-
1
-
-
0027459878
-
Adipose expression of tumor necrosis factor-α: Direct role in obesity-linked insulin resistance
-
Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87-91.
-
(1993)
Science
, vol.259
, Issue.5091
, pp. 87-91
-
-
Hotamisligil, G.S.1
Shargill, N.S.2
Spiegelman, B.M.3
-
2
-
-
33846026712
-
Obesity induces a phenotypic switch in adipose tissue macrophage polarization
-
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175-184.
-
(2007)
J Clin Invest
, vol.117
, Issue.1
, pp. 175-184
-
-
Lumeng, C.N.1
Bodzin, J.L.2
Saltiel, A.R.3
-
3
-
-
68349150756
-
CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity
-
Nishimura S, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914-920.
-
(2009)
Nat Med.
, vol.15
, Issue.8
, pp. 914-920
-
-
Nishimura, S.1
-
4
-
-
84868671526
-
Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase
-
Talukdar S, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18(9):1407-1412.
-
(2012)
Nat Med
, vol.18
, Issue.9
, pp. 1407-1412
-
-
Talukdar, S.1
-
5
-
-
0348230958
-
Obesity is associated with macrophage accumulation in adipose tissue
-
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796-1808.
-
(2003)
J Clin Invest
, vol.112
, Issue.12
, pp. 1796-1808
-
-
Weisberg, S.P.1
McCann, D.2
Desai, M.3
Rosenbaum, M.4
Leibel, R.L.5
Ferrante, A.W.6
-
6
-
-
84925627014
-
NK cells link obesityinduced adipose stress to inflammation and insulin resistance
-
Wensveen FM, et al. NK cells link obesityinduced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16(4):376-385.
-
(2015)
Nat Immunol.
, vol.16
, Issue.4
, pp. 376-385
-
-
Wensveen, F.M.1
-
7
-
-
85027938385
-
B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies
-
Winer DA, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med. 2011;17(5):610-617.
-
(2011)
Nat Med
, vol.17
, Issue.5
, pp. 610-617
-
-
Winer, D.A.1
-
8
-
-
68349137821
-
Normalization of obesityassociated insulin resistance through immunotherapy
-
Winer S, et al. Normalization of obesityassociated insulin resistance through immunotherapy. Nat Med. 2009;15(8):921-929.
-
(2009)
Nat Med.
, vol.15
, Issue.8
, pp. 921-929
-
-
Winer, S.1
-
9
-
-
9144223683
-
Chronic inflammation in fat plays a crucial role in the development of obesity- related insulin resistance
-
Xu H, et al. Chronic inflammation in fat plays a crucial role in the development of obesity- related insulin resistance. J Clin Invest. 2003;112(12):1821-1830.
-
(2003)
J Clin Invest
, vol.112
, Issue.12
, pp. 1821-1830
-
-
Xu, H.1
-
10
-
-
84949627236
-
Regulation of metabolism by the innate immune system
-
Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol. 2016;12(1):15-28.
-
(2016)
Nat Rev Endocrinol.
, vol.12
, Issue.1
, pp. 15-28
-
-
Lackey, D.E.1
Olefsky, J.M.2
-
11
-
-
84924295797
-
Hypothalamic microinflammation: A common basis of metabolic syndrome and aging
-
Tang Y, Purkayastha S, Cai D. Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends Neurosci. 2015;38(1):36-44.
-
(2015)
Trends Neurosci
, vol.38
, Issue.1
, pp. 36-44
-
-
Tang, Y.1
Purkayastha, S.2
Cai, D.3
-
12
-
-
84952021955
-
Immunometabolism of obesity and diabetes: Microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation
-
McPhee JB, Schertzer JD. Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin Sci. 2015;129(12):1083-1096.
-
(2015)
Clin Sci.
, vol.129
, Issue.12
, pp. 1083-1096
-
-
McPhee, J.B.1
Schertzer, J.D.2
-
13
-
-
84867363434
-
Gut microbiota drives metabolic disease in immunologically altered mice
-
Chassaing B, Aitken JD, Gewirtz AT, Vijay-Kumar M. Gut microbiota drives metabolic disease in immunologically altered mice. Adv Immunol. 2012;116:93-112.
-
(2012)
Adv Immunol
, vol.116
, pp. 93-112
-
-
Chassaing, B.1
Aitken, J.D.2
Gewirtz, A.T.3
Vijay-Kumar, M.4
-
14
-
-
84960810832
-
The intestinal immune system in obesity and insulin resistance
-
Winer DA, Luck H, Tsai S, Winer S. The intestinal immune system in obesity and insulin resistance. Cell Metab. 2016;23(3):413-426.
-
(2016)
Cell Metab
, vol.23
, Issue.3
, pp. 413-426
-
-
Winer, D.A.1
Luck, H.2
Tsai, S.3
Winer, S.4
-
15
-
-
75649093343
-
Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function
-
Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131-144.
-
(2010)
Nat Rev Immunol
, vol.10
, Issue.2
, pp. 131-144
-
-
Abreu, M.T.1
-
16
-
-
79952748335
-
The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions
-
Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci U S A. 2011;108(suppl 1):4659-4665.
-
(2011)
Proc Natl Acad Sci U S a
, vol.108
, pp. 4659-4665
-
-
Johansson, M.E.1
Larsson, J.M.2
Hansson, G.C.3
-
17
-
-
0034681162
-
Intestinal trefoil factor confers colonic epithelial resistance to apoptosis
-
Taupin DR, Kinoshita K, Podolsky DK. Intestinal trefoil factor confers colonic epithelial resistance to apoptosis. Proc Natl Acad Sci U S A. 2000;97(2):799-804.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.2
, pp. 799-804
-
-
Taupin, D.R.1
Kinoshita, K.2
Podolsky, D.K.3
-
18
-
-
80054122238
-
The antibacterial lectin regiiigamma promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava S, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334(6053):255-258.
-
(2011)
Science
, vol.334
, Issue.6053
, pp. 255-258
-
-
Vaishnava, S.1
-
19
-
-
84896851032
-
Intestinal epithelial cells: Regulators of barrier function and immune homeostasis
-
Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14(3):141-153.
-
(2014)
Nat Rev Immunol
, vol.14
, Issue.3
, pp. 141-153
-
-
Peterson, L.W.1
Artis, D.2
-
20
-
-
84866167497
-
Reciprocal interactions of the intestinal microbiota and immune system
-
Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231-241.
-
(2012)
Nature
, vol.489
, Issue.7415
, pp. 231-241
-
-
Maynard, C.L.1
Elson, C.O.2
Hatton, R.D.3
Weaver, C.T.4
-
21
-
-
67349250428
-
The gut microbiota shapes intestinal immune responses during health and disease
-
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313-323.
-
(2009)
Nat Rev Immunol.
, vol.9
, Issue.5
, pp. 313-323
-
-
Round, J.L.1
Mazmanian, S.K.2
-
22
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov II, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485-498.
-
(2009)
Cell
, vol.139
, Issue.3
, pp. 485-498
-
-
Ivanov, I.I.1
-
23
-
-
77953913586
-
Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
-
Wu HJ, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815-827.
-
(2010)
Immunity
, vol.32
, Issue.6
, pp. 815-827
-
-
Wu, H.J.1
-
24
-
-
79956311926
-
The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
-
Round JL, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974-977.
-
(2011)
Science
, vol.332
, Issue.6032
, pp. 974-977
-
-
Round, J.L.1
-
25
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous clostridium species
-
Atarashi K, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337-341.
-
(2011)
Science
, vol.331
, Issue.6015
, pp. 337-341
-
-
Atarashi, K.1
-
26
-
-
84890564250
-
Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y, et al. Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446-450.
-
(2013)
Nature
, vol.504
, Issue.7480
, pp. 446-450
-
-
Furusawa, Y.1
-
27
-
-
84908293710
-
Differential modulation by akkermansia muciniphila and faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids
-
Lukovac S, et al. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio. 2014;5(4):01438-14.
-
(2014)
MBio
, vol.5
, Issue.4
, pp. 01438-1514
-
-
Lukovac, S.1
-
28
-
-
8144226856
-
The gut microbiota as an environmental factor that regulates fat storage
-
Bäckhed F, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718-15723.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, Issue.44
, pp. 15718-15723
-
-
Bäckhed, F.1
-
29
-
-
33845874101
-
An obesity-associated gut microbiome with increased capacity for energy harvest
-
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031.
-
(2006)
Nature
, vol.444
, Issue.7122
, pp. 1027-1031
-
-
Turnbaugh, P.J.1
Ley, R.E.2
Mahowald, M.A.3
Magrini, V.4
Mardis, E.R.5
Gordon, J.I.6
-
30
-
-
84883478660
-
Gut microbiota from twins discordant for obesity modulate metabolism in mice
-
Ridaura VK, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150):1241214.
-
(2013)
Science
, vol.341
, Issue.6150
, pp. 1241214
-
-
Ridaura, V.K.1
-
31
-
-
84878709716
-
Gut metagenome in European women with normal, impaired and diabetic glucose control
-
Karlsson FH, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99-103.
-
(2013)
Nature
, vol.498
, Issue.7452
, pp. 99-103
-
-
Karlsson, F.H.1
-
32
-
-
84883110880
-
Richness of human gut microbiome correlates with metabolic markers
-
Le Chatelier, E, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-546.
-
(2013)
Nature
, vol.500
, Issue.7464
, pp. 541-546
-
-
Le Chatelier, E.1
-
33
-
-
84867074831
-
A metagenome-wide association study of gut microbiota in type 2 diabetes
-
Qin J, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60.
-
(2012)
Nature
, vol.490
, Issue.7418
, pp. 55-60
-
-
Qin, J.1
-
34
-
-
84949772416
-
Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
-
Forslund K, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262-266.
-
(2015)
Nature
, vol.528
, Issue.7581
, pp. 262-266
-
-
Forslund, K.1
-
35
-
-
48249125862
-
Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice
-
Cani PD, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470-1481.
-
(2008)
Diabetes
, vol.57
, Issue.6
, pp. 1470-1481
-
-
Cani, P.D.1
-
36
-
-
63449098729
-
Chylomicrons promote intestinal absorption of lipopolysaccharides
-
Ghoshal S, Witta J, Zhong J, de Villiers, W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50(1):90-97.
-
(2009)
J Lipid Res
, vol.50
, Issue.1
, pp. 90-97
-
-
Ghoshal, S.1
Witta, J.2
Zhong, J.3
Eckhardt, E.4
De Villiers, W.5
-
37
-
-
84976310851
-
A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion
-
Birchenough GM, Nyström EE, Johansson ME, Hansson GC. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science. 2016;352(6293):1535-1542.
-
(2016)
Science
, vol.352
, Issue.6293
, pp. 1535-1542
-
-
Birchenough, G.M.1
Nyström, E.E.2
Johansson, M.E.3
Hansson, G.C.4
-
38
-
-
80052278497
-
Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment
-
Amar J, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9):559-572.
-
(2011)
EMBO Mol Med
, vol.3
, Issue.9
, pp. 559-572
-
-
Amar, J.1
-
39
-
-
34347399563
-
Metabolic endotoxemia initiates obesity and insulin resistance
-
Cani PD, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-1772.
-
(2007)
Diabetes
, vol.56
, Issue.7
, pp. 1761-1772
-
-
Cani, P.D.1
-
40
-
-
84943454450
-
Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling
-
Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22(4):658-668.
-
(2015)
Cell Metab
, vol.22
, Issue.4
, pp. 658-668
-
-
Caesar, R.1
Tremaroli, V.2
Kovatcheva-Datchary, P.3
Cani, P.D.4
Bäckhed, F.5
-
41
-
-
83855160821
-
Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles
-
Kiss EA, et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science. 2011;334(6062):1561-1565.
-
(2011)
Science
, vol.334
, Issue.6062
, pp. 1561-1565
-
-
Kiss, E.A.1
-
42
-
-
84855917402
-
AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch
-
Lee JS, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol. 2011;13(2):144-151.
-
(2011)
Nat Immunol
, vol.13
, Issue.2
, pp. 144-151
-
-
Lee, J.S.1
-
43
-
-
84866673222
-
Dietary influences on intestinal immunity
-
Veldhoen M, Brucklacher-Waldert V. Dietary influences on intestinal immunity. Nat Rev Immunol. 2012;12(10):696-708.
-
(2012)
Nat Rev Immunol
, vol.12
, Issue.10
, pp. 696-708
-
-
Veldhoen, M.1
Brucklacher-Waldert, V.2
-
44
-
-
33750584214
-
TLR4 links innate immunity and fatty acid-induced insulin resistance
-
Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015-3025.
-
(2006)
J Clin Invest
, vol.116
, Issue.11
, pp. 3015-3025
-
-
Shi, H.1
Kokoeva, M.V.2
Inouye, K.3
Tzameli, I.4
Yin, H.5
Flier, J.S.6
-
45
-
-
84907612482
-
A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice
-
Oh DY, et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med. 2014;20(8):942-947.
-
(2014)
Nat Med
, vol.20
, Issue.8
, pp. 942-947
-
-
Oh, D.Y.1
-
46
-
-
79551545978
-
Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation
-
Cui G, et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest. 2011;121(2):658-670.
-
(2011)
J Clin Invest
, vol.121
, Issue.2
, pp. 658-670
-
-
Cui, G.1
-
47
-
-
84928057028
-
Sterol metabolism controls T(H)17 differentiation by generating endogenous RORγ agonists
-
Hu X, et al. Sterol metabolism controls T(H)17 differentiation by generating endogenous RORγ agonists. Nat Chem Biol. 2015;11(2):141-147.
-
(2015)
Nat Chem Biol
, vol.11
, Issue.2
, pp. 141-147
-
-
Hu, X.1
-
48
-
-
84925507991
-
Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance
-
Fang S, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21(2):159-165.
-
(2015)
Nat Med
, vol.21
, Issue.2
, pp. 159-165
-
-
Fang, S.1
-
49
-
-
84937407773
-
The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease
-
Garidou L, et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 2015;22(1):100-112.
-
(2015)
Cell Metab
, vol.22
, Issue.1
, pp. 100-112
-
-
Garidou, L.1
-
50
-
-
34547757390
-
Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
-
Sun CM, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med. 2007;204(8):1775-1785.
-
(2007)
J Exp Med.
, vol.204
, Issue.8
, pp. 1775-1785
-
-
Sun, C.M.1
-
51
-
-
79952741545
-
Intrinsic requirement for the Vitamin D receptor in the development of CD8αα-expressing T cells
-
Bruce D, Cantorna MT. Intrinsic requirement for the vitamin D receptor in the development of CD8αα-expressing T cells. J Immunol. 2011;186(5):2819-2825.
-
(2011)
J Immunol.
, vol.186
, Issue.5
, pp. 2819-2825
-
-
Bruce, D.1
Cantorna, M.T.2
-
52
-
-
84971201113
-
Gut microbiota, metabolites and host immunity
-
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341-352.
-
(2016)
Nat Rev Immunol.
, vol.16
, Issue.6
, pp. 341-352
-
-
Rooks, M.G.1
Garrett, W.S.2
-
53
-
-
84902657771
-
Diet, metabolites, and "western-lifestyle" inflammatory diseases
-
Thorburn AN, Macia L, Mackay CR. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity. 2014;40(6):833-842.
-
(2014)
Immunity
, vol.40
, Issue.6
, pp. 833-842
-
-
Thorburn, A.N.1
Macia, L.2
Mackay, C.R.3
-
54
-
-
84971519476
-
From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites
-
Koh A, De Vadder, F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-1345.
-
(2016)
Cell
, vol.165
, Issue.6
, pp. 1332-1345
-
-
Koh, A.1
Kovatcheva-Datchary, P.2
Bäckhed, F.3
De Vadder, F.4
-
55
-
-
84882664672
-
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin- 22
-
Zelante T, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin- 22. Immunity. 2013;39(2):372-385.
-
(2013)
Immunity
, vol.39
, Issue.2
, pp. 372-385
-
-
Zelante, T.1
-
56
-
-
42649106556
-
The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins
-
Veldhoen M, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106-109.
-
(2008)
Nature
, vol.453
, Issue.7191
, pp. 106-109
-
-
Veldhoen, M.1
-
57
-
-
33947631511
-
IL-1beta causes an increase in intestinal epithelial tight junction permeability
-
Al-Sadi RM, Ma TY. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol. 2007;178(7):4641-4649.
-
(2007)
J Immunol.
, vol.178
, Issue.7
, pp. 4641-4649
-
-
Al-Sadi, R.M.1
Ma, T.Y.2
-
58
-
-
84928402947
-
Regulation of obesity-related insulin resistance with gut anti-inflammatory agents
-
Luck H, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21(4):527-542.
-
(2015)
Cell Metab
, vol.21
, Issue.4
, pp. 527-542
-
-
Luck, H.1
-
59
-
-
84880653498
-
IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells
-
Hasnain SZ, et al. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology. 2013;144(2):357-368.
-
(2013)
Gastroenterology
, vol.144
, Issue.2
, pp. 357-368
-
-
Hasnain, S.Z.1
-
60
-
-
84878408426
-
Toll-like receptor 4 D299G polymorphism in metabolic disorders: A meta-analysis
-
Belforte FS, Coluccio Leskow F, Poskus E, Penas Steinhardt A. Toll-like receptor 4 D299G polymorphism in metabolic disorders: a meta-analysis. Mol Biol Rep. 2013;40(4):3015-3020.
-
(2013)
Mol Biol Rep
, vol.40
, Issue.4
, pp. 3015-3020
-
-
Belforte, F.S.1
Coluccio, L.F.2
Poskus, E.3
Penas, S.A.4
-
61
-
-
84879272195
-
Interleukin-10 -592C/A, -819C/T and -1082A/G polymorphisms with risk of type 2 diabetes mellitus: A HuGE review and meta-analysis
-
Hua Y, Shen J, Song Y, Xing Y, Ye X. Interleukin-10 -592C/A, -819C/T and -1082A/G polymorphisms with risk of type 2 diabetes mellitus: a HuGE review and meta-analysis. PLoS One. 2013;8(6):e66568.
-
(2013)
PLoS One
, vol.8
, Issue.6
, pp. e66568
-
-
Hua, Y.1
Shen, J.2
Song, Y.3
Xing, Y.4
Ye, X.5
-
62
-
-
84892740060
-
Association of IL-6, TNF-α and IL-10 gene polymorphisms with type 2 diabetes mellitus
-
Saxena M, Srivastava N, Banerjee M. Association of IL-6, TNF-α and IL-10 gene polymorphisms with type 2 diabetes mellitus. Mol Biol Rep. 2013;40(11):6271-6279.
-
(2013)
Mol Biol Rep
, vol.40
, Issue.11
, pp. 6271-6279
-
-
Saxena, M.1
Srivastava, N.2
Banerjee, M.3
-
63
-
-
84966601421
-
Starving Intestinal Inflammation with the amino acid sensor GCN2
-
Revelo XS, Winer S, Winer DA. Starving Intestinal Inflammation with the amino acid sensor GCN2. Cell Metab. 2016;23(5):763-765.
-
(2016)
Cell Metab
, vol.23
, Issue.5
, pp. 763-765
-
-
Revelo, X.S.1
Winer, S.2
Winer, D.A.3
-
64
-
-
84976554686
-
High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22
-
Gulhane M, et al. High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Sci Rep. 2016;6:28990.
-
(2016)
Sci Rep
, vol.6
, pp. 28990
-
-
Gulhane, M.1
-
65
-
-
84929843622
-
Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance
-
Denou E, et al. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance. EMBO Mol Med. 2015;7(3):259-274.
-
(2015)
EMBO Mol Med
, vol.7
, Issue.3
, pp. 259-274
-
-
Denou, E.1
-
66
-
-
77950250064
-
Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5
-
Vijay-Kumar M, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228-231.
-
(2010)
Science
, vol.328
, Issue.5975
, pp. 228-231
-
-
Vijay-Kumar, M.1
-
67
-
-
84855174006
-
Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice
-
Caricilli AM, et al. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol. 2011;9(12):e1001212.
-
(2011)
PLoS Biol
, vol.9
, Issue.12
, pp. e1001212
-
-
Caricilli, A.M.1
-
68
-
-
79751512463
-
The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance
-
Vandanmagsar B, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179-188.
-
(2011)
Nat Med
, vol.17
, Issue.2
, pp. 179-188
-
-
Vandanmagsar, B.1
-
69
-
-
79955038882
-
Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling
-
Wen H, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408-415.
-
(2011)
Nat Immunol
, vol.12
, Issue.5
, pp. 408-415
-
-
Wen, H.1
-
70
-
-
84879582536
-
Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation
-
Yan Y, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38(6):1154-1163.
-
(2013)
Immunity
, vol.38
, Issue.6
, pp. 1154-1163
-
-
Yan, Y.1
-
71
-
-
84861989207
-
Innate lymphoid cells promote anatomical containment of lymphoid- resident commensal bacteria
-
Sonnenberg GF, et al. Innate lymphoid cells promote anatomical containment of lymphoid- resident commensal bacteria. Science. 2012;336(6086):1321-1325.
-
(2012)
Science
, vol.336
, Issue.6086
, pp. 1321-1325
-
-
Sonnenberg, G.F.1
-
72
-
-
84908311821
-
Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes
-
Wang X, et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature. 2014;514(7521):237-241.
-
(2014)
Nature
, vol.514
, Issue.7521
, pp. 237-241
-
-
Wang, X.1
-
73
-
-
77957880664
-
High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse
-
Ding S, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One. 2010;5(8):e12191.
-
(2010)
PLoS One
, vol.5
, Issue.8
, pp. e12191
-
-
Ding, S.1
-
74
-
-
84858779974
-
Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice
-
Lam YY, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One. 2012;7(3):e34233.
-
(2012)
PLoS One
, vol.7
, Issue.3
, pp. e34233
-
-
Lam, Y.Y.1
-
75
-
-
84866328666
-
Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: A mechanism for obesity- Associated colorectal cancer
-
Liu Z, et al. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity- Associated colorectal cancer. J Nutr Biochem. 2012;23(10):1207-1213.
-
(2012)
J Nutr Biochem
, vol.23
, Issue.10
, pp. 1207-1213
-
-
Liu, Z.1
-
76
-
-
55849086542
-
Intestinal, adipose, and liver inflammation in diet-induced obese mice
-
Li H, et al. Intestinal, adipose, and liver inflammation in diet-induced obese mice. Metab Clin Exp. 2008;57(12):1704-1710.
-
(2008)
Metab Clin Exp.
, vol.57
, Issue.12
, pp. 1704-1710
-
-
Li, H.1
-
77
-
-
84937513385
-
Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling
-
Monteiro-Sepulveda M, et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 2015;22(1):113-124.
-
(2015)
Cell Metab
, vol.22
, Issue.1
, pp. 113-124
-
-
Monteiro-Sepulveda, M.1
-
78
-
-
79251479402
-
Diet-induced weight loss reduces colorectal inflammation: Implications for colorectal carcinogenesis
-
Pendyala S, Neff LM, Suárez-Fariñas M, Holt PR. Diet-induced weight loss reduces colorectal inflammation: implications for colorectal carcinogenesis. Am J Clin Nutr. 2011;93(2):234-242.
-
(2011)
Am J Clin Nutr
, vol.93
, Issue.2
, pp. 234-242
-
-
Pendyala, S.1
Neff, L.M.2
Suárez-Fariñas, M.3
Holt, P.R.4
-
79
-
-
84926318323
-
Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients
-
Magalhaes I, et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest. 2015;125(4):1752-1762.
-
(2015)
J Clin Invest
, vol.125
, Issue.4
, pp. 1752-1762
-
-
Magalhaes, I.1
-
80
-
-
84926678423
-
High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability
-
Johnson AM, et al. High fat diet causes depletion of intestinal eosinophils associated with intestinal permeability. PLoS One. 2015;10(4):e0122195.
-
(2015)
PLoS One
, vol.10
, Issue.4
, pp. e0122195
-
-
Johnson, A.M.1
-
81
-
-
84907563983
-
Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences
-
Cox LM, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705-721.
-
(2014)
Cell
, vol.158
, Issue.4
, pp. 705-721
-
-
Cox, L.M.1
-
82
-
-
84960339304
-
Different Th17 immunity in gut, liver, and adipose tissues during obesity: The role of diet, genetics, and microbes
-
Cavallari JF, Denou E, Foley KP, Khan WI, Schertzer JD. Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes. 2016;7(1):82-89.
-
(2016)
Gut Microbes
, vol.7
, Issue.1
, pp. 82-89
-
-
Cavallari, J.F.1
Denou, E.2
Foley, K.P.3
Khan, W.I.4
Schertzer, J.D.5
-
83
-
-
84929955331
-
Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation
-
Gagliani N, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 2015;523(7559):221-225.
-
(2015)
Nature
, vol.523
, Issue.7559
, pp. 221-225
-
-
Gagliani, N.1
-
84
-
-
79951677394
-
Fate mapping of IL-17-producing T cells in inflammatory responses
-
Hirota K, et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol. 2011;12(3):255-263.
-
(2011)
Nat Immunol.
, vol.12
, Issue.3
, pp. 255-263
-
-
Hirota, K.1
-
85
-
-
84923261268
-
Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status
-
Everard A, et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat Commun. 2014;5:5648.
-
(2014)
Nat Commun
, vol.5
, pp. 5648
-
-
Everard, A.1
-
86
-
-
78649714703
-
T-lymphocyte responses to intestinally absorbed antigens can contribute to adipose tissue inflammation and glucose intolerance during high fat feeding
-
Wang Y, et al. T-lymphocyte responses to intestinally absorbed antigens can contribute to adipose tissue inflammation and glucose intolerance during high fat feeding. PLoS One. 2010;5(11):e13951.
-
(2010)
PLoS One
, vol.5
, Issue.11
, pp. e13951
-
-
Wang, Y.1
-
87
-
-
84899854070
-
Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut
-
Morton AM, Sefik E, Upadhyay R, Weissleder R, Benoist C, Mathis D. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad Sci U S A. 2014;111(18):6696-6701.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, Issue.18
, pp. 6696-6701
-
-
Morton, A.M.1
Sefik, E.2
Upadhyay, R.3
Weissleder, R.4
Benoist, C.5
Mathis, D.6
-
88
-
-
77958605267
-
1, 25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H)17 cells to protect against experimental autoimmune encephalomyelitis
-
Chang JH, Cha HR, Lee DS, Seo KY, Kweon MN. 1, 25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H)17 cells to protect against experimental autoimmune encephalomyelitis. PLoS One. 2010;5(9):e12925.
-
(2010)
PLoS One
, vol.5
, Issue.9
, pp. e12925
-
-
Chang, J.H.1
Cha, H.R.2
Lee, D.S.3
Seo, K.Y.4
Kweon, M.N.5
-
89
-
-
84927615412
-
The effects of TNF-α on GLP-1-stimulated plasma glucose kinetics
-
Lehrskov-Schmidt L, Lehrskov-Schmidt L, Nielsen ST, Holst JJ, Møller K, Solomon TP. The effects of TNF-α on GLP-1-stimulated plasma glucose kinetics. J Clin Endocrinol Metab. 2015;100(4):E616-E622.
-
(2015)
J Clin Endocrinol Metab
, vol.100
, Issue.4
, pp. E616-E622
-
-
Lehrskov-Schmidt, L.1
Lehrskov-Schmidt, L.2
Nielsen, S.T.3
Holst, J.J.4
Møller, K.5
Solomon, T.P.6
-
90
-
-
84946079534
-
Chronic exposure to TNFα impairs secretion of glucagon-like peptide-1
-
Gagnon J, et al. Chronic exposure to TNFα impairs secretion of glucagon-like peptide-1. Endocrinology. 2015;156(11):3950-3960.
-
(2015)
Endocrinology
, vol.156
, Issue.11
, pp. 3950-3960
-
-
Gagnon, J.1
-
91
-
-
84893055427
-
Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: Involvement of the GLP-1 pathway
-
Nguyen AT, et al. Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway. Diabetes. 2014;63(2):471-482.
-
(2014)
Diabetes
, vol.63
, Issue.2
, pp. 471-482
-
-
Nguyen, A.T.1
-
92
-
-
67849124833
-
Intestinal cholecystokinin controls glucose production through a neuronal network
-
Cheung GW, Kokorovic A, Lam CK, Chari M, Lam TK. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab. 2009;10(2):99-109.
-
(2009)
Cell Metab
, vol.10
, Issue.2
, pp. 99-109
-
-
Cheung, G.W.1
Kokorovic, A.2
Lam, C.K.3
Chari, M.4
Lam, T.K.5
-
93
-
-
84962144025
-
Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia
-
Krieger JP, Arnold M, Pettersen KG, Lossel P, Langhans W, Lee SJ. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia. Diabetes. 2016;65(1):34-43.
-
(2016)
Diabetes
, vol.65
, Issue.1
, pp. 34-43
-
-
Krieger, J.P.1
Arnold, M.2
Pettersen, K.G.3
Lossel, P.4
Langhans, W.5
Lee, S.J.6
-
94
-
-
33846817498
-
Physiology and immunology of the cholinergic antiinflammatory pathway
-
Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117(2):289-296.
-
(2007)
J Clin Invest.
, vol.117
, Issue.2
, pp. 289-296
-
-
Tracey, K.J.1
-
95
-
-
80053593864
-
Acetylcholinesynthesizing T cells relay neural signals in a vagus nerve circuit
-
Rosas-Ballina M, et al. Acetylcholinesynthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98-101.
-
(2011)
Science
, vol.334
, Issue.6052
, pp. 98-101
-
-
Rosas-Ballina, M.1
-
96
-
-
84988227670
-
Pten deletion in RIP-Cre neurons protects against type 2 diabetes by activating the anti-inflammatory reflex
-
Wang L, et al. Pten deletion in RIP-Cre neurons protects against type 2 diabetes by activating the anti-inflammatory reflex. Nat Med. 2014;20(5):484-492.
-
(2014)
Nat Med
, vol.20
, Issue.5
, pp. 484-492
-
-
Wang, L.1
-
97
-
-
34249911241
-
Hypothalamic resistin induces hepatic insulin resistance
-
Muse ED, Lam TK, Scherer PE, Rossetti L. Hypothalamic resistin induces hepatic insulin resistance. J Clin Invest. 2007;117(6):1670-1678.
-
(2007)
J Clin Invest
, vol.117
, Issue.6
, pp. 1670-1678
-
-
Muse, E.D.1
Lam, T.K.2
Scherer, P.E.3
Rossetti, L.4
-
98
-
-
84955567315
-
Neuro-immune interactions drive tissue programming in intestinal macrophages
-
Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell. 2016;164(3):378-391.
-
(2016)
Cell
, vol.164
, Issue.3
, pp. 378-391
-
-
Gabanyi, I.1
Muller, P.A.2
Feighery, L.3
Oliveira, T.Y.4
Costa-Pinto, F.A.5
Mucida, D.6
-
99
-
-
42549118500
-
Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production
-
Wang PY, et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature. 2008;452(7190):1012-1016.
-
(2008)
Nature
, vol.452
, Issue.7190
, pp. 1012-1016
-
-
Wang, P.Y.1
-
100
-
-
84859396822
-
Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats
-
Rasmussen BA, et al. Duodenal activation of cAMP-dependent protein kinase induces vagal afferent firing and lowers glucose production in rats. Gastroenterology. 2012;142(4):834-843.
-
(2012)
Gastroenterology
, vol.142
, Issue.4
, pp. 834-843
-
-
Rasmussen, B.A.1
-
101
-
-
84966658995
-
Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor
-
Rothhammer V, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586-597.
-
(2016)
Nat Med
, vol.22
, Issue.6
, pp. 586-597
-
-
Rothhammer, V.1
-
102
-
-
78651349221
-
Biology of human sodium glucose transporters
-
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733-794.
-
(2011)
Physiol Rev.
, vol.91
, Issue.2
, pp. 733-794
-
-
Wright, E.M.1
Loo, D.D.2
Hirayama, B.A.3
-
103
-
-
34547124866
-
CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine
-
Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem. 2007;282(27):19493-19501.
-
(2007)
J Biol Chem
, vol.282
, Issue.27
, pp. 19493-19501
-
-
Nassir, F.1
Wilson, B.2
Han, X.3
Gross, R.W.4
Abumrad, N.A.5
-
104
-
-
0033197543
-
Identification of the major intestinal fatty acid transport protein
-
Stahl A, et al. Identification of the major intestinal fatty acid transport protein. Mol Cell. 1999;4(3):299-308.
-
(1999)
Mol Cell
, vol.4
, Issue.3
, pp. 299-308
-
-
Stahl, A.1
-
105
-
-
84925012880
-
Accelerated intestinal glucose absorption in morbidly obese humans: Relationship to glucose transporters, incretin hormones, and glycemia
-
Nguyen NQ, et al. Accelerated intestinal glucose absorption in morbidly obese humans: relationship to glucose transporters, incretin hormones, and glycemia. J Clin Endocrinol Metab. 2015;100(3):968-976.
-
(2015)
J Clin Endocrinol Metab
, vol.100
, Issue.3
, pp. 968-976
-
-
Nguyen, N.Q.1
-
106
-
-
84953790940
-
Deregulated lipid sensing by intestinal CD36 in diet-induced hyperinsulinemic obese mouse model
-
Buttet M, et al. Deregulated lipid sensing by intestinal CD36 in diet-induced hyperinsulinemic obese mouse model. PLoS One. 2016;11(1):e0145626.
-
(2016)
PLoS One
, vol.11
, Issue.1
, pp. e0145626
-
-
Buttet, M.1
-
107
-
-
84940721356
-
Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology
-
Duca FA, Bauer PV, Hamr SC, Lam TK. Glucoregulatory relevance of small intestinal nutrient sensing in physiology, bariatric surgery, and pharmacology. Cell Metab. 2015;22(3):367-380.
-
(2015)
Cell Metab
, vol.22
, Issue.3
, pp. 367-380
-
-
Duca, F.A.1
Bauer, P.V.2
Hamr, S.C.3
Lam, T.K.4
-
108
-
-
84899422445
-
Hormonal signaling in the gut
-
Cote CD, Zadeh-Tahmasebi M, Rasmussen BA, Duca FA, Lam TK. Hormonal signaling in the gut. J Biol Chem. 2014;289(17):11642-11649.
-
(2014)
J Biol Chem.
, vol.289
, Issue.17
, pp. 11642-11649
-
-
Cote, C.D.1
Zadeh-Tahmasebi, M.2
Rasmussen, B.A.3
Duca, F.A.4
Lam, T.K.5
-
109
-
-
84921915993
-
Deciphering metabolic messages from the gut drives therapeutic innovation: The 2014 Banting Lecture
-
Drucker DJ. Deciphering metabolic messages from the gut drives therapeutic innovation: the 2014 Banting Lecture. Diabetes. 2015;64(2):317-326.
-
(2015)
Diabetes
, vol.64
, Issue.2
, pp. 317-326
-
-
Drucker, D.J.1
-
110
-
-
84956666350
-
The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux
-
Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12-22.
-
(2016)
J Clin Invest
, vol.126
, Issue.1
, pp. 12-22
-
-
Samuel, V.T.1
Shulman, G.I.2
-
111
-
-
84897043133
-
Obesity: A complex role for adipose tissue macrophages
-
Reilly SM, Saltiel AR. Obesity: a complex role for adipose tissue macrophages. Nat Rev Endocrinol. 2014;10(4):193-194.
-
(2014)
Nat Rev Endocrinol.
, vol.10
, Issue.4
, pp. 193-194
-
-
Reilly, S.M.1
Saltiel, A.R.2
-
112
-
-
84965065077
-
Activation of short and long chain fatty acid sensing machinery in the ileum lowers glucose production in vivo
-
Zadeh-Tahmasebi M, et al. Activation of short and long chain fatty acid sensing machinery in the ileum lowers glucose production in vivo. J Biol Chem. 2016;291(16):8816-8824.
-
(2016)
J Biol Chem.
, vol.291
, Issue.16
, pp. 8816-8824
-
-
Zadeh-Tahmasebi, M.1
-
113
-
-
84929177057
-
Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats
-
Duca FA, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med. 2015;21(5):506-511.
-
(2015)
Nat Med
, vol.21
, Issue.5
, pp. 506-511
-
-
Duca, F.A.1
-
114
-
-
84962094356
-
The primary glucose-lowering effect of metformin resides in the gut, not the circulation: Results from short-term pharmacokinetic and 12-week dose-ranging studies
-
Buse JB, et al. The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care. 2016;39(2):198-205.
-
(2016)
Diabetes Care
, vol.39
, Issue.2
, pp. 198-205
-
-
Buse, J.B.1
-
115
-
-
79953172571
-
Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
-
Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299-3303.
-
(2011)
J Immunol
, vol.186
, Issue.6
, pp. 3299-3303
-
-
Michalek, R.D.1
-
116
-
-
84896691062
-
NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
-
Wlodarska M, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156(5):1045-1059.
-
(2014)
Cell
, vol.156
, Issue.5
, pp. 1045-1059
-
-
Wlodarska, M.1
-
117
-
-
84924301510
-
Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome
-
Chassaing B, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92-96.
-
(2015)
Nature
, vol.519
, Issue.7541
, pp. 92-96
-
-
Chassaing, B.1
-
118
-
-
0030669302
-
Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation
-
Turner JR, et al. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol. 1997;273(4 pt 1):C1378-C1385.
-
(1997)
Am J Physiol.
, vol.273
, Issue.4
, pp. C1378-C1385
-
-
Turner, J.R.1
-
119
-
-
84940061805
-
Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases
-
Yamashita T, et al. Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases. Circ J. 2015;79(9):1882-1890.
-
(2015)
Circ J.
, vol.79
, Issue.9
, pp. 1882-1890
-
-
Yamashita, T.1
-
120
-
-
79953733693
-
Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease
-
Wang Z, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57-63.
-
(2011)
Nature
, vol.472
, Issue.7341
, pp. 57-63
-
-
Wang, Z.1
|