-
1
-
-
84893675756
-
Autophagy: A critical regulator of cellular metabolism and homeostasis
-
Ryter, S. W., Cloonan, S. M. & Choi, A. M. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36, 7-16 (2013).
-
(2013)
Mol. Cells
, vol.36
, pp. 7-16
-
-
Ryter, S.W.1
Cloonan, S.M.2
Choi, A.M.3
-
2
-
-
84873660610
-
Autophagy in human health and disease
-
Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 651-662 (2013).
-
(2013)
N. Engl. J. Med.
, vol.368
, pp. 651-662
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
3
-
-
2442482810
-
Autophagy as a cell death and tumor suppressor mechanism
-
Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906 (2004).
-
(2004)
Oncogene
, vol.23
, pp. 2891-2906
-
-
Gozuacik, D.1
Kimchi, A.2
-
4
-
-
84920426884
-
Autophagy and neurodegeneration
-
Frake, R. A., Ricketts, T., Menzies, F. M. & Rubinsztein, D. C. Autophagy and neurodegeneration. J. Clin. Invest. 125, 65-74 (2015).
-
(2015)
J. Clin. Invest.
, vol.125
, pp. 65-74
-
-
Frake, R.A.1
Ricketts, T.2
Menzies, F.M.3
Rubinsztein, D.C.4
-
5
-
-
80052303130
-
Autophagy and aging
-
Rubinsztein, D. C., Marino, G. & Kroemer, G. Autophagy and aging. Cell 146, 682-695 (2011).
-
(2011)
Cell
, vol.146
, pp. 682-695
-
-
Rubinsztein, D.C.1
Marino, G.2
Kroemer, G.3
-
6
-
-
84964555395
-
Modulation of inflammation by autophagy: Consequences for human disease
-
Netea-Maier, R. T., Plantinga, T. S., Van De Veerdonk, F. L., Smit, J. W. & Netea, M. G. Modulation of inflammation by autophagy: consequences for human disease. Autophagy 12, 1-16 (2015).
-
(2015)
Autophagy
, vol.12
, pp. 1-16
-
-
Netea-Maier, R.T.1
Plantinga, T.S.2
Van De-Veerdonk, F.L.3
Smit, J.W.4
Netea, M.G.5
-
7
-
-
84899131967
-
Autophagy in antimicrobial immunity
-
Gomes, L. C. & Dikic, I. Autophagy in antimicrobial immunity. Mol. Cell 54, 224-233 (2014).
-
(2014)
Mol. Cell
, vol.54
, pp. 224-233
-
-
Gomes, L.C.1
Dikic, I.2
-
8
-
-
65449189191
-
Determination of yeast mitochondrial KHE activity, osmotic swelling and mitophagy
-
Nowikovsky, K., Devenish, R. J., Froschauer, E. & Schweyen, R. J. Determination of yeast mitochondrial KHE activity, osmotic swelling and mitophagy. Methods Enzymol. 457, 305-317 (2009).
-
(2009)
Methods Enzymol.
, vol.457
, pp. 305-317
-
-
Nowikovsky, K.1
Devenish, R.J.2
Froschauer, E.3
Schweyen, R.J.4
-
9
-
-
84910142171
-
Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy
-
Walter, K. M. et al. Hif-2α promotes degradation of mammalian peroxisomes by selective autophagy. Cell. Metab. 20, 882-897 (2014).
-
(2014)
Cell. Metab.
, vol.20
, pp. 882-897
-
-
Walter, K.M.1
-
10
-
-
84920274916
-
Redox regulated peroxisome homeostasis
-
Wang, X., Li, S., Liu, Y. & Ma, C. Redox regulated peroxisome homeostasis. Redox Biol. 4, 104-108 (2015).
-
(2015)
Redox Biol.
, vol.4
, pp. 104-108
-
-
Wang, X.1
Li, S.2
Liu, Y.3
Ma, C.4
-
11
-
-
84891745088
-
Historical landmarks of autophagy research
-
Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9-23 (2014).
-
(2014)
Cell Res.
, vol.24
, pp. 9-23
-
-
Ohsumi, Y.1
-
12
-
-
84925307913
-
Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation
-
Suzuki, S. W. et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl Acad. Sci. USA 112, 3350-3355 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 3350-3355
-
-
Suzuki, S.W.1
-
13
-
-
84953855169
-
Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes
-
Shemi, A., Ben-Dor, S. & Vardi, A. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy 11, 701-715 (2015).
-
(2015)
Autophagy
, vol.11
, pp. 701-715
-
-
Shemi, A.1
Ben-Dor, S.2
Vardi, A.3
-
14
-
-
84930211216
-
Function of peroxisomes in plant-pathogen interactions
-
Kubo, Y. Function of peroxisomes in plant-pathogen interactions. Subcell. Biochem. 69, 329-345 (2013).
-
(2013)
Subcell. Biochem.
, vol.69
, pp. 329-345
-
-
Kubo, Y.1
-
15
-
-
84910648789
-
Emerging role of selective autophagy in human diseases
-
Mizumura, K., Choi, A. M. & Ryter, S. W. Emerging role of selective autophagy in human diseases. Front. Pharmacol. 5, 244 (2014).
-
(2014)
Front. Pharmacol.
, vol.5
, pp. 244
-
-
Mizumura, K.1
Choi, A.M.2
Ryter, S.W.3
-
16
-
-
38849105061
-
A picky eater: Exploring the mechanisms of selective autophagy in human pathologies
-
van der Vaart, A., Mari, M. & Reggiori, F. A picky eater: exploring the mechanisms of selective autophagy in human pathologies. Traffic 9, 281-289 (2008).
-
(2008)
Traffic
, vol.9
, pp. 281-289
-
-
Van Der-Vaart, A.1
Mari, M.2
Reggiori, F.3
-
17
-
-
84942982653
-
ATM functions at the peroxisome to induce pexophagy in response to ROS
-
Zhang, J. et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259-1269 (2015).
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1259-1269
-
-
Zhang, J.1
-
18
-
-
77950510302
-
The Cvt pathway as a model for selective autophagy
-
Lynch-Day, M. A. & Klionsky, D. J. The Cvt pathway as a model for selective autophagy. FEBS Lett. 584, 1359-1366 (2010).
-
(2010)
FEBS Lett.
, vol.584
, pp. 1359-1366
-
-
Lynch-Day, M.A.1
Klionsky, D.J.2
-
19
-
-
0027207680
-
Selective autophagy of peroxisomes in methylotrophic yeasts
-
Tuttle, D. L., Lewin, A. S. & Dunn, W. A. Jr. Selective autophagy of peroxisomes in methylotrophic yeasts. Eur. J. Cell Biol. 60, 283-290 (1993).
-
(1993)
Eur. J. Cell Biol.
, vol.60
, pp. 283-290
-
-
Tuttle, D.L.1
Lewin, A.S.2
Dunn, W.A.3
-
20
-
-
84922160508
-
A new class of ubiquitin-Atg8 receptors involved in selective autophagy and polyQ protein clearance
-
Lu, K., Psakhye, I. & Jentsch, S. A new class of ubiquitin-Atg8 receptors involved in selective autophagy and polyQ protein clearance. Autophagy 10, 2381-2382 (2014).
-
(2014)
Autophagy
, vol.10
, pp. 2381-2382
-
-
Lu, K.1
Psakhye, I.2
Jentsch, S.3
-
21
-
-
85006226964
-
The role of autophagy in intracellular pathogen nutrient acquisition
-
Steele, S., Brunton, J. & Kawula, T. The role of autophagy in intracellular pathogen nutrient acquisition. Front. Cell. Infect. Microbiol. 5, 51 (2015).
-
(2015)
Front. Cell. Infect. Microbiol.
, vol.5
, pp. 51
-
-
Steele, S.1
Brunton, J.2
Kawula, T.3
-
22
-
-
84955242756
-
Ubiquitin-dependent and independent signals in selective autophagy
-
Khaminets, A., Behl, C. & Dikic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6-16 (2016).
-
(2016)
Trends Cell Biol.
, vol.26
, pp. 6-16
-
-
Khaminets, A.1
Behl, C.2
Dikic, I.3
-
23
-
-
0034964443
-
Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway
-
Scott, S. V., Guan, J., Hutchins, M. U., Kim, J. & Klionsky, D. J. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell 7, 1131-1141 (2001).
-
(2001)
Mol. Cell
, vol.7
, pp. 1131-1141
-
-
Scott, S.V.1
Guan, J.2
Hutchins, M.U.3
Kim, J.4
Klionsky, D.J.5
-
24
-
-
77956924900
-
Selective transport of alpha-mannosidase by autophagic pathways: Identification of a novel receptor, Atg34p
-
Suzuki, K., Kondo, C., Morimoto, M. & Ohsumi, Y. Selective transport of alpha-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J. Biol. Chem. 285, 30019-30025 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 30019-30025
-
-
Suzuki, K.1
Kondo, C.2
Morimoto, M.3
Ohsumi, Y.4
-
25
-
-
84905491871
-
Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family
-
Lu, K., Psakhye, I. & Jentsch, S. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 549-563 (2014).
-
(2014)
Cell
, vol.158
, pp. 549-563
-
-
Lu, K.1
Psakhye, I.2
Jentsch, S.3
-
26
-
-
42049094041
-
PpAtg30 tags peroxisomes for turnover by selective autophagy
-
Farre, J. C., Manjithaya, R., Mathewson, R. D. & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 14, 365-376 (2008).
-
(2008)
Dev. Cell
, vol.14
, pp. 365-376
-
-
Farre, J.C.1
Manjithaya, R.2
Mathewson, R.D.3
Subramani, S.4
-
27
-
-
84863843241
-
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
-
Motley, A. M., Nuttall, J. M. & Hettema, E. H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31, 2852-2868 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 2852-2868
-
-
Motley, A.M.1
Nuttall, J.M.2
Hettema, E.H.3
-
28
-
-
84925776380
-
Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30
-
Burnett, S. F., Farre, J. C., Nazarko, T. Y. & Subramani, S. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with the pexophagy receptor Atg30. J. Biol. Chem. 290, 8623-8631 (2015).
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 8623-8631
-
-
Burnett, S.F.1
Farre, J.C.2
Nazarko, T.Y.3
Subramani, S.4
-
29
-
-
84894030921
-
Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy
-
Nazarko, T. Y. et al. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J. Cell Biol. 204, 541-557 (2014).
-
(2014)
J. Cell Biol.
, vol.204
, pp. 541-557
-
-
Nazarko, T.Y.1
-
30
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98-109 (2009).
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
31
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87-97 (2009).
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
32
-
-
84858988067
-
Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy
-
Kondo-Okamoto, N. et al. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287, 10631-10638 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 10631-10638
-
-
Kondo-Okamoto, N.1
-
33
-
-
84934449988
-
Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus
-
Mochida, K. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359-362 (2015).
-
(2015)
Nature
, vol.522
, pp. 359-362
-
-
Mochida, K.1
-
34
-
-
84983227373
-
-
(ed. Wang, H.-G.) (Springer New York)
-
Jin, M. & Klionsky, D. J. in Autophagy and Cancer (ed. Wang, H.-G.) 25-45 (Springer New York, 2013).
-
(2013)
Autophagy and Cancer
, pp. 25-45
-
-
Jin, M.1
Klionsky, D.J.2
-
35
-
-
21844470747
-
Atg17 regulates the magnitude of the autophagic response
-
Cheong, H. et al. Atg17 regulates the magnitude of the autophagic response. Mol. Biol. Cell 16, 3438-3453 (2005).
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 3438-3453
-
-
Cheong, H.1
-
36
-
-
70349334586
-
Peroxisome size provides insights into the function of autophagy-related proteins
-
Nazarko, T. Y., Farre, J. C. & Subramani, S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol. Biol. Cell 20, 3828-3839 (2009).
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 3828-3839
-
-
Nazarko, T.Y.1
Farre, J.C.2
Subramani, S.3
-
37
-
-
73949122199
-
A genomic screen for yeast mutants defective in selective mitochondria autophagy
-
Kanki, T. et al. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol. Biol. Cell 20, 4730-4738 (2009).
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4730-4738
-
-
Kanki, T.1
-
38
-
-
18244394277
-
Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy
-
Kabeya, Y. et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell 16, 2544-2553 (2005).
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 2544-2553
-
-
Kabeya, Y.1
-
39
-
-
0034683568
-
Tor-mediated induction of autophagy via an Apg1 protein kinase complex
-
Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507-1513 (2000).
-
(2000)
J. Cell Biol.
, vol.150
, pp. 1507-1513
-
-
Kamada, Y.1
-
40
-
-
70349739560
-
Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae
-
Kabeya, Y. et al. Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 389, 612-615 (2009).
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.389
, pp. 612-615
-
-
Kabeya, Y.1
-
41
-
-
84901986623
-
Structural basis of starvation-induced assembly of the autophagy initiation complex
-
Fujioka, Y. et al. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 21, 513-521 (2014).
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 513-521
-
-
Fujioka, Y.1
-
42
-
-
84881091197
-
Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation
-
Mao, K. et al. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc. Natl Acad. Sci. USA 110, E2875-E2884 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. E2875-E2884
-
-
Mao, K.1
-
43
-
-
84938744997
-
Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase
-
Kamber, R. A., Shoemaker, C. J. & Denic, V. Receptor-bound targets of selective autophagy use a scaffold protein to activate the Atg1 kinase. Mol. Cell 59, 372-381 (2015).
-
(2015)
Mol. Cell
, vol.59
, pp. 372-381
-
-
Kamber, R.A.1
Shoemaker, C.J.2
Denic, V.3
-
44
-
-
39449108917
-
The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae
-
Cheong, H., Nair, U., Geng, J. & Klionsky, D. J. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 668-681 (2008).
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 668-681
-
-
Cheong, H.1
Nair, U.2
Geng, J.3
Klionsky, D.J.4
-
45
-
-
84893742616
-
Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase
-
Papinski, D. et al. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell 53, 471-483 (2014).
-
(2014)
Mol. Cell
, vol.53
, pp. 471-483
-
-
Papinski, D.1
-
46
-
-
84860797387
-
Regulation of selective autophagy onset by a Ypt/Rab GTPase module
-
Lipatova, Z. et al. Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc. Natl Acad. Sci. USA 109, 6981-6986 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 6981-6986
-
-
Lipatova, Z.1
-
47
-
-
84871811752
-
Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site
-
Kakuta, S. et al. Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J. Biol. Chem. 287, 44261-44269 (2012).
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 44261-44269
-
-
Kakuta, S.1
-
48
-
-
84878983074
-
Ypt1 recruits the Atg1 kinase to the preautophagosomal structure
-
Wang, J. et al. Ypt1 recruits the Atg1 kinase to the preautophagosomal structure. Proc. Natl Acad. Sci. USA 110, 9800-9805 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 9800-9805
-
-
Wang, J.1
-
49
-
-
84957649648
-
Ypt1/Rab1 regulates Hrr25/CK1delta kinase activity in ER-Golgi traffic and macroautophagy
-
Wang, J. et al. Ypt1/Rab1 regulates Hrr25/CK1delta kinase activity in ER-Golgi traffic and macroautophagy. J. Cell Biol. 210, 273-285 (2015).
-
(2015)
J. Cell Biol.
, vol.210
, pp. 273-285
-
-
Wang, J.1
-
50
-
-
84888350190
-
The em structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway
-
Tan, D. et al. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc. Natl Acad. Sci. USA 110, 19432-19437 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 19432-19437
-
-
Tan, D.1
-
51
-
-
0035192612
-
Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
-
Ishihara, N. et al. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell 12, 3690-3702 (2001).
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 3690-3702
-
-
Ishihara, N.1
-
52
-
-
84921436176
-
Atg23 and Atg27 act at the early stages of Atg9 trafficking in S. Cerevisiae
-
Backues, S. K. et al. Atg23 and Atg27 act at the early stages of Atg9 trafficking in S. cerevisiae. Traffic 16, 172-190 (2015).
-
(2015)
Traffic
, vol.16
, pp. 172-190
-
-
Backues, S.K.1
-
53
-
-
33846514235
-
Hierarchy of Atg proteins in pre-autophagosomal structure organization
-
Suzuki, K., Kubota, Y., Sekito, T. & Ohsumi, Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12, 209-218 (2007).
-
(2007)
Genes Cells
, vol.12
, pp. 209-218
-
-
Suzuki, K.1
Kubota, Y.2
Sekito, T.3
Ohsumi, Y.4
-
54
-
-
47549092694
-
Atg8 controls phagophore expansion during autophagosome formation
-
Xie, Z., Nair, U. & Klionsky, D. J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290-3298 (2008).
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3290-3298
-
-
Xie, Z.1
Nair, U.2
Klionsky, D.J.3
-
55
-
-
57249083972
-
Structural basis of target recognition by Atg8/LC3 during selective autophagy
-
Noda, N. N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211-1218 (2008).
-
(2008)
Genes Cells
, vol.13
, pp. 1211-1218
-
-
Noda, N.N.1
-
56
-
-
66349086236
-
Mutation at the cargo-receptor binding site of Atg8 also affects its general autophagy regulation function
-
Ho, K. H., Chang, H. E. & Huang, W. P. Mutation at the cargo-receptor binding site of Atg8 also affects its general autophagy regulation function. Autophagy 5, 461-471 (2009).
-
(2009)
Autophagy
, vol.5
, pp. 461-471
-
-
Ho, K.H.1
Chang, H.E.2
Huang, W.P.3
-
57
-
-
84893500894
-
Molecular mechanism of autophagic membrane-scaffold assembly and disassembly
-
Kaufmann, A., Beier, V., Franquelim, H. G. & Wollert, T. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156, 469-481 (2014).
-
(2014)
Cell
, vol.156
, pp. 469-481
-
-
Kaufmann, A.1
Beier, V.2
Franquelim, H.G.3
Wollert, T.4
-
58
-
-
0036901104
-
Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway
-
Shintani, T., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3, 825-837 (2002).
-
(2002)
Dev. Cell
, vol.3
, pp. 825-837
-
-
Shintani, T.1
Huang, W.P.2
Stromhaug, P.E.3
Klionsky, D.J.4
-
59
-
-
84877579321
-
Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
-
Farre, J. C., Burkenroad, A., Burnett, S. F. & Subramani, S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 14, 441-449 (2013).
-
(2013)
EMBO Rep.
, vol.14
, pp. 441-449
-
-
Farre, J.C.1
Burkenroad, A.2
Burnett, S.F.3
Subramani, S.4
-
60
-
-
16344365254
-
Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway
-
Yorimitsu, T. & Klionsky, D. J. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol. Biol. Cell 16, 1593-1605 (2005).
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1593-1605
-
-
Yorimitsu, T.1
Klionsky, D.J.2
-
61
-
-
80052197610
-
Phosphorylation of Serine 114 on Atg32 mediates mitophagy
-
Aoki, Y. et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell 22, 3206-3217 (2011).
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 3206-3217
-
-
Aoki, Y.1
-
62
-
-
70350128436
-
The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy
-
Stephan, J. S., Yeh, Y. Y., Ramachandran, V., Deminoff, S. J. & Herman, P. K. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc. Natl Acad. Sci. USA 106, 17049-17054 (2009).
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 17049-17054
-
-
Stephan, J.S.1
Yeh, Y.Y.2
Ramachandran, V.3
Deminoff, S.J.4
Herman, P.K.5
-
63
-
-
77950484269
-
Atg8-family interacting motif crucial for selective autophagy
-
Noda, N. N., Ohsumi, Y. & Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584, 1379-1385 (2010).
-
(2010)
FEBS Lett.
, vol.584
, pp. 1379-1385
-
-
Noda, N.N.1
Ohsumi, Y.2
Inagaki, F.3
-
64
-
-
84899848892
-
Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy
-
Sawa-Makarska, J. et al. Cargo binding to Atg19 unmasks additional Atg8 binding sites to mediate membrane-cargo apposition during selective autophagy. Nat. Cell Biol. 16, 425-433 (2014).
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 425-433
-
-
Sawa-Makarska, J.1
-
65
-
-
84905923683
-
Excluding the unwanted during autophagy
-
Sawa-Makarska, J. & Martens, S. Excluding the unwanted during autophagy. Cell Cycle 13, 2313-2314 (2014).
-
(2014)
Cell Cycle
, vol.13
, pp. 2313-2314
-
-
Sawa-Makarska, J.1
Martens, S.2
-
66
-
-
0035897414
-
Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole
-
Kim, J. et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 153, 381-396 (2001).
-
(2001)
J. Cell Biol.
, vol.153
, pp. 381-396
-
-
Kim, J.1
-
67
-
-
84905391741
-
Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19
-
Pfaffenwimmer, T. et al. Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep. 15, 862-870 (2014).
-
(2014)
EMBO Rep.
, vol.15
, pp. 862-870
-
-
Pfaffenwimmer, T.1
-
68
-
-
0028855325
-
Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris
-
Tuttle, D. L. & Dunn, W. A. Jr. Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J. Cell Sci. 108, 25-35 (1995).
-
(1995)
J. Cell Sci.
, vol.108
, pp. 25-35
-
-
Tuttle, D.L.1
Dunn, W.A.2
-
69
-
-
84878780410
-
Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast
-
Eiyama, A., Kondo-Okamoto, N. & Okamoto, K. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett. 587, 1787-1792 (2013).
-
(2013)
FEBS Lett.
, vol.587
, pp. 1787-1792
-
-
Eiyama, A.1
Kondo-Okamoto, N.2
Okamoto, K.3
-
70
-
-
57749121573
-
Mitophagy in yeast occurs through a selective mechanism
-
Kanki, T. & Klionsky, D. J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283, 32386-32393 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 32386-32393
-
-
Kanki, T.1
Klionsky, D.J.2
-
71
-
-
84904280757
-
Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast
-
Aihara, M. et al. Tor and the Sin3-Rpd3 complex regulate expression of the mitophagy receptor protein Atg32 in yeast. J. Cell Sci. 127, 3184-3196 (2014).
-
(2014)
J. Cell Sci.
, vol.127
, pp. 3184-3196
-
-
Aihara, M.1
-
72
-
-
84883487916
-
Casein kinase 2 is essential for mitophagy
-
Kanki, T. et al. Casein kinase 2 is essential for mitophagy. EMBO Rep. 14, 788-794 (2013).
-
(2013)
EMBO Rep.
, vol.14
, pp. 788-794
-
-
Kanki, T.1
-
73
-
-
27844524011
-
The shape of things to come: An emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton
-
Canton, D. A. & Litchfield, D. W. The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal. 18, 267-275 (2006).
-
(2006)
Cell Signal.
, vol.18
, pp. 267-275
-
-
Canton, D.A.1
Litchfield, D.W.2
-
74
-
-
84908227585
-
Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of alpha-mannosidase under nitrogen starvation conditions
-
Mochida, K., Ohsumi, Y. & Nakatogawa, H. Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of alpha-mannosidase under nitrogen starvation conditions. FEBS Lett. 588, 3862-3869 (2014).
-
(2014)
FEBS Lett.
, vol.588
, pp. 3862-3869
-
-
Mochida, K.1
Ohsumi, Y.2
Nakatogawa, H.3
-
75
-
-
84908361088
-
Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins
-
Tanaka, C. et al. Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. J. Cell Biol. 207, 91-105 (2014).
-
(2014)
J. Cell Biol.
, vol.207
, pp. 91-105
-
-
Tanaka, C.1
-
76
-
-
79955880405
-
Sequential interactions with Sec23 control the direction of vesicle traffic
-
Lord, C. et al. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature 473, 181-186 (2011).
-
(2011)
Nature
, vol.473
, pp. 181-186
-
-
Lord, C.1
-
77
-
-
84954526427
-
Hrr25: An emerging major player in selective autophagy regulation in Saccharomyces cerevisiae
-
Nakatogawa, H. Hrr25: an emerging major player in selective autophagy regulation in Saccharomyces cerevisiae. Autophagy 11, 432-433 (2015).
-
(2015)
Autophagy
, vol.11
, pp. 432-433
-
-
Nakatogawa, H.1
-
78
-
-
84905828168
-
Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy
-
Li, F. & Vierstra, R. D. Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy 10, 1466-1467 (2014).
-
(2014)
Autophagy
, vol.10
, pp. 1466-1467
-
-
Li, F.1
Vierstra, R.D.2
-
79
-
-
77951168347
-
A yeast MAPK cascade regulates pexophagy but not other autophagy pathways
-
Manjithaya, R., Jain, S., Farre, J. C. & Subramani, S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J. Cell Biol. 189, 303-310 (2010).
-
(2010)
J. Cell Biol.
, vol.189
, pp. 303-310
-
-
Manjithaya, R.1
Jain, S.2
Farre, J.C.3
Subramani, S.4
-
80
-
-
82855181984
-
MAPKs regulate mitophagy in Saccharomyces cerevisiae
-
Mao, K. & Klionsky, D. J. MAPKs regulate mitophagy in Saccharomyces cerevisiae. Autophagy 7, 1564-1565 (2011).
-
(2011)
Autophagy
, vol.7
, pp. 1564-1565
-
-
Mao, K.1
Klionsky, D.J.2
-
81
-
-
34547216984
-
Function and regulation in MAPK signaling pathways: Lessons learned from the yeast Saccharomyces cerevisiae
-
Chen, R. E. & Thorner, J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773, 1311-1340 (2007).
-
(2007)
Biochim. Biophys. Acta
, vol.1773
, pp. 1311-1340
-
-
Chen, R.E.1
Thorner, J.2
-
82
-
-
0037044801
-
Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast
-
Torres, J., Di Como, C. J., Herrero, E. & De La Torre-Ruiz, M. A. Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J. Biol. Chem. 277, 43495-43504 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 43495-43504
-
-
Torres, J.1
Di Como, C.J.2
Herrero, E.3
De La-Torre-Ruiz, M.A.4
-
83
-
-
84903780037
-
Atg37 regulates the assembly of the pexophagic receptor protein complex
-
Nazarko, T. Y. Atg37 regulates the assembly of the pexophagic receptor protein complex. Autophagy 10, 1348-1349 (2014).
-
(2014)
Autophagy
, vol.10
, pp. 1348-1349
-
-
Nazarko, T.Y.1
-
84
-
-
0037930873
-
The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11
-
Li, X. & Gould, S. J. The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J. Biol. Chem. 278, 17012-17020 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 17012-17020
-
-
Li, X.1
Gould, S.J.2
-
85
-
-
33750447941
-
Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae
-
Kuravi, K. et al. Dynamin-related proteins Vps1p and Dnm1p control peroxisome abundance in Saccharomyces cerevisiae. J. Cell Sci. 119, 3994-4001 (2006).
-
(2006)
J. Cell Sci.
, vol.119
, pp. 3994-4001
-
-
Kuravi, K.1
-
86
-
-
46249130452
-
Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p
-
Motley, A. M., Ward, G. P. & Hettema, E. H. Dnm1p-dependent peroxisome fission requires Caf4p, Mdv1p and Fis1p. J. Cell Sci. 121, 1633-1640 (2008).
-
(2008)
J. Cell Sci.
, vol.121
, pp. 1633-1640
-
-
Motley, A.M.1
Ward, G.P.2
Hettema, E.H.3
-
87
-
-
33745742255
-
Shared components of mitochondrial and peroxisomal division
-
Schrader, M. Shared components of mitochondrial and peroxisomal division. Biochim. Biophys. Acta 1763, 531-541 (2006).
-
(2006)
Biochim. Biophys. Acta
, vol.1763
, pp. 531-541
-
-
Schrader, M.1
-
88
-
-
84880863470
-
Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events
-
Manivannan, S., de Boer, R., Veenhuis, M. & van der Klei, I. J. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy 9, 1044-1056 (2013).
-
(2013)
Autophagy
, vol.9
, pp. 1044-1056
-
-
Manivannan, S.1
De Boer, R.2
Veenhuis, M.3
Van Der-Klei, I.J.4
-
89
-
-
84886666788
-
Participation of mitochondrial fission during mitophagy
-
Mao, K. & Klionsky, D. J. Participation of mitochondrial fission during mitophagy. Cell Cycle 12, 3131-3132 (2013).
-
(2013)
Cell Cycle
, vol.12
, pp. 3131-3132
-
-
Mao, K.1
Klionsky, D.J.2
-
90
-
-
84898400392
-
The progression of peroxisomal degradation through autophagy requires peroxisomal division
-
Mao, K., Liu, X., Feng, Y. & Klionsky, D. J. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy 10, 652-661 (2014).
-
(2014)
Autophagy
, vol.10
, pp. 652-661
-
-
Mao, K.1
Liu, X.2
Feng, Y.3
Klionsky, D.J.4
-
91
-
-
84880506979
-
The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy
-
Mao, K., Wang, K., Liu, X. & Klionsky, D. J. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. Dev. Cell 26, 9-18 (2013).
-
(2013)
Dev. Cell
, vol.26
, pp. 9-18
-
-
Mao, K.1
Wang, K.2
Liu, X.3
Klionsky, D.J.4
-
92
-
-
84880019176
-
Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae
-
Suzuki, K., Akioka, M., Kondo-Kakuta, C., Yamamoto, H. & Ohsumi, Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126, 2534-2544 (2013).
-
(2013)
J. Cell Sci.
, vol.126
, pp. 2534-2544
-
-
Suzuki, K.1
Akioka, M.2
Kondo-Kakuta, C.3
Yamamoto, H.4
Ohsumi, Y.5
-
93
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471-484 (2006).
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
94
-
-
84870943446
-
The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size
-
Backues, S. K., Lynch-Day, M. A. & Klionsky, D. J. The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size. Autophagy 8, 1835-1836 (2012).
-
(2012)
Autophagy
, vol.8
, pp. 1835-1836
-
-
Backues, S.K.1
Lynch-Day, M.A.2
Klionsky, D.J.3
-
95
-
-
84953862925
-
Evolutionary trends and functional anatomy of the human expanded autophagy network
-
Till, A. et al. Evolutionary trends and functional anatomy of the human expanded autophagy network. Autophagy 11, 1652-1667 (2015).
-
(2015)
Autophagy
, vol.11
, pp. 1652-1667
-
-
Till, A.1
-
96
-
-
77956410115
-
Selective autophagy: Ubiquitin-mediated recognition and beyond
-
Kraft, C., Peter, M. & Hofmann, K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12, 836-841 (2010).
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 836-841
-
-
Kraft, C.1
Peter, M.2
Hofmann, K.3
-
97
-
-
84936132577
-
Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation
-
Murakawa, T. et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat. Commun. 6, 7527 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 7527
-
-
Murakawa, T.1
-
98
-
-
84884536709
-
Peroxisome degradation in mammals: Mechanisms of action, recent advances, and perspectives
-
Nordgren, M., Wang, B., Apanasets, O. & Fransen, M. Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front. Physiol. 4, 145 (2013).
-
(2013)
Front. Physiol.
, vol.4
, pp. 145
-
-
Nordgren, M.1
Wang, B.2
Apanasets, O.3
Fransen, M.4
-
99
-
-
84946482827
-
A mammalian pexophagy target
-
Subramani, S. A mammalian pexophagy target. Nat. Cell Biol. 17, 1371-1373 (2015).
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1371-1373
-
-
Subramani, S.1
-
100
-
-
84954129051
-
P62/SQSTM1 functions as a signaling hub and an autophagy adaptor
-
Katsuragi, Y., Ichimura, Y. & Komatsu, M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 282, 4672-4678 (2015).
-
(2015)
FEBS J.
, vol.282
, pp. 4672-4678
-
-
Katsuragi, Y.1
Ichimura, Y.2
Komatsu, M.3
-
101
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233 (2011).
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
-
102
-
-
84963566230
-
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria
-
Richter, B. et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl Acad. Sci. USA 113, 4039-4044 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 4039-4044
-
-
Richter, B.1
-
103
-
-
84951930787
-
The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy
-
Heo, J. M., Ordureau, A., Paulo, J. A., Rinehart, J. & Harper, J. W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7-20 (2015).
-
(2015)
Mol. Cell
, vol.60
, pp. 7-20
-
-
Heo, J.M.1
Ordureau, A.2
Paulo, J.A.3
Rinehart, J.4
Harper, J.W.5
-
104
-
-
84939804206
-
The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy
-
Lazarou, M. et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314 (2015).
-
(2015)
Nature
, vol.524
, pp. 309-314
-
-
Lazarou, M.1
-
105
-
-
84934449989
-
Regulation of endoplasmic reticulum turnover by selective autophagy
-
Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354-358 (2015).
-
(2015)
Nature
, vol.522
, pp. 354-358
-
-
Khaminets, A.1
-
106
-
-
67349216078
-
Interactions with LC3 and polyubiquitin chains link NBR1 to autophagic protein turnover
-
Waters, S., Marchbank, K., Solomon, E., Whitehouse, C. & Gautel, M. Interactions with LC3 and polyubiquitin chains link NBR1 to autophagic protein turnover. FEBS Lett. 583, 1846-1852 (2009).
-
(2009)
FEBS Lett.
, vol.583
, pp. 1846-1852
-
-
Waters, S.1
Marchbank, K.2
Solomon, E.3
Whitehouse, C.4
Gautel, M.5
-
107
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505-516 (2009).
-
(2009)
Mol. Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
-
108
-
-
84876345355
-
NBR1 acts as an autophagy receptor for peroxisomes
-
Deosaran, E. et al. NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939-952 (2013).
-
(2013)
J. Cell Sci.
, vol.126
, pp. 939-952
-
-
Deosaran, E.1
-
109
-
-
84876339267
-
The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery
-
Lin, L. et al. The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J. Cell Biol. 201, 113-129 (2013).
-
(2013)
J. Cell Biol.
, vol.201
, pp. 113-129
-
-
Lin, L.1
-
110
-
-
84892805825
-
Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila
-
Nagy, P. et al. Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila. Autophagy 10, 453-467 (2014).
-
(2014)
Autophagy
, vol.10
, pp. 453-467
-
-
Nagy, P.1
-
111
-
-
84912100068
-
Potential function for the Huntingtin protein as a scaffold for selective autophagy
-
Ochaba, J. et al. Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc. Natl Acad. Sci. USA 111, 16889-16894 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 16889-16894
-
-
Ochaba, J.1
-
112
-
-
58149473435
-
Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17?
-
Hara, T. & Mizushima, N. Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17? Autophagy 5, 85-87 (2009).
-
(2009)
Autophagy
, vol.5
, pp. 85-87
-
-
Hara, T.1
Mizushima, N.2
-
113
-
-
84923789937
-
Huntingtin functions as a scaffold for selective macroautophagy
-
Rui, Y. N. et al. Huntingtin functions as a scaffold for selective macroautophagy. Nat. Cell Biol. 17, 262-275 (2015).
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 262-275
-
-
Rui, Y.N.1
-
114
-
-
84887472941
-
Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy
-
Wang, K., Jin, M., Liu, X. & Klionsky, D. J. Proteolytic processing of Atg32 by the mitochondrial i-AAA protease Yme1 regulates mitophagy. Autophagy 9, 1828-1836 (2013).
-
(2013)
Autophagy
, vol.9
, pp. 1828-1836
-
-
Wang, K.1
Jin, M.2
Liu, X.3
Klionsky, D.J.4
-
115
-
-
50249084987
-
Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
-
Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182, 685-701 (2008).
-
(2008)
J. Cell Biol.
, vol.182
, pp. 685-701
-
-
Axe, E.L.1
-
116
-
-
77956913181
-
Selective transport of α-mannosidase by autophagic pathways: Structural basis for cargo recognition by Atg19 and Atg34
-
Watanabe, Y. et al. Selective transport of α-mannosidase by autophagic pathways: structural basis for cargo recognition by Atg19 and Atg34. J. Biol. Chem. 285, 30026-30033 (2010).
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 30026-30033
-
-
Watanabe, Y.1
-
117
-
-
79953850827
-
Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae
-
Yuga, M., Gomi, K., Klionsky, D. J. & Shintani, T. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J. Biol. Chem. 286, 13704-13713 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 13704-13713
-
-
Yuga, M.1
Gomi, K.2
Klionsky, D.J.3
Shintani, T.4
-
118
-
-
84905821965
-
Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases
-
Hyttinen, J. M. et al. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res. Rev. 18, 16-28 (2014).
-
(2014)
Ageing Res. Rev.
, vol.18
, pp. 16-28
-
-
Hyttinen, J.M.1
-
120
-
-
77956178939
-
Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance
-
Orenstein, S. J. & Cuervo, A. M. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin. Cell Dev. Biol. 21, 719-726 (2010).
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 719-726
-
-
Orenstein, S.J.1
Cuervo, A.M.2
-
121
-
-
75649109299
-
Something old, something new: Plant innate immunity and autophagy
-
Seay, M., Hayward, A. P., Tsao, J. & Dinesh-Kumar, S. P. Something old, something new: plant innate immunity and autophagy. Curr. Top. Microbiol. Immunol. 335, 287-306 (2009).
-
(2009)
Curr. Top. Microbiol. Immunol.
, vol.335
, pp. 287-306
-
-
Seay, M.1
Hayward, A.P.2
Tsao, J.3
Dinesh-Kumar, S.P.4
-
122
-
-
84907587227
-
Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy
-
Changou, C. A. et al. Arginine starvation-associated atypical cellular death involves mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. Proc. Natl Acad. Sci. USA 111, 14147-14152 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 14147-14152
-
-
Changou, C.A.1
-
123
-
-
84896955758
-
"Ciliophagy": The consumption of cilia components by autophagy
-
Cloonan, S. M., Lam, H. C., Ryter, S. W. & Choi, A. M. "Ciliophagy": the consumption of cilia components by autophagy. Autophagy 10, 532-534 (2014).
-
(2014)
Autophagy
, vol.10
, pp. 532-534
-
-
Cloonan, S.M.1
Lam, H.C.2
Ryter, S.W.3
Choi, A.M.4
-
124
-
-
84865220380
-
Extracellular M. Tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway
-
Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803-815 (2012).
-
(2012)
Cell
, vol.150
, pp. 803-815
-
-
Watson, R.O.1
Manzanillo, P.S.2
Cox, J.S.3
-
125
-
-
84938782094
-
A role for macro-ER-phagy in ER quality control
-
Lipatova, Z. & Segev, N. A role for macro-ER-phagy in ER quality control. PLoS Genet. 11, e1005390 (2015).
-
(2015)
PLoS Genet.
, vol.11
, pp. e1005390
-
-
Lipatova, Z.1
Segev, N.2
-
126
-
-
84946615455
-
Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis
-
Mancias, J. D. et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife 4, e10308 (2015).
-
(2015)
ELife
, vol.4
, pp. e10308
-
-
Mancias, J.D.1
-
127
-
-
84899746695
-
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
-
Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105-109 (2014).
-
(2014)
Nature
, vol.509
, pp. 105-109
-
-
Mancias, J.D.1
Wang, X.2
Gygi, S.P.3
Harper, J.W.4
Kimmelman, A.C.5
-
128
-
-
80053338210
-
Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1
-
Jiang, S., Wells, C. D. & Roach, P. J. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun. 413, 420-425 (2011).
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.413
, pp. 420-425
-
-
Jiang, S.1
Wells, C.D.2
Roach, P.J.3
-
129
-
-
3843079663
-
Glycogen autophagy
-
Kotoulas, O. B., Kalamidas, S. A. & Kondomerkos, D. J. Glycogen autophagy. Microsc. Res. Tech. 64, 10-20 (2004).
-
(2004)
Microsc. Res. Tech.
, vol.64
, pp. 10-20
-
-
Kotoulas, O.B.1
Kalamidas, S.A.2
Kondomerkos, D.J.3
-
130
-
-
33747363269
-
Glycogen autophagy in glucose homeostasis
-
Kotoulas, O. B., Kalamidas, S. A. & Kondomerkos, D. J. Glycogen autophagy in glucose homeostasis. Pathol. Res. Pract. 202, 631-638 (2006).
-
(2006)
Pathol. Res. Pract.
, vol.202
, pp. 631-638
-
-
Kotoulas, O.B.1
Kalamidas, S.A.2
Kondomerkos, D.J.3
-
131
-
-
84879349589
-
Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function
-
Buchan, J. R., Kolaitis, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461-1474 (2013).
-
(2013)
Cell
, vol.153
, pp. 1461-1474
-
-
Buchan, J.R.1
Kolaitis, R.M.2
Taylor, J.P.3
Parker, R.4
-
132
-
-
84870995648
-
Regulation of lipid stores and metabolism by lipophagy
-
Liu, K. & Czaja, M. J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3-11 (2013).
-
(2013)
Cell Death Differ.
, vol.20
, pp. 3-11
-
-
Liu, K.1
Czaja, M.J.2
-
133
-
-
84892536117
-
Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
-
van Zutphen, T. et al. Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 25, 290-301 (2014).
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 290-301
-
-
Van Zutphen, T.1
-
134
-
-
84883291965
-
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury
-
Maejima, I. et al. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J. 32, 2336-2347 (2013).
-
(2013)
EMBO J.
, vol.32
, pp. 2336-2347
-
-
Maejima, I.1
-
135
-
-
84880108306
-
Spatiotemporally controlled induction of autophagy-mediated lysosome turnover
-
Hung, Y. H., Chen, L. M., Yang, J. Y. & Yang, W. Y. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat. Commun. 4, 2111 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 2111
-
-
Hung, Y.H.1
Chen, L.M.2
Yang, J.Y.3
Yang, W.Y.4
-
136
-
-
80053564250
-
Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity
-
Kuo, T. C. et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat. Cell Biol. 13, 1214-1223 (2011).
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1214-1223
-
-
Kuo, T.C.1
-
137
-
-
58149344946
-
Midbody ring disposal by autophagy is a post-abscission event of cytokinesis
-
Pohl, C. & Jentsch, S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 11, 65-70 (2009).
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 65-70
-
-
Pohl, C.1
Jentsch, S.2
-
138
-
-
84940721729
-
Mitophagy in yeast: Molecular mechanisms and physiological role
-
Kanki, T., Furukawa, K. & Yamashita, S. Mitophagy in yeast: molecular mechanisms and physiological role. Biochim. Biophys. Acta 1853, 2756-2765 (2015).
-
(2015)
Biochim. Biophys. Acta
, vol.1853
, pp. 2756-2765
-
-
Kanki, T.1
Furukawa, K.2
Yamashita, S.3
-
139
-
-
84903817207
-
Receptor-mediated mitophagy in yeast and mammalian systems
-
Liu, L., Sakakibara, K., Chen, Q. & Okamoto, K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 24, 787-795 (2014).
-
(2014)
Cell Res.
, vol.24
, pp. 787-795
-
-
Liu, L.1
Sakakibara, K.2
Chen, Q.3
Okamoto, K.4
-
140
-
-
84940718398
-
Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae
-
Muller, M., Lu, K. & Reichert, A. S. Mitophagy and mitochondrial dynamics in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1853, 2766-2774 (2015).
-
(2015)
Biochim. Biophys. Acta
, vol.1853
, pp. 2766-2774
-
-
Muller, M.1
Lu, K.2
Reichert, A.S.3
-
141
-
-
84908065760
-
Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation
-
Wong, Y. C. & Holzbaur, E. L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl Acad. Sci. USA 111, E4439-E4448 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E4439-E4448
-
-
Wong, Y.C.1
Holzbaur, E.L.2
-
143
-
-
84942514110
-
Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves
-
Gomez-Sanchez, J. A. et al. Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J. Cell Biol. 210, 153-168 (2015).
-
(2015)
J. Cell Biol.
, vol.210
, pp. 153-168
-
-
Gomez-Sanchez, J.A.1
-
144
-
-
57349198328
-
Piecemeal microautophagy of the nucleus requires the core macroautophagy genes
-
Krick, R. et al. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol. Biol. Cell 19, 4492-4505 (2008).
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 4492-4505
-
-
Krick, R.1
-
145
-
-
84885441274
-
Nucleophagy at a glance
-
Mijaljica, D. & Devenish, R. J. Nucleophagy at a glance. J. Cell Sci. 126, 4325-4330 (2013).
-
(2013)
J. Cell Sci.
, vol.126
, pp. 4325-4330
-
-
Mijaljica, D.1
Devenish, R.J.2
-
146
-
-
80053390952
-
Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors
-
Zientara-Rytter, K. et al. Identification and functional analysis of Joka2, a tobacco member of the family of selective autophagy cargo receptors. Autophagy 7, 1145-1158 (2011).
-
(2011)
Autophagy
, vol.7
, pp. 1145-1158
-
-
Zientara-Rytter, K.1
-
147
-
-
79953100002
-
The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism
-
Vanhee, C., Zapotoczny, G., Masquelier, D., Ghislain, M. & Batoko, H. The Arabidopsis multistress regulator TSPO is a heme binding membrane protein and a potential scavenger of porphyrins via an autophagy-dependent degradation mechanism. Plant Cell 23, 785-805 (2011).
-
(2011)
Plant Cell
, vol.23
, pp. 785-805
-
-
Vanhee, C.1
Zapotoczny, G.2
Masquelier, D.3
Ghislain, M.4
Batoko, H.5
-
148
-
-
84912061970
-
Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole
-
Michaeli, S., Honig, A., Levanony, H., Peled-Zehavi, H. & Galili, G. Arabidopsis ATG8-INTERACTING PROTEIN1 is involved in autophagy-dependent vesicular trafficking of plastid proteins to the vacuole. Plant Cell 26, 4084-4101 (2014).
-
(2014)
Plant Cell
, vol.26
, pp. 4084-4101
-
-
Michaeli, S.1
Honig, A.2
Levanony, H.3
Peled-Zehavi, H.4
Galili, G.5
-
149
-
-
84937574462
-
Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/Ubiquitin receptor RPN10 in Arabidopsis
-
Marshall, R. S., Li, F., Gemperline, D. C., Book, A. J. & Vierstra, R. D. Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/Ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58, 1053-1066 (2015).
-
(2015)
Mol. Cell
, vol.58
, pp. 1053-1066
-
-
Marshall, R.S.1
Li, F.2
Gemperline, D.C.3
Book, A.J.4
Vierstra, R.D.5
-
150
-
-
43049138051
-
Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
-
Kraft, C., Deplazes, A., Sohrmann, M. & Peter, M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10, 602-610 (2008).
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 602-610
-
-
Kraft, C.1
Deplazes, A.2
Sohrmann, M.3
Peter, M.4
-
151
-
-
77954212973
-
Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy
-
Ossareh-Nazari, B. et al. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep. 11, 548-554 (2010).
-
(2010)
EMBO Rep.
, vol.11
, pp. 548-554
-
-
Ossareh-Nazari, B.1
-
152
-
-
84907599058
-
TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition
-
Mandell, M. A. et al. TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev. Cell 30, 394-409 (2014).
-
(2014)
Dev. Cell
, vol.30
, pp. 394-409
-
-
Mandell, M.A.1
-
153
-
-
82555187810
-
Image-based genome-wide siRNA screen identifies selective autophagy factors
-
Orvedahl, A. et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113-117 (2011).
-
(2011)
Nature
, vol.480
, pp. 113-117
-
-
Orvedahl, A.1
-
154
-
-
84936942427
-
The role of autophagy in bacterial infections
-
Castrejon-Jimenez, N. S., Leyva-Paredes, K., Hernandez-Gonzalez, J. C., Luna-Herrera, J. & Garcia-Perez, B. E. The role of autophagy in bacterial infections. Biosci. Trends 9, 149-159 (2015).
-
(2015)
Biosci. Trends
, vol.9
, pp. 149-159
-
-
Castrejon-Jimenez, N.S.1
Leyva-Paredes, K.2
Hernandez-Gonzalez, J.C.3
Luna-Herrera, J.4
Garcia-Perez, B.E.5
-
155
-
-
84857071710
-
Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion
-
Thurston, T. L., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418 (2012).
-
(2012)
Nature
, vol.482
, pp. 414-418
-
-
Thurston, T.L.1
Wandel, M.P.2
Von Muhlinen, N.3
Foeglein, A.4
Randow, F.5
-
156
-
-
84861059844
-
Zymophagy: Selective autophagy of secretory granules
-
Vaccaro, M. I. Zymophagy: selective autophagy of secretory granules. Int. J. Cell Biol. 2012, 396705 (2012).
-
(2012)
Int. J. Cell Biol.
, vol.2012
, pp. 396705
-
-
Vaccaro, M.I.1
-
157
-
-
0037119448
-
Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy
-
Nice, D. C., Sato, T. K., Stromhaug, P. E., Emr, S. D. & Klionsky, D. J. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J. Biol. Chem. 277, 30198-30207 (2002).
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 30198-30207
-
-
Nice, D.C.1
Sato, T.K.2
Stromhaug, P.E.3
Emr, S.D.4
Klionsky, D.J.5
-
158
-
-
84926253496
-
PI3P binding by Atg21 organises Atg8 lipidation
-
Juris, L. et al. PI3P binding by Atg21 organises Atg8 lipidation. EMBO J. 34, 955-973 (2015).
-
(2015)
EMBO J.
, vol.34
, pp. 955-973
-
-
Juris, L.1
-
159
-
-
3342951135
-
Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase i by selective autophagy
-
Stromhaug, P. E., Reggiori, F., Guan, J., Wang, C. W. & Klionsky, D. J. Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol. Biol. Cell 15, 3553-3566 (2004).
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 3553-3566
-
-
Stromhaug, P.E.1
Reggiori, F.2
Guan, J.3
Wang, C.W.4
Klionsky, D.J.5
-
160
-
-
0034682772
-
Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting
-
Scott, S. V. et al. Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J. Biol. Chem. 275, 25840-25849 (2000).
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 25840-25849
-
-
Scott, S.V.1
-
161
-
-
0037737745
-
Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion
-
Reggiori, F., Wang, C. W., Stromhaug, P. E., Shintani, T. & Klionsky, D. J. Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion. J. Biol. Chem. 278, 5009-5020 (2003).
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 5009-5020
-
-
Reggiori, F.1
Wang, C.W.2
Stromhaug, P.E.3
Shintani, T.4
Klionsky, D.J.5
-
162
-
-
28644447348
-
The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae
-
Reggiori, F., Monastyrska, I., Shintani, T. & Klionsky, D. J. The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 16, 5843-5856 (2005).
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 5843-5856
-
-
Reggiori, F.1
Monastyrska, I.2
Shintani, T.3
Klionsky, D.J.4
-
163
-
-
33845692364
-
Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast
-
He, C. et al. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J. Cell Biol. 175, 925-935 (2006).
-
(2006)
J. Cell Biol.
, vol.175
, pp. 925-935
-
-
He, C.1
-
164
-
-
48249132417
-
Arp2 links autophagic machinery with the actin cytoskeleton
-
Monastyrska, I. et al. Arp2 links autophagic machinery with the actin cytoskeleton. Mol. Biol. Cell 19, 1962-1975 (2008).
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1962-1975
-
-
Monastyrska, I.1
-
165
-
-
84899900344
-
Atg21 regulates pexophagy via its PI(3)P-binding activity in Pichia pastoris
-
Tamura, N., Oku, M. & Sakai, Y. Atg21 regulates pexophagy via its PI(3)P-binding activity in Pichia pastoris. FEMS Yeast Res. 14, 435-444 (2014).
-
(2014)
FEMS Yeast Res.
, vol.14
, pp. 435-444
-
-
Tamura, N.1
Oku, M.2
Sakai, Y.3
-
166
-
-
12844250563
-
A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate
-
Ano, Y. et al. A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol. Biol. Cell 16, 446-457 (2005).
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 446-457
-
-
Ano, Y.1
-
167
-
-
0038263977
-
Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain
-
Oku, M. et al. Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. EMBO J. 22, 3231-3241 (2003).
-
(2003)
EMBO J.
, vol.22
, pp. 3231-3241
-
-
Oku, M.1
-
168
-
-
79251558467
-
Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris
-
Nazarko, V. Y. et al. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 7, 375-385 (2011).
-
(2011)
Autophagy
, vol.7
, pp. 375-385
-
-
Nazarko, V.Y.1
-
169
-
-
33748433784
-
Early and late molecular events of glucose-induced pexophagy in Pichia pastoris require Vac8
-
Fry, M. R., Thomson, J. M., Tomasini, A. J. & Dunn, W. A. Jr. Early and late molecular events of glucose-induced pexophagy in Pichia pastoris require Vac8. Autophagy 2, 280-288 (2006).
-
(2006)
Autophagy
, vol.2
, pp. 280-288
-
-
Fry, M.R.1
Thomson, J.M.2
Tomasini, A.J.3
Dunn, W.A.4
-
170
-
-
12444343145
-
Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast
-
Hamasaki, M., Noda, T., Baba, M. & Ohsumi, Y. Starvation triggers the delivery of the endoplasmic reticulum to the vacuole via autophagy in yeast. Traffic 6, 56-65 (2005).
-
(2005)
Traffic
, vol.6
, pp. 56-65
-
-
Hamasaki, M.1
Noda, T.2
Baba, M.3
Ohsumi, Y.4
|