    Sarathchandra, P.3
  • 119
    • 84864135982 scopus 로고    scopus 로고
    • Therole of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization
    • 4
    • Newcomb CJ, Bitton R, Velichko YS, Snead ML, Stupp SI. Therole of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization. Small 2012; 8: 2195-202, 4.
    • (2012) Small , vol.8 , pp. 2195-2202
    • Newcomb, C.J.1    Bitton, R.2    Velichko, Y.S.3    Snead, M.L.4    Stupp, S.I.5
  • 120
    • 84862813664 scopus 로고    scopus 로고
    • Aligned silk-based 3-Darchitectures for contact guidance in tissue engineering
    • Oliveira AL, Sun L, Kim HJ, et al. Aligned silk-based 3-Darchitectures for contact guidance in tissue engineering. Acta Biomater 2012; 8: 1530-42.
    • (2012) Acta Biomater , vol.8 , pp. 1530-1542
    • Oliveira, A.L.1    Sun, L.2    Kim, H.J.3
  • 121
    • 84908252071 scopus 로고    scopus 로고
    • Porous gelatin-siloxane hybridscaffolds with biomimetic structure and properties for bone tissue regeneration
    • Lei B, Shin KH, Koh YH, Kim HE. Porous gelatin-siloxane hybridscaffolds with biomimetic structure and properties for bone tissue regeneration. J Biomed Mater Res B Appl Biomater 2014
    • (2014) J Biomed Mater Res B Appl Biomater
    • Lei, B.1    Shin, K.H.2    Koh, Y.H.3    Kim, H.E.4
  • 122
    • 64349104489 scopus 로고    scopus 로고
    • Hierarchical starch-basedfibrous scaffold for bone tissue engineering applications
    • Martins A, Chung S, Pedro AJ, et al. Hierarchical starch-basedfibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 2009; 3: 37-42.
    • (2009) J Tissue Eng Regen Med , vol.3 , pp. 37-42
    • Martins, A.1    Chung, S.2    Pedro, A.J.3
  • 123
    • 77957701332 scopus 로고    scopus 로고
    • Neurogenic differentiation ofhuman conjunctiva mesenchymal stem cells on a nanofibrous scaffold
    • Soleimani M, Nadri S, Shabani I. Neurogenic differentiation ofhuman conjunctiva mesenchymal stem cells on a nanofibrous scaffold. Int J Dev Biol 2010; 54: 1295-300.
    • (2010) Int J Dev Biol , vol.54 , pp. 1295-1300
    • Soleimani, M.1    Nadri, S.2    Shabani, I.3
  • 124
    • 0346500607 scopus 로고    scopus 로고
    • Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering
    • Yang F, Murugan R, Ramakrishna S, et al. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 2004; 25: 1891-900.
    • (2004) Biomaterials , vol.25 , pp. 1891-1900
    • Yang, F.1    Murugan, R.2    Ramakrishna, S.3
  • 125
    • 84896446692 scopus 로고    scopus 로고
    • Neurogenesis andvascularization of the damaged brain using a lactate-releasing biomimetic scaffold
    • Alvarez Z, Castano O, Castells AA, et al. Neurogenesis andvascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials 2014; 35: 4769-81.
    • (2014) Biomaterials , vol.35 , pp. 4769-4781
    • Alvarez, Z.1    Castano, O.2    Castells, A.A.3
  • 126
    • 0141656234 scopus 로고    scopus 로고
    • Perinatal and early postnatalchanges in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain
    • Baud O, Fayol L, Gressens P, et al. Perinatal and early postnatalchanges in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain. J Comp Neurol 2003; 465: 445-54.
    • (2003) J Comp Neurol , vol.465 , pp. 445-454
    • Baud, O.1    Fayol, L.2    Gressens, P.3
  • 127
    • 84872534173 scopus 로고    scopus 로고
    • Endothelial cell metabolism and tumourangiogenesis: Glucose and glutamine as essential fuels and lactate as the driving force
    • Polet F, Feron O. Endothelial cell metabolism and tumourangiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med 2013; 273: 156-65.
    • (2013) J Intern Med , vol.273 , pp. 156-165
    • Polet, F.1    Feron, O.2
  • 129
    • 84906939572 scopus 로고    scopus 로고
    • Intervertebral Disc and Stem Cells Co-cultured in Biomimetic Extracellular Matrix Stimulated by Cyclic Compression in Perfusion Bioreactor
    • Tsai TL, Nelson BC, Anderson PA, Zdeblick TA, Li WJ. Intervertebral Disc and Stem Cells Co-cultured in Biomimetic Extracellular Matrix Stimulated by Cyclic Compression in Perfusion Bioreactor. Spine J 2014;
    • (2014) Spine J
    • Tsai, T.L.1    Nelson, B.C.2    Erson, P.A.3    Zdeblick, T.A.4    Li, W.J.5
  • 130
    • 0032618467 scopus 로고    scopus 로고
    • New depths in cell behaviour: Reactions ofcells to nanotopography
    • Curtis A, Wilkinson C. New depths in cell behaviour: reactions ofcells to nanotopography. Biochem Soc Symp 1999; 65: 15-26.
    • (1999) Biochem Soc Symp , vol.65 , pp. 15-26
    • Curtis, A.1    Wilkinson, C.2
  • 131
    • 79958283464 scopus 로고    scopus 로고
    • Fabrication of abiomimetic elastic intervertebral disk scaffold using additive manufacturing
    • Whatley BR, Kuo J, Shuai C, Damon BJ, Wen X. Fabrication of abiomimetic elastic intervertebral disk scaffold using additive manufacturing. Biofabrication 2011; 3: 15004.
    • (2011) Biofabrication , vol.3 , pp. 15004
    • Whatley, B.R.1    Kuo, J.2    Shuai, C.3    Damon, B.J.4    Wen, X.5
  • 132
    • 84893459888 scopus 로고    scopus 로고
    • Wound healing properties of a3-D scaffold comprising soluble silkworm gland hydrolysate and human collagen
    • Kim KO, Lee Y, Hwang JW, et al. Wound healing properties of a3-D scaffold comprising soluble silkworm gland hydrolysate and human collagen. Colloids Surf B Biointerfaces 2014; 116: 318-26.
    • (2014) Colloids Surf B Biointerfaces , vol.116 , pp. 318-326
    • Kim, K.O.1    Lee, Y.2    Hwang, J.W.3
  • 133
    • 84876183449 scopus 로고    scopus 로고
    • Preparation andcharacterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications
    • Rodrigues SC, Salgado CL, Sahu A, et al. Preparation andcharacterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. J Biomed Mater Res A 2013; 101: 1080-94.
    • (2013) J Biomed Mater Res A , vol.101 , pp. 1080-1094
    • Rodrigues, S.C.1    Salgado, C.L.2    Sahu, A.3
  • 134
    • 84863263473 scopus 로고    scopus 로고
    • Porous collagen scaffold reinforced withsurfaced activated PLLA nanoparticles
    • Xu C, Lu W, Bian S, et al. Porous collagen scaffold reinforced withsurfaced activated PLLA nanoparticles. ScientificWorldJournal 2012; 2012: 695137.
    • (2012) Scientificworldjournal , vol.2012 , pp. 695137
    • Xu, C.1    Lu, W.2    Bian, S.3
  • 135
    • 84925344581 scopus 로고    scopus 로고
    • Induction of endometrialmesenchymal stem cells into tissue-forming cells suitable for fascial repair
    • Su K, Edwards SL, Tan KS, et al. Induction of endometrialmesenchymal stem cells into tissue-forming cells suitable for fascial repair. Acta Biomater 2014; 10: 5012-20.
    • (2014) Acta Biomater , vol.10 , pp. 5012-5020
    • Su, K.1    Edwards, S.L.2    Tan, K.S.3
  • 136
    • 16244396719 scopus 로고    scopus 로고
    • Electrospun fine-texturedscaffolds for heart tissue constructs
    • Zong X, Bien H, Chung CY, et al. Electrospun fine-texturedscaffolds for heart tissue constructs. Biomaterials 2005; 26: 5330-8.
    • (2005) Biomaterials , vol.26 , pp. 5330-5338
    • Zong, X.1    Bien, H.2    Chung, C.Y.3
  • 137
    • 33845948505 scopus 로고    scopus 로고
    • The effect of microspheredegradation rate on the efficacy of polymeric microspheres as bulking agents: An 18-month follow-up study
    • Kang SW, Cho ER, Jeon O, Kim BS. The effect of microspheredegradation rate on the efficacy of polymeric microspheres as bulking agents: an 18-month follow-up study. J Biomed Mater Res B Appl Biomater 2007; 80: 253-9.
    • (2007) J Biomed Mater Res B Appl Biomater , vol.80 , pp. 253-259
    • Kang, S.W.1    Cho, E.R.2    Jeon, O.3    Kim, B.S.4
  • 138
    • 38349108489 scopus 로고    scopus 로고
    • Sequential release ofbioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds
    • Jaklenec A, Hinckfuss A, Bilgen B, et al. Sequential release ofbioactive IGF-I and TGF-beta 1 from PLGA microsphere-based scaffolds. Biomaterials 2008; 29: 1518-25.
    • (2008) Biomaterials , vol.29 , pp. 1518-1525
    • Jaklenec, A.1    Hinckfuss, A.2    Bilgen, B.3
  • 139
    • 33750514599 scopus 로고    scopus 로고
    • Rupture anddrug release characteristics of multi-reservoir type microspheres with poly(Dl-lactide-co-glycolide) and poly(dl-lactide)
    • Matsumoto A, Matsukawa Y, Horikiri Y, Suzuki T. Rupture anddrug release characteristics of multi-reservoir type microspheres with poly(dl-lactide-co-glycolide) and poly(dl-lactide). Int J Pharm 2006; 327: 110-6.
    • (2006) Int J Pharm , vol.327 , pp. 110-116
    • Matsumoto, A.1    Matsukawa, Y.2    Horikiri, Y.3    Suzuki, T.4
  • 140
    • 36148951005 scopus 로고    scopus 로고
    • In vitro and in vivo test ofPEG/PCL-based hydrogel scaffold for cell delivery application
    • Park JS, Woo DG, Sun BK, et al. In vitro and in vivo test ofPEG/PCL-based hydrogel scaffold for cell delivery application. J Control Release 2007; 124: 51-9.
    • (2007) J Control Release , vol.124 , pp. 51-59
    • Park, J.S.1    Woo, D.G.2    Sun, B.K.3
  • 141
    • 77955399739 scopus 로고    scopus 로고
    • Electrospun micro/nanofibrous conduits composedof poly(Epsilon-caprolactone) and small intestine submucosa powder for nerve tissue regeneration
    • Hong S, Kim G. Electrospun micro/nanofibrous conduits composedof poly(epsilon-caprolactone) and small intestine submucosa powder for nerve tissue regeneration. J Biomed Mater Res B Appl Biomater 2010; 94: 421-8.
    • (2010) J Biomed Mater Res B Appl Biomater , vol.94 , pp. 421-428
    • Hong, S.1    Kim, G.2
  • 142
    • 84855936904 scopus 로고    scopus 로고
    • Mechanical testing ofelectrospun PCL fibers
    • Croisier F, Duwez AS, Jerome C, et al. Mechanical testing ofelectrospun PCL fibers. Acta Biomater 2012; 8: 218-24.
    • (2012) Acta Biomater , vol.8 , pp. 218-224
    • Croisier, F.1    Duwez, A.S.2    Jerome, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.