메뉴 건너뛰기




Volumn 17, Issue 9, 2016, Pages 537-552

Mechanistic insights into selective autophagy pathways: Lessons from yeast

Author keywords

[No Author keywords available]

Indexed keywords

ATG8 PROTEIN; PHOSPHOTRANSFERASE; SCAFFOLD PROTEIN; UNCLASSIFIED DRUG; AUTOPHAGY RELATED PROTEIN;

EID: 84977137836     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm.2016.74     Document Type: Review
Times cited : (302)

References (170)
  • 1
    • 84893675756 scopus 로고    scopus 로고
    • Autophagy: A critical regulator of cellular metabolism and homeostasis
    • Ryter, S. W., Cloonan, S. M. & Choi, A. M. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36, 7-16 (2013).
    • (2013) Mol. Cells , vol.36 , pp. 7-16
    • Ryter, S.W.1    Cloonan, S.M.2    Choi, A.M.3
  • 2
    • 84873660610 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 651-662 (2013).
    • (2013) N. Engl. J. Med. , vol.368 , pp. 651-662
    • Choi, A.M.1    Ryter, S.W.2    Levine, B.3
  • 3
    • 2442482810 scopus 로고    scopus 로고
    • Autophagy as a cell death and tumor suppressor mechanism
    • Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906 (2004).
    • (2004) Oncogene , vol.23 , pp. 2891-2906
    • Gozuacik, D.1    Kimchi, A.2
  • 7
    • 84899131967 scopus 로고    scopus 로고
    • Autophagy in antimicrobial immunity
    • Gomes, L. C. & Dikic, I. Autophagy in antimicrobial immunity. Mol. Cell 54, 224-233 (2014).
    • (2014) Mol. Cell , vol.54 , pp. 224-233
    • Gomes, L.C.1    Dikic, I.2
  • 8
    • 65449189191 scopus 로고    scopus 로고
    • Determination of yeast mitochondrial KHE activity, osmotic swelling and mitophagy
    • Nowikovsky, K., Devenish, R. J., Froschauer, E. & Schweyen, R. J. Determination of yeast mitochondrial KHE activity, osmotic swelling and mitophagy. Methods Enzymol. 457, 305-317 (2009).
    • (2009) Methods Enzymol. , vol.457 , pp. 305-317
    • Nowikovsky, K.1    Devenish, R.J.2    Froschauer, E.3    Schweyen, R.J.4
  • 9
    • 84910142171 scopus 로고    scopus 로고
    • Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy
    • Walter, K. M. et al. Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy. Cell. Metab. 20, 882-897 (2014).
    • (2014) Cell. Metab. , vol.20 , pp. 882-897
    • Walter, K.M.1
  • 10
    • 84920274916 scopus 로고    scopus 로고
    • Redox regulated peroxisome homeostasis
    • Wang, X., Li, S., Liu, Y. & Ma, C. Redox regulated peroxisome homeostasis. Redox Biol. 4, 104-108 (2015).
    • (2015) Redox Biol. , vol.4 , pp. 104-108
    • Wang, X.1    Li, S.2    Liu, Y.3    Ma, C.4
  • 11
    • 84891745088 scopus 로고    scopus 로고
    • Historical landmarks of autophagy research
    • Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9-23 (2014).
    • (2014) Cell Res. , vol.24 , pp. 9-23
    • Ohsumi, Y.1
  • 12
    • 84925307913 scopus 로고    scopus 로고
    • Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation
    • Suzuki, S. W. et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl Acad. Sci. USA 112, 3350-3355 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 3350-3355
    • Suzuki, S.W.1
  • 13
    • 84953855169 scopus 로고    scopus 로고
    • Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes
    • Shemi, A., Ben-Dor, S. & Vardi, A. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy 11, 701-715 (2015).
    • (2015) Autophagy , vol.11 , pp. 701-715
    • Shemi, A.1    Ben-Dor, S.2    Vardi, A.3
  • 14
    • 84930211216 scopus 로고    scopus 로고
    • Function of peroxisomes in plant-pathogen interactions
    • Kubo, Y. Function of peroxisomes in plant-pathogen interactions. Subcell. Biochem. 69, 329-345 (2013).
    • (2013) Subcell. Biochem. , vol.69 , pp. 329-345
    • Kubo, Y.1
  • 15
    • 84910648789 scopus 로고    scopus 로고
    • Emerging role of selective autophagy in human diseases
    • Mizumura, K., Choi, A. M. & Ryter, S. W. Emerging role of selective autophagy in human diseases. Front. Pharmacol. 5, 244 (2014).
    • (2014) Front. Pharmacol. , vol.5 , pp. 244
    • Mizumura, K.1    Choi, A.M.2    Ryter, S.W.3
  • 16
    • 38849105061 scopus 로고    scopus 로고
    • A picky eater: Exploring the mechanisms of selective autophagy in human pathologies
    • van der Vaart, A., Mari, M. & Reggiori, F. A picky eater: exploring the mechanisms of selective autophagy in human pathologies. Traffic 9, 281-289 (2008).
    • (2008) Traffic , vol.9 , pp. 281-289
    • Van Der-Vaart, A.1    Mari, M.2    Reggiori, F.3
  • 17
    • 84942982653 scopus 로고    scopus 로고
    • ATM functions at the peroxisome to induce pexophagy in response to ROS
    • Zhang, J. et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259-1269 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1259-1269
    • Zhang, J.1
  • 18
    • 77950510302 scopus 로고    scopus 로고
    • The Cvt pathway as a model for selective autophagy
    • Lynch-Day, M. A. & Klionsky, D. J. The Cvt pathway as a model for selective autophagy. FEBS Lett. 584, 1359-1366 (2010).
    • (2010) FEBS Lett. , vol.584 , pp. 1359-1366
    • Lynch-Day, M.A.1    Klionsky, D.J.2
  • 19
    • 0027207680 scopus 로고
    • Selective autophagy of peroxisomes in methylotrophic yeasts
    • Tuttle, D. L., Lewin, A. S. & Dunn, W. A. Jr. Selective autophagy of peroxisomes in methylotrophic yeasts. Eur. J. Cell Biol. 60, 283-290 (1993).
    • (1993) Eur. J. Cell Biol. , vol.60 , pp. 283-290
    • Tuttle, D.L.1    Lewin, A.S.2    Dunn, W.A.3
  • 20
    • 84922160508 scopus 로고    scopus 로고
    • A new class of ubiquitin-Atg8 receptors involved in selective autophagy and polyQ protein clearance
    • Lu, K., Psakhye, I. & Jentsch, S. A new class of ubiquitin-Atg8 receptors involved in selective autophagy and polyQ protein clearance. Autophagy 10, 2381-2382 (2014).
    • (2014) Autophagy , vol.10 , pp. 2381-2382
    • Lu, K.1    Psakhye, I.2    Jentsch, S.3
  • 21
    • 85006226964 scopus 로고    scopus 로고
    • The role of autophagy in intracellular pathogen nutrient acquisition
    • Steele, S., Brunton, J. & Kawula, T. The role of autophagy in intracellular pathogen nutrient acquisition. Front. Cell. Infect. Microbiol. 5, 51 (2015).
    • (2015) Front. Cell. Infect. Microbiol. , vol.5 , pp. 51
    • Steele, S.1    Brunton, J.2    Kawula, T.3
  • 22
    • 84955242756 scopus 로고    scopus 로고
    • Ubiquitin-dependent and independent signals in selective autophagy
    • Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6-16 (2016).
    • (2016) Trends Cell Biol. , vol.26 , pp. 6-16
    • Khaminets, A.1    Behl, C.2    Dikic, I.3
  • 23
    • 0034964443 scopus 로고    scopus 로고
    • Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway
    • Scott, S. V., Guan, J., Hutchins, M. U., Kim, J. & Klionsky, D. J. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell 7, 1131-1141 (2001).
    • (2001) Mol. Cell , vol.7 , pp. 1131-1141
    • Scott, S.V.1    Guan, J.2    Hutchins, M.U.3    Kim, J.4    Klionsky, D.J.5
  • 24
    • 77956924900 scopus 로고    scopus 로고
    • Selective transport of alpha-mannosidase by autophagic pathways: Identification of a novel receptor, Atg34p
    • Suzuki, K., Kondo, C., Morimoto, M. & Ohsumi, Y. Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J. Biol. Chem. 285, 30019-30025 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 30019-30025
    • Suzuki, K.1    Kondo, C.2    Morimoto, M.3    Ohsumi, Y.4
  • 25
    • 84905491871 scopus 로고    scopus 로고
    • Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family
    • Lu, K., Psakhye, I. & Jentsch, S. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 549-563 (2014).
    • (2014) Cell , vol.158 , pp. 549-563
    • Lu, K.1    Psakhye, I.2    Jentsch, S.3
  • 26
    • 42049094041 scopus 로고    scopus 로고
    • PpAtg30 tags peroxisomes for turnover by selective autophagy
    • Farre, J. C., Manjithaya, R., Mathewson, R. D. & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 14, 365-376 (2008).
    • (2008) Dev. Cell , vol.14 , pp. 365-376
    • Farre, J.C.1    Manjithaya, R.2    Mathewson, R.D.3    Subramani, S.4
  • 27
    • 84863843241 scopus 로고    scopus 로고
    • Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
    • Motley, A. M., Nuttall, J. M. & Hettema, E. H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852-2868 (2012).
    • (2012) EMBO J. , vol.31 , pp. 2852-2868
    • Motley, A.M.1    Nuttall, J.M.2    Hettema, E.H.3
  • 28
    • 84925776380 scopus 로고    scopus 로고
    • Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30
    • Burnett, S. F., Farre, J. C., Nazarko, T. Y. & Subramani, S. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30. J. Biol. Chem. 290, 8623-8631 (2015).
    • (2015) J. Biol. Chem. , vol.290 , pp. 8623-8631
    • Burnett, S.F.1    Farre, J.C.2    Nazarko, T.Y.3    Subramani, S.4
  • 29
    • 84894030921 scopus 로고    scopus 로고
    • Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy
    • Nazarko, T. Y. et al. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J. Cell Biol. 204, 541-557 (2014).
    • (2014) J. Cell Biol. , vol.204 , pp. 541-557
    • Nazarko, T.Y.1
  • 30
    • 67650264633 scopus 로고    scopus 로고
    • Atg32 is a mitochondrial protein that confers selectivity during mitophagy
    • Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98-109 (2009).
    • (2009) Dev. Cell , vol.17 , pp. 98-109
    • Kanki, T.1    Wang, K.2    Cao, Y.3    Baba, M.4    Klionsky, D.J.5
  • 31
    • 67650246357 scopus 로고    scopus 로고
    • Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
    • Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87-97 (2009).
    • (2009) Dev. Cell , vol.17 , pp. 87-97
    • Okamoto, K.1    Kondo-Okamoto, N.2    Ohsumi, Y.3
  • 32
    • 84858988067 scopus 로고    scopus 로고
    • Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy
    • Kondo-Okamoto, N. et al. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287, 10631-10638 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 10631-10638
    • Kondo-Okamoto, N.1
  • 33
    • 84934449988 scopus 로고    scopus 로고
    • Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
    • Mochida, K. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359-362 (2015).
    • (2015) Nature , vol.522 , pp. 359-362
    • Mochida, K.1
  • 34
    • 84983227373 scopus 로고    scopus 로고
    • (ed. Wang, H.-G.) (Springer New York)
    • Jin, M. & Klionsky, D. J. in Autophagy and Cancer (ed. Wang, H.-G.) 25-45 (Springer New York, 2013).
    • (2013) Autophagy and Cancer , pp. 25-45
    • Jin, M.1    Klionsky, D.J.2
  • 35
    • 21844470747 scopus 로고    scopus 로고
    • Atg17 regulates the magnitude of the autophagic response
    • Cheong, H. et al. Atg17 regulates the magnitude of the autophagic response. Mol. Biol. Cell 16, 3438-3453 (2005).
    • (2005) Mol. Biol. Cell , vol.16 , pp. 3438-3453
    • Cheong, H.1
  • 36
    • 70349334586 scopus 로고    scopus 로고
    • Peroxisome size provides insights into the function of autophagy-related proteins
    • Nazarko, T. Y., Farre, J. C. & Subramani, S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol. Biol. Cell 20, 3828-3839 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 3828-3839
    • Nazarko, T.Y.1    Farre, J.C.2    Subramani, S.3
  • 37
    • 73949122199 scopus 로고    scopus 로고
    • A genomic screen for yeast mutants defective in selective mitochondria autophagy
    • Kanki, T. et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol. Biol. Cell 20, 4730-4738 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4730-4738
    • Kanki, T.1
  • 38
    • 18244394277 scopus 로고    scopus 로고
    • Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy
    • Kabeya, Y. et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell 16, 2544-2553 (2005).
    • (2005) Mol. Biol. Cell , vol.16 , pp. 2544-2553
    • Kabeya, Y.1
  • 39
    • 0034683568 scopus 로고    scopus 로고
    • Tor-mediated induction of autophagy via an Apg1 protein kinase complex
    • Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507-1513 (2000).
    • (2000) J. Cell Biol. , vol.150 , pp. 1507-1513
    • Kamada, Y.1
  • 40
    • 70349739560 scopus 로고    scopus 로고
    • Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae
    • Kabeya, Y. et al. Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 389, 612-615 (2009).
    • (2009) Biochem. Biophys. Res. Commun. , vol.389 , pp. 612-615
    • Kabeya, Y.1
  • 41
    • 84901986623 scopus 로고    scopus 로고
    • Structural basis of starvation-induced assembly of the autophagy initiation complex
    • Fujioka, Y. et al. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 21, 513-521 (2014).
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 513-521
    • Fujioka, Y.1
  • 42
    • 84881091197 scopus 로고    scopus 로고
    • Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation
    • Mao, K. et al. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc. Natl Acad. Sci. USA 110, E2875-E2884 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. E2875-E2884
    • Mao, K.1
  • 43
    • 84938744997 scopus 로고    scopus 로고
    • Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase
    • Kamber, R. A., Shoemaker, C. J. & Denic, V. Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol. Cell 59, 372-381 (2015).
    • (2015) Mol. Cell , vol.59 , pp. 372-381
    • Kamber, R.A.1    Shoemaker, C.J.2    Denic, V.3
  • 44
    • 39449108917 scopus 로고    scopus 로고
    • The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae
    • Cheong, H., Nair, U., Geng, J. & Klionsky, D. J. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 668-681 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 668-681
    • Cheong, H.1    Nair, U.2    Geng, J.3    Klionsky, D.J.4
  • 45
    • 84893742616 scopus 로고    scopus 로고
    • Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase
    • Papinski, D. et al. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell 53, 471-483 (2014).
    • (2014) Mol. Cell , vol.53 , pp. 471-483
    • Papinski, D.1
  • 46
    • 84860797387 scopus 로고    scopus 로고
    • Regulation of selective autophagy onset by a Ypt/Rab GTPase module
    • Lipatova, Z. et al. Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc. Natl Acad. Sci. USA 109, 6981-6986 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 6981-6986
    • Lipatova, Z.1
  • 47
    • 84871811752 scopus 로고    scopus 로고
    • Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site
    • Kakuta, S. et al. Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J. Biol. Chem. 287, 44261-44269 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 44261-44269
    • Kakuta, S.1
  • 48
    • 84878983074 scopus 로고    scopus 로고
    • Ypt1 recruits the Atg1 kinase to the preautophagosomal structure
    • Wang, J. et al. Ypt1 recruits the Atg1 kinase to the preautophagosomal structure. Proc. Natl Acad. Sci. USA 110, 9800-9805 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 9800-9805
    • Wang, J.1
  • 49
    • 84957649648 scopus 로고    scopus 로고
    • Ypt1/Rab1 regulates Hrr25/CK1delta kinase activity in ER-Golgi traffic and macroautophagy
    • Wang, J. et al. Ypt1/Rab1 regulates Hrr25/CK1delta kinase activity in ER-Golgi traffic and macroautophagy. J. Cell Biol. 210, 273-285 (2015).
    • (2015) J. Cell Biol. , vol.210 , pp. 273-285
    • Wang, J.1
  • 50
    • 84888350190 scopus 로고    scopus 로고
    • The em structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway
    • Tan, D. et al. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc. Natl Acad. Sci. USA 110, 19432-19437 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 19432-19437
    • Tan, D.1
  • 51
    • 0035192612 scopus 로고    scopus 로고
    • Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
    • Ishihara, N. et al. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell 12, 3690-3702 (2001).
    • (2001) Mol. Biol. Cell , vol.12 , pp. 3690-3702
    • Ishihara, N.1
  • 52
    • 84921436176 scopus 로고    scopus 로고
    • Atg23 and Atg27 act at the early stages of Atg9 trafficking in S. Cerevisiae
    • Backues, S. K. et al. Atg23 and Atg27 act at the early stages of Atg9 trafficking in S. cerevisiae. Traffic 16, 172-190 (2015).
    • (2015) Traffic , vol.16 , pp. 172-190
    • Backues, S.K.1
  • 53
    • 33846514235 scopus 로고    scopus 로고
    • Hierarchy of Atg proteins in pre-autophagosomal structure organization
    • Suzuki, K., Kubota, Y., Sekito, T. & Ohsumi, Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12, 209-218 (2007).
    • (2007) Genes Cells , vol.12 , pp. 209-218
    • Suzuki, K.1    Kubota, Y.2    Sekito, T.3    Ohsumi, Y.4
  • 54
    • 47549092694 scopus 로고    scopus 로고
    • Atg8 controls phagophore expansion during autophagosome formation
    • Xie, Z., Nair, U. & Klionsky, D. J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290-3298 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 3290-3298
    • Xie, Z.1    Nair, U.2    Klionsky, D.J.3
  • 55
    • 57249083972 scopus 로고    scopus 로고
    • Structural basis of target recognition by Atg8/LC3 during selective autophagy
    • Noda, N. N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211-1218 (2008).
    • (2008) Genes Cells , vol.13 , pp. 1211-1218
    • Noda, N.N.1
  • 56
    • 66349086236 scopus 로고    scopus 로고
    • Mutation at the cargo-receptor binding site of Atg8 also affects its general autophagy regulation function
    • Ho, K. H., Chang, H. E. & Huang, W. P. Mutation at the cargo-receptor binding site of Atg8 also affects its general autophagy regulation function. Autophagy 5, 461-471 (2009).
    • (2009) Autophagy , vol.5 , pp. 461-471
    • Ho, K.H.1    Chang, H.E.2    Huang, W.P.3
  • 57
    • 84893500894 scopus 로고    scopus 로고
    • Molecular mechanism of autophagic membrane-scaffold assembly and disassembly
    • Kaufmann, A., Beier, V., Franquelim, H. G. & Wollert, T. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156, 469-481 (2014).
    • (2014) Cell , vol.156 , pp. 469-481
    • Kaufmann, A.1    Beier, V.2    Franquelim, H.G.3    Wollert, T.4
  • 58
    • 0036901104 scopus 로고    scopus 로고
    • Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway
    • Shintani, T., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3, 825-837 (2002).
    • (2002) Dev. Cell , vol.3 , pp. 825-837
    • Shintani, T.1    Huang, W.P.2    Stromhaug, P.E.3    Klionsky, D.J.4
  • 59
    • 84877579321 scopus 로고    scopus 로고
    • Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
    • Farre, J. C., Burkenroad, A., Burnett, S. F. & Subramani, S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 14, 441-449 (2013).
    • (2013) EMBO Rep. , vol.14 , pp. 441-449
    • Farre, J.C.1    Burkenroad, A.2    Burnett, S.F.3    Subramani, S.4
  • 60
    • 16344365254 scopus 로고    scopus 로고
    • Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway
    • Yorimitsu, T. & Klionsky, D. J. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol. Biol. Cell 16, 1593-1605 (2005).
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1593-1605
    • Yorimitsu, T.1    Klionsky, D.J.2
  • 61
    • 80052197610 scopus 로고    scopus 로고
    • Phosphorylation of Serine 114 on Atg32 mediates mitophagy
    • Aoki, Y. et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell 22, 3206-3217 (2011).
    • (2011) Mol. Biol. Cell , vol.22 , pp. 3206-3217
    • Aoki, Y.1
  • 62
    • 70350128436 scopus 로고    scopus 로고
    • The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy
    • Stephan, J. S., Yeh, Y. Y., Ramachandran, V., Deminoff, S. J. & Herman, P. K. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc. Natl Acad. Sci. USA 106, 17049-17054 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 17049-17054
    • Stephan, J.S.1    Yeh, Y.Y.2    Ramachandran, V.3    Deminoff, S.J.4    Herman, P.K.5
  • 63
    • 77950484269 scopus 로고    scopus 로고
    • Atg8-family interacting motif crucial for selective autophagy
    • Noda, N. N., Ohsumi, Y. & Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584, 1379-1385 (2010).
    • (2010) FEBS Lett. , vol.584 , pp. 1379-1385
    • Noda, N.N.1    Ohsumi, Y.2    Inagaki, F.3
  • 64
    • 84899848892 scopus 로고    scopus 로고
    • Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy
    • Sawa-Makarska, J. et al. Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy. Nat. Cell Biol. 16, 425-433 (2014).
    • (2014) Nat. Cell Biol. , vol.16 , pp. 425-433
    • Sawa-Makarska, J.1
  • 65
    • 84905923683 scopus 로고    scopus 로고
    • Excluding the unwanted during autophagy
    • Sawa-Makarska, J. & Martens, S. Excluding the unwanted during autophagy. Cell Cycle 13, 2313-2314 (2014).
    • (2014) Cell Cycle , vol.13 , pp. 2313-2314
    • Sawa-Makarska, J.1    Martens, S.2
  • 66
    • 0035897414 scopus 로고    scopus 로고
    • Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole
    • Kim, J. et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 153, 381-396 (2001).
    • (2001) J. Cell Biol. , vol.153 , pp. 381-396
    • Kim, J.1
  • 67
    • 84905391741 scopus 로고    scopus 로고
    • Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19
    • Pfaffenwimmer, T. et al. Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep. 15, 862-870 (2014).
    • (2014) EMBO Rep. , vol.15 , pp. 862-870
    • Pfaffenwimmer, T.1
  • 68
    • 0028855325 scopus 로고
    • Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris
    • Tuttle, D. L. & Dunn, W. A. Jr. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J. Cell Sci. 108, 25-35 (1995).
    • (1995) J. Cell Sci. , vol.108 , pp. 25-35
    • Tuttle, D.L.1    Dunn, W.A.2
  • 69
    • 84878780410 scopus 로고    scopus 로고
    • Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast
    • Eiyama, A., Kondo-Okamoto, N. & Okamoto, K. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett. 587, 1787-1792 (2013).
    • (2013) FEBS Lett. , vol.587 , pp. 1787-1792
    • Eiyama, A.1    Kondo-Okamoto, N.2    Okamoto, K.3
  • 70
    • 57749121573 scopus 로고    scopus 로고
    • Mitophagy in yeast occurs through a selective mechanism
    • Kanki, T. & Klionsky, D. J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283, 32386-32393 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 32386-32393
    • Kanki, T.1    Klionsky, D.J.2
  • 71
    • 84904280757 scopus 로고    scopus 로고
    • Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast
    • Aihara, M. et al. Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J. Cell Sci. 127, 3184-3196 (2014).
    • (2014) J. Cell Sci. , vol.127 , pp. 3184-3196
    • Aihara, M.1
  • 72
    • 84883487916 scopus 로고    scopus 로고
    • Casein kinase 2 is essential for mitophagy
    • Kanki, T. et al. Casein kinase 2 is essential for mitophagy. EMBO Rep. 14, 788-794 (2013).
    • (2013) EMBO Rep. , vol.14 , pp. 788-794
    • Kanki, T.1
  • 73
    • 27844524011 scopus 로고    scopus 로고
    • The shape of things to come: An emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton
    • Canton, D. A. & Litchfield, D. W. The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal. 18, 267-275 (2006).
    • (2006) Cell Signal. , vol.18 , pp. 267-275
    • Canton, D.A.1    Litchfield, D.W.2
  • 74
    • 84908227585 scopus 로고    scopus 로고
    • Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of alpha-mannosidase under nitrogen starvation conditions
    • Mochida, K., Ohsumi, Y. & Nakatogawa, H. Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of alpha-mannosidase under nitrogen starvation conditions. FEBS Lett. 588, 3862-3869 (2014).
    • (2014) FEBS Lett. , vol.588 , pp. 3862-3869
    • Mochida, K.1    Ohsumi, Y.2    Nakatogawa, H.3
  • 75
    • 84908361088 scopus 로고    scopus 로고
    • Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins
    • Tanaka, C. et al. Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. J. Cell Biol. 207, 91-105 (2014).
    • (2014) J. Cell Biol. , vol.207 , pp. 91-105
    • Tanaka, C.1
  • 76
    • 79955880405 scopus 로고    scopus 로고
    • Sequential interactions with Sec23 control the direction of vesicle traffic
    • Lord, C. et al. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473, 181-186 (2011).
    • (2011) Nature , vol.473 , pp. 181-186
    • Lord, C.1
  • 77
    • 84954526427 scopus 로고    scopus 로고
    • Hrr25: An emerging major player in selective autophagy regulation in Saccharomyces cerevisiae
    • Nakatogawa, H. Hrr25: an emerging major player in selective autophagy regulation in Saccharomyces cerevisiae. Autophagy 11, 432-433 (2015).
    • (2015) Autophagy , vol.11 , pp. 432-433
    • Nakatogawa, H.1
  • 78
    • 84905828168 scopus 로고    scopus 로고
    • Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy
    • Li, F. & Vierstra, R. D. Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy 10, 1466-1467 (2014).
    • (2014) Autophagy , vol.10 , pp. 1466-1467
    • Li, F.1    Vierstra, R.D.2
  • 79
    • 77951168347 scopus 로고    scopus 로고
    • A yeast MAPK cascade regulates pexophagy but not other autophagy pathways
    • Manjithaya, R., Jain, S., Farre, J. C. & Subramani, S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J. Cell Biol. 189, 303-310 (2010).
    • (2010) J. Cell Biol. , vol.189 , pp. 303-310
    • Manjithaya, R.1    Jain, S.2    Farre, J.C.3    Subramani, S.4
  • 80
    • 82855181984 scopus 로고    scopus 로고
    • MAPKs regulate mitophagy in Saccharomyces cerevisiae
    • Mao, K. & Klionsky, D. J. MAPKs regulate mitophagy in Saccharomyces cerevisiae. Autophagy 7, 1564-1565 (2011).
    • (2011) Autophagy , vol.7 , pp. 1564-1565
    • Mao, K.1    Klionsky, D.J.2
  • 81
    • 34547216984 scopus 로고    scopus 로고
    • Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae
    • Chen, R. E. & Thorner, J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773, 1311-1340 (2007).
    • (2007) Biochim. Biophys. Acta , vol.1773 , pp. 1311-1340
    • Chen, R.E.1    Thorner, J.2
  • 82
    • 0037044801 scopus 로고    scopus 로고
    • Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast
    • Torres, J., Di Como, C. J., Herrero, E. & De La Torre-Ruiz, M. A. Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J. Biol. Chem. 277, 43495-43504 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 43495-43504
    • Torres, J.1    Di Como, C.J.2    Herrero, E.3    De La-Torre-Ruiz, M.A.4
  • 83
    • 84903780037 scopus 로고    scopus 로고
    • Atg37 regulates the assembly of the pexophagic receptor protein complex
    • Nazarko, T. Y. Atg37 regulates the assembly of the pexophagic receptor protein complex. Autophagy 10, 1348-1349 (2014).
    • (2014) Autophagy , vol.10 , pp. 1348-1349
    • Nazarko, T.Y.1
  • 84
    • 0037930873 scopus 로고    scopus 로고
    • The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11
    • Li, X. & Gould, S. J. The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J. Biol. Chem. 278, 17012-17020 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 17012-17020
    • Li, X.1    Gould, S.J.2
  • 85
    • 33750447941 scopus 로고    scopus 로고
    • Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae
    • Kuravi, K. et al. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. J. Cell Sci. 119, 3994-4001 (2006).
    • (2006) J. Cell Sci. , vol.119 , pp. 3994-4001
    • Kuravi, K.1
  • 86
    • 46249130452 scopus 로고    scopus 로고
    • Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p
    • Motley, A. M., Ward, G. P. & Hettema, E. H. Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J. Cell Sci. 121, 1633-1640 (2008).
    • (2008) J. Cell Sci. , vol.121 , pp. 1633-1640
    • Motley, A.M.1    Ward, G.P.2    Hettema, E.H.3
  • 87
    • 33745742255 scopus 로고    scopus 로고
    • Shared components of mitochondrial and peroxisomal division
    • Schrader, M. Shared components of mitochondrial and peroxisomal division. Biochim. Biophys. Acta 1763, 531-541 (2006).
    • (2006) Biochim. Biophys. Acta , vol.1763 , pp. 531-541
    • Schrader, M.1
  • 88
    • 84880863470 scopus 로고    scopus 로고
    • Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events
    • Manivannan, S., de Boer, R., Veenhuis, M. & van der Klei, I. J. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy 9, 1044-1056 (2013).
    • (2013) Autophagy , vol.9 , pp. 1044-1056
    • Manivannan, S.1    De Boer, R.2    Veenhuis, M.3    Van Der-Klei, I.J.4
  • 89
    • 84886666788 scopus 로고    scopus 로고
    • Participation of mitochondrial fission during mitophagy
    • Mao, K. & Klionsky, D. J. Participation of mitochondrial fission during mitophagy. Cell Cycle 12, 3131-3132 (2013).
    • (2013) Cell Cycle , vol.12 , pp. 3131-3132
    • Mao, K.1    Klionsky, D.J.2
  • 90
    • 84898400392 scopus 로고    scopus 로고
    • The progression of peroxisomal degradation through autophagy requires peroxisomal division
    • Mao, K., Liu, X., Feng, Y. & Klionsky, D. J. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy 10, 652-661 (2014).
    • (2014) Autophagy , vol.10 , pp. 652-661
    • Mao, K.1    Liu, X.2    Feng, Y.3    Klionsky, D.J.4
  • 91
    • 84880506979 scopus 로고    scopus 로고
    • The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy
    • Mao, K., Wang, K., Liu, X. & Klionsky, D. J. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 26, 9-18 (2013).
    • (2013) Dev. Cell , vol.26 , pp. 9-18
    • Mao, K.1    Wang, K.2    Liu, X.3    Klionsky, D.J.4
  • 92
    • 84880019176 scopus 로고    scopus 로고
    • Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae
    • Suzuki, K., Akioka, M., Kondo-Kakuta, C., Yamamoto, H. & Ohsumi, Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126, 2534-2544 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 2534-2544
    • Suzuki, K.1    Akioka, M.2    Kondo-Kakuta, C.3    Yamamoto, H.4    Ohsumi, Y.5
  • 93
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471-484 (2006).
    • (2006) Cell , vol.124 , pp. 471-484
    • Wullschleger, S.1    Loewith, R.2    Hall, M.N.3
  • 94
    • 84870943446 scopus 로고    scopus 로고
    • The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size
    • Backues, S. K., Lynch-Day, M. A. & Klionsky, D. J. The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size. Autophagy 8, 1835-1836 (2012).
    • (2012) Autophagy , vol.8 , pp. 1835-1836
    • Backues, S.K.1    Lynch-Day, M.A.2    Klionsky, D.J.3
  • 95
    • 84953862925 scopus 로고    scopus 로고
    • Evolutionary trends and functional anatomy of the human expanded autophagy network
    • Till, A. et al. Evolutionary trends and functional anatomy of the human expanded autophagy network. Autophagy 11, 1652-1667 (2015).
    • (2015) Autophagy , vol.11 , pp. 1652-1667
    • Till, A.1
  • 96
    • 77956410115 scopus 로고    scopus 로고
    • Selective autophagy: Ubiquitin-mediated recognition and beyond
    • Kraft, C., Peter, M. & Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12, 836-841 (2010).
    • (2010) Nat. Cell Biol. , vol.12 , pp. 836-841
    • Kraft, C.1    Peter, M.2    Hofmann, K.3
  • 97
    • 84936132577 scopus 로고    scopus 로고
    • Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation
    • Murakawa, T. et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6, 7527 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7527
    • Murakawa, T.1
  • 98
    • 84884536709 scopus 로고    scopus 로고
    • Peroxisome degradation in mammals: Mechanisms of action, recent advances, and perspectives
    • Nordgren, M., Wang, B., Apanasets, O. & Fransen, M. Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front. Physiol. 4, 145 (2013).
    • (2013) Front. Physiol. , vol.4 , pp. 145
    • Nordgren, M.1    Wang, B.2    Apanasets, O.3    Fransen, M.4
  • 99
    • 84946482827 scopus 로고    scopus 로고
    • A mammalian pexophagy target
    • Subramani, S. A mammalian pexophagy target. Nat. Cell Biol. 17, 1371-1373 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1371-1373
    • Subramani, S.1
  • 100
    • 84954129051 scopus 로고    scopus 로고
    • P62/SQSTM1 functions as a signaling hub and an autophagy adaptor
    • Katsuragi, Y., Ichimura, Y. & Komatsu, M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 282, 4672-4678 (2015).
    • (2015) FEBS J. , vol.282 , pp. 4672-4678
    • Katsuragi, Y.1    Ichimura, Y.2    Komatsu, M.3
  • 101
    • 79960804104 scopus 로고    scopus 로고
    • Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
    • Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233 (2011).
    • (2011) Science , vol.333 , pp. 228-233
    • Wild, P.1
  • 102
    • 84963566230 scopus 로고    scopus 로고
    • Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
    • Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039-4044 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. 4039-4044
    • Richter, B.1
  • 103
    • 84951930787 scopus 로고    scopus 로고
    • The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
    • Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7-20 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 7-20
    • Heo, J.M.1    Ordureau, A.2    Paulo, J.A.3    Rinehart, J.4    Harper, J.W.5
  • 104
    • 84939804206 scopus 로고    scopus 로고
    • The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
    • Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 (2015).
    • (2015) Nature , vol.524 , pp. 309-314
    • Lazarou, M.1
  • 105
    • 84934449989 scopus 로고    scopus 로고
    • Regulation of endoplasmic reticulum turnover by selective autophagy
    • Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354-358 (2015).
    • (2015) Nature , vol.522 , pp. 354-358
    • Khaminets, A.1
  • 106
    • 67349216078 scopus 로고    scopus 로고
    • Interactions with LC3 and polyubiquitin chains link NBR1 to autophagic protein turnover
    • Waters, S., Marchbank, K., Solomon, E., Whitehouse, C. & Gautel, M. Interactions with LC3 and polyubiquitin chains link NBR1 to autophagic protein turnover. FEBS Lett. 583, 1846-1852 (2009).
    • (2009) FEBS Lett. , vol.583 , pp. 1846-1852
    • Waters, S.1    Marchbank, K.2    Solomon, E.3    Whitehouse, C.4    Gautel, M.5
  • 107
    • 60849099049 scopus 로고    scopus 로고
    • A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
    • Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505-516 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 505-516
    • Kirkin, V.1
  • 108
    • 84876345355 scopus 로고    scopus 로고
    • NBR1 acts as an autophagy receptor for peroxisomes
    • Deosaran, E. et al. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939-952 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 939-952
    • Deosaran, E.1
  • 109
    • 84876339267 scopus 로고    scopus 로고
    • The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery
    • Lin, L. et al. The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J. Cell Biol. 201, 113-129 (2013).
    • (2013) J. Cell Biol. , vol.201 , pp. 113-129
    • Lin, L.1
  • 110
    • 84892805825 scopus 로고    scopus 로고
    • Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila
    • Nagy, P. et al. Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila. Autophagy 10, 453-467 (2014).
    • (2014) Autophagy , vol.10 , pp. 453-467
    • Nagy, P.1
  • 111
    • 84912100068 scopus 로고    scopus 로고
    • Potential function for the Huntingtin protein as a scaffold for selective autophagy
    • Ochaba, J. et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl Acad. Sci. USA 111, 16889-16894 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 16889-16894
    • Ochaba, J.1
  • 112
    • 58149473435 scopus 로고    scopus 로고
    • Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17?
    • Hara, T. & Mizushima, N. Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17? Autophagy 5, 85-87 (2009).
    • (2009) Autophagy , vol.5 , pp. 85-87
    • Hara, T.1    Mizushima, N.2
  • 113
    • 84923789937 scopus 로고    scopus 로고
    • Huntingtin functions as a scaffold for selective macroautophagy
    • Rui, Y. N. et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 17, 262-275 (2015).
    • (2015) Nat. Cell Biol. , vol.17 , pp. 262-275
    • Rui, Y.N.1
  • 114
    • 84887472941 scopus 로고    scopus 로고
    • Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy
    • Wang, K., Jin, M., Liu, X. & Klionsky, D. J. Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy. Autophagy 9, 1828-1836 (2013).
    • (2013) Autophagy , vol.9 , pp. 1828-1836
    • Wang, K.1    Jin, M.2    Liu, X.3    Klionsky, D.J.4
  • 115
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685-701 (2008).
    • (2008) J. Cell Biol. , vol.182 , pp. 685-701
    • Axe, E.L.1
  • 116
    • 77956913181 scopus 로고    scopus 로고
    • Selective transport of α-mannosidase by autophagic pathways: Structural basis for cargo recognition by Atg19 and Atg34
    • Watanabe, Y. et al. Selective transport of α-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. J. Biol. Chem. 285, 30026-30033 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 30026-30033
    • Watanabe, Y.1
  • 117
    • 79953850827 scopus 로고    scopus 로고
    • Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae
    • Yuga, M., Gomi, K., Klionsky, D. J. & Shintani, T. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J. Biol. Chem. 286, 13704-13713 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 13704-13713
    • Yuga, M.1    Gomi, K.2    Klionsky, D.J.3    Shintani, T.4
  • 118
    • 84905821965 scopus 로고    scopus 로고
    • Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases
    • Hyttinen, J. M. et al. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res. Rev. 18, 16-28 (2014).
    • (2014) Ageing Res. Rev. , vol.18 , pp. 16-28
    • Hyttinen, J.M.1
  • 120
    • 77956178939 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance
    • Orenstein, S. J. & Cuervo, A. M. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin. Cell Dev. Biol. 21, 719-726 (2010).
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 719-726
    • Orenstein, S.J.1    Cuervo, A.M.2
  • 122
    • 84907587227 scopus 로고    scopus 로고
    • Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy
    • Changou, C. A. et al. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc. Natl Acad. Sci. USA 111, 14147-14152 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 14147-14152
    • Changou, C.A.1
  • 123
    • 84896955758 scopus 로고    scopus 로고
    • "Ciliophagy": The consumption of cilia components by autophagy
    • Cloonan, S. M., Lam, H. C., Ryter, S. W. & Choi, A. M. "Ciliophagy": the consumption of cilia components by autophagy. Autophagy 10, 532-534 (2014).
    • (2014) Autophagy , vol.10 , pp. 532-534
    • Cloonan, S.M.1    Lam, H.C.2    Ryter, S.W.3    Choi, A.M.4
  • 124
    • 84865220380 scopus 로고    scopus 로고
    • Extracellular M. Tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway
    • Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803-815 (2012).
    • (2012) Cell , vol.150 , pp. 803-815
    • Watson, R.O.1    Manzanillo, P.S.2    Cox, J.S.3
  • 125
    • 84938782094 scopus 로고    scopus 로고
    • A role for macro-ER-phagy in ER quality control
    • Lipatova, Z. & Segev, N. A role for macro-ER-phagy in ER quality control. PLoS Genet. 11, e1005390 (2015).
    • (2015) PLoS Genet. , vol.11 , pp. e1005390
    • Lipatova, Z.1    Segev, N.2
  • 126
    • 84946615455 scopus 로고    scopus 로고
    • Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis
    • Mancias, J. D. et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife 4, e10308 (2015).
    • (2015) ELife , vol.4 , pp. e10308
    • Mancias, J.D.1
  • 127
    • 84899746695 scopus 로고    scopus 로고
    • Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
    • Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105-109 (2014).
    • (2014) Nature , vol.509 , pp. 105-109
    • Mancias, J.D.1    Wang, X.2    Gygi, S.P.3    Harper, J.W.4    Kimmelman, A.C.5
  • 128
    • 80053338210 scopus 로고    scopus 로고
    • Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1
    • Jiang, S., Wells, C. D. & Roach, P. J. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413, 420-425 (2011).
    • (2011) Biochem. Biophys. Res. Commun. , vol.413 , pp. 420-425
    • Jiang, S.1    Wells, C.D.2    Roach, P.J.3
  • 131
    • 84879349589 scopus 로고    scopus 로고
    • Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function
    • Buchan, J. R., Kolaitis, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461-1474 (2013).
    • (2013) Cell , vol.153 , pp. 1461-1474
    • Buchan, J.R.1    Kolaitis, R.M.2    Taylor, J.P.3    Parker, R.4
  • 132
    • 84870995648 scopus 로고    scopus 로고
    • Regulation of lipid stores and metabolism by lipophagy
    • Liu, K. & Czaja, M. J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3-11 (2013).
    • (2013) Cell Death Differ. , vol.20 , pp. 3-11
    • Liu, K.1    Czaja, M.J.2
  • 133
    • 84892536117 scopus 로고    scopus 로고
    • Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
    • van Zutphen, T. et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25, 290-301 (2014).
    • (2014) Mol. Biol. Cell , vol.25 , pp. 290-301
    • Van Zutphen, T.1
  • 134
    • 84883291965 scopus 로고    scopus 로고
    • Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
    • Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336-2347 (2013).
    • (2013) EMBO J. , vol.32 , pp. 2336-2347
    • Maejima, I.1
  • 135
    • 84880108306 scopus 로고    scopus 로고
    • Spatiotemporally controlled induction of autophagy-mediated lysosome turnover
    • Hung, Y. H., Chen, L. M., Yang, J. Y. & Yang, W. Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2111
    • Hung, Y.H.1    Chen, L.M.2    Yang, J.Y.3    Yang, W.Y.4
  • 136
    • 80053564250 scopus 로고    scopus 로고
    • Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity
    • Kuo, T. C. et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat. Cell Biol. 13, 1214-1223 (2011).
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1214-1223
    • Kuo, T.C.1
  • 137
    • 58149344946 scopus 로고    scopus 로고
    • Midbody ring disposal by autophagy is a post-abscission event of cytokinesis
    • Pohl, C. & Jentsch, S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 11, 65-70 (2009).
    • (2009) Nat. Cell Biol. , vol.11 , pp. 65-70
    • Pohl, C.1    Jentsch, S.2
  • 138
    • 84940721729 scopus 로고    scopus 로고
    • Mitophagy in yeast: Molecular mechanisms and physiological role
    • Kanki, T., Furukawa, K. & Yamashita, S. Mitophagy in yeast: molecular mechanisms and physiological role. Biochim. Biophys. Acta 1853, 2756-2765 (2015).
    • (2015) Biochim. Biophys. Acta , vol.1853 , pp. 2756-2765
    • Kanki, T.1    Furukawa, K.2    Yamashita, S.3
  • 139
    • 84903817207 scopus 로고    scopus 로고
    • Receptor-mediated mitophagy in yeast and mammalian systems
    • Liu, L., Sakakibara, K., Chen, Q. & Okamoto, K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 24, 787-795 (2014).
    • (2014) Cell Res. , vol.24 , pp. 787-795
    • Liu, L.1    Sakakibara, K.2    Chen, Q.3    Okamoto, K.4
  • 140
    • 84940718398 scopus 로고    scopus 로고
    • Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae
    • Muller, M., Lu, K. & Reichert, A. S. Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1853, 2766-2774 (2015).
    • (2015) Biochim. Biophys. Acta , vol.1853 , pp. 2766-2774
    • Muller, M.1    Lu, K.2    Reichert, A.S.3
  • 141
    • 84908065760 scopus 로고    scopus 로고
    • Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
    • Wong, Y. C. & Holzbaur, E. L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl Acad. Sci. USA 111, E4439-E4448 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. E4439-E4448
    • Wong, Y.C.1    Holzbaur, E.L.2
  • 143
    • 84942514110 scopus 로고    scopus 로고
    • Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves
    • Gomez-Sanchez, J. A. et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J. Cell Biol. 210, 153-168 (2015).
    • (2015) J. Cell Biol. , vol.210 , pp. 153-168
    • Gomez-Sanchez, J.A.1
  • 144
    • 57349198328 scopus 로고    scopus 로고
    • Piecemeal microautophagy of the nucleus requires the core macroautophagy genes
    • Krick, R. et al. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell 19, 4492-4505 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4492-4505
    • Krick, R.1
  • 145
    • 84885441274 scopus 로고    scopus 로고
    • Nucleophagy at a glance
    • Mijaljica, D. & Devenish, R. J. Nucleophagy at a glance. J. Cell Sci. 126, 4325-4330 (2013).
    • (2013) J. Cell Sci. , vol.126 , pp. 4325-4330
    • Mijaljica, D.1    Devenish, R.J.2
  • 146
    • 80053390952 scopus 로고    scopus 로고
    • Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors
    • Zientara-Rytter, K. et al. Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy 7, 1145-1158 (2011).
    • (2011) Autophagy , vol.7 , pp. 1145-1158
    • Zientara-Rytter, K.1
  • 147
    • 79953100002 scopus 로고    scopus 로고
    • The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism
    • Vanhee, C., Zapotoczny, G., Masquelier, D., Ghislain, M. & Batoko, H. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 23, 785-805 (2011).
    • (2011) Plant Cell , vol.23 , pp. 785-805
    • Vanhee, C.1    Zapotoczny, G.2    Masquelier, D.3    Ghislain, M.4    Batoko, H.5
  • 148
    • 84912061970 scopus 로고    scopus 로고
    • Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole
    • Michaeli, S., Honig, A., Levanony, H., Peled-Zehavi, H. & Galili, G. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell 26, 4084-4101 (2014).
    • (2014) Plant Cell , vol.26 , pp. 4084-4101
    • Michaeli, S.1    Honig, A.2    Levanony, H.3    Peled-Zehavi, H.4    Galili, G.5
  • 149
    • 84937574462 scopus 로고    scopus 로고
    • Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/Ubiquitin receptor RPN10 in Arabidopsis
    • Marshall, R. S., Li, F., Gemperline, D. C., Book, A. J. & Vierstra, R. D. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/Ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58, 1053-1066 (2015).
    • (2015) Mol. Cell , vol.58 , pp. 1053-1066
    • Marshall, R.S.1    Li, F.2    Gemperline, D.C.3    Book, A.J.4    Vierstra, R.D.5
  • 150
    • 43049138051 scopus 로고    scopus 로고
    • Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
    • Kraft, C., Deplazes, A., Sohrmann, M. & Peter, M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10, 602-610 (2008).
    • (2008) Nat. Cell Biol. , vol.10 , pp. 602-610
    • Kraft, C.1    Deplazes, A.2    Sohrmann, M.3    Peter, M.4
  • 151
    • 77954212973 scopus 로고    scopus 로고
    • Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy
    • Ossareh-Nazari, B. et al. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep. 11, 548-554 (2010).
    • (2010) EMBO Rep. , vol.11 , pp. 548-554
    • Ossareh-Nazari, B.1
  • 152
    • 84907599058 scopus 로고    scopus 로고
    • TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition
    • Mandell, M. A. et al. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell 30, 394-409 (2014).
    • (2014) Dev. Cell , vol.30 , pp. 394-409
    • Mandell, M.A.1
  • 153
    • 82555187810 scopus 로고    scopus 로고
    • Image-based genome-wide siRNA screen identifies selective autophagy factors
    • Orvedahl, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113-117 (2011).
    • (2011) Nature , vol.480 , pp. 113-117
    • Orvedahl, A.1
  • 155
    • 84857071710 scopus 로고    scopus 로고
    • Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
    • Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418 (2012).
    • (2012) Nature , vol.482 , pp. 414-418
    • Thurston, T.L.1    Wandel, M.P.2    Von Muhlinen, N.3    Foeglein, A.4    Randow, F.5
  • 156
    • 84861059844 scopus 로고    scopus 로고
    • Zymophagy: Selective autophagy of secretory granules
    • Vaccaro, M. I. Zymophagy: selective autophagy of secretory granules. Int. J. Cell Biol. 2012, 396705 (2012).
    • (2012) Int. J. Cell Biol. , vol.2012 , pp. 396705
    • Vaccaro, M.I.1
  • 157
    • 0037119448 scopus 로고    scopus 로고
    • Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy
    • Nice, D. C., Sato, T. K., Stromhaug, P. E., Emr, S. D. & Klionsky, D. J. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J. Biol. Chem. 277, 30198-30207 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 30198-30207
    • Nice, D.C.1    Sato, T.K.2    Stromhaug, P.E.3    Emr, S.D.4    Klionsky, D.J.5
  • 158
    • 84926253496 scopus 로고    scopus 로고
    • PI3P binding by Atg21 organises Atg8 lipidation
    • Juris, L. et al. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J. 34, 955-973 (2015).
    • (2015) EMBO J. , vol.34 , pp. 955-973
    • Juris, L.1
  • 159
    • 3342951135 scopus 로고    scopus 로고
    • Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase i by selective autophagy
    • Stromhaug, P. E., Reggiori, F., Guan, J., Wang, C. W. & Klionsky, D. J. Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol. Biol. Cell 15, 3553-3566 (2004).
    • (2004) Mol. Biol. Cell , vol.15 , pp. 3553-3566
    • Stromhaug, P.E.1    Reggiori, F.2    Guan, J.3    Wang, C.W.4    Klionsky, D.J.5
  • 160
    • 0034682772 scopus 로고    scopus 로고
    • Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting
    • Scott, S. V. et al. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J. Biol. Chem. 275, 25840-25849 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 25840-25849
    • Scott, S.V.1
  • 161
    • 0037737745 scopus 로고    scopus 로고
    • Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion
    • Reggiori, F., Wang, C. W., Stromhaug, P. E., Shintani, T. & Klionsky, D. J. Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion. J. Biol. Chem. 278, 5009-5020 (2003).
    • (2003) J. Biol. Chem. , vol.278 , pp. 5009-5020
    • Reggiori, F.1    Wang, C.W.2    Stromhaug, P.E.3    Shintani, T.4    Klionsky, D.J.5
  • 162
    • 28644447348 scopus 로고    scopus 로고
    • The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae
    • Reggiori, F., Monastyrska, I., Shintani, T. & Klionsky, D. J. The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 16, 5843-5856 (2005).
    • (2005) Mol. Biol. Cell , vol.16 , pp. 5843-5856
    • Reggiori, F.1    Monastyrska, I.2    Shintani, T.3    Klionsky, D.J.4
  • 163
    • 33845692364 scopus 로고    scopus 로고
    • Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast
    • He, C. et al. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J. Cell Biol. 175, 925-935 (2006).
    • (2006) J. Cell Biol. , vol.175 , pp. 925-935
    • He, C.1
  • 164
    • 48249132417 scopus 로고    scopus 로고
    • Arp2 links autophagic machinery with the actin cytoskeleton
    • Monastyrska, I. et al. Arp2 links autophagic machinery with the actin cytoskeleton. Mol. Biol. Cell 19, 1962-1975 (2008).
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1962-1975
    • Monastyrska, I.1
  • 165
    • 84899900344 scopus 로고    scopus 로고
    • Atg21 regulates pexophagy via its PI(3)P-binding activity in Pichia pastoris
    • Tamura, N., Oku, M. & Sakai, Y. Atg21 regulates pexophagy via its PI(3)P-binding activity in Pichia pastoris. FEMS Yeast Res. 14, 435-444 (2014).
    • (2014) FEMS Yeast Res. , vol.14 , pp. 435-444
    • Tamura, N.1    Oku, M.2    Sakai, Y.3
  • 166
    • 12844250563 scopus 로고    scopus 로고
    • A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate
    • Ano, Y. et al. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol. Biol. Cell 16, 446-457 (2005).
    • (2005) Mol. Biol. Cell , vol.16 , pp. 446-457
    • Ano, Y.1
  • 167
    • 0038263977 scopus 로고    scopus 로고
    • Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain
    • Oku, M. et al. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J. 22, 3231-3241 (2003).
    • (2003) EMBO J. , vol.22 , pp. 3231-3241
    • Oku, M.1
  • 168
    • 79251558467 scopus 로고    scopus 로고
    • Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris
    • Nazarko, V. Y. et al. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 7, 375-385 (2011).
    • (2011) Autophagy , vol.7 , pp. 375-385
    • Nazarko, V.Y.1
  • 169
    • 33748433784 scopus 로고    scopus 로고
    • Early and late molecular events of glucose-induced pexophagy in Pichia pastoris require Vac8
    • Fry, M. R., Thomson, J. M., Tomasini, A. J. & Dunn, W. A. Jr. Early and late molecular events of glucose-induced pexophagy in Pichia pastoris require Vac8. Autophagy 2, 280-288 (2006).
    • (2006) Autophagy , vol.2 , pp. 280-288
    • Fry, M.R.1    Thomson, J.M.2    Tomasini, A.J.3    Dunn, W.A.4
  • 170
    • 12444343145 scopus 로고    scopus 로고
    • Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast
    • Hamasaki, M., Noda, T., Baba, M. & Ohsumi, Y. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6, 56-65 (2005).
    • (2005) Traffic , vol.6 , pp. 56-65
    • Hamasaki, M.1    Noda, T.2    Baba, M.3    Ohsumi, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.