-
1
-
-
84864485324
-
Plant peroxisomes: biogenesis and function
-
Hu J., Baker A., Bartel B., Linka N., Mullen R.T., Reumann S., Zolman B.K. Plant peroxisomes: biogenesis and function. Plant Cell 2012, 24(6):2279-2303. http://www.ncbi.nlm.nih.gov/pubmed/22669882, 10.1105/tpc.112.096586.
-
(2012)
Plant Cell
, vol.24
, Issue.6
, pp. 2279-2303
-
-
Hu, J.1
Baker, A.2
Bartel, B.3
Linka, N.4
Mullen, R.T.5
Reumann, S.6
Zolman, B.K.7
-
2
-
-
0037383706
-
The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae
-
Hiltunen J.K., Mursula A.M., Rottensteiner H., Wierenga R.K., Kastaniotis A.J., Gurvitz A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews 2003, 27(1):35-64. http://www.ncbi.nlm.nih.gov/pubmed/12697341, 10.1016/S0168-6445(03)00017-2.
-
(2003)
FEMS Microbiology Reviews
, vol.27
, Issue.1
, pp. 35-64
-
-
Hiltunen, J.K.1
Mursula, A.M.2
Rottensteiner, H.3
Wierenga, R.K.4
Kastaniotis, A.J.5
Gurvitz, A.6
-
3
-
-
84880815442
-
Environmentally regulated glycosome protein composition in the African trypanosome
-
Bauer S., Morris J.C., Morris M.T. Environmentally regulated glycosome protein composition in the African trypanosome. Eukaryotic Cell 2013, 12(8):1072-1079. http://www.ncbi.nlm.nih.gov/pubmed/23709182, 10.1128/EC.00086-13.
-
(2013)
Eukaryotic Cell
, vol.12
, Issue.8
, pp. 1072-1079
-
-
Bauer, S.1
Morris, J.C.2
Morris, M.T.3
-
5
-
-
84895098727
-
Peroxisomal metabolism and oxidative stress
-
Nordgren M., Fransen M. Peroxisomal metabolism and oxidative stress. Biochimie 2014, 98:56-62. http://www.ncbi.nlm.nih.gov/pubmed/23933092, 10.1016/j.biochi.2013.07.026.
-
(2014)
Biochimie
, vol.98
, pp. 56-62
-
-
Nordgren, M.1
Fransen, M.2
-
6
-
-
84895142640
-
The peroxisomal receptor dislocation pathway: to the exportomer and beyond
-
Platta H.W., Hagen S., Reidick C., Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 2014, 98:16-28. http://www.ncbi.nlm.nih.gov/pubmed/24345375, 10.1016/j.biochi.2013.12.009.
-
(2014)
Biochimie
, vol.98
, pp. 16-28
-
-
Platta, H.W.1
Hagen, S.2
Reidick, C.3
Erdmann, R.4
-
7
-
-
0035958005
-
Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candidae boidinii
-
Horiguchi H., Yurimoto H., Kato N., Sakai Y. Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candidae boidinii. Journal of Biological Chemistry 2001, 276(17):14279-14288. http://www.ncbi.nlm.nih.gov/pubmed/11278957, 10.1074/jbc.M011661200.
-
(2001)
Journal of Biological Chemistry
, vol.276
, Issue.17
, pp. 14279-14288
-
-
Horiguchi, H.1
Yurimoto, H.2
Kato, N.3
Sakai, Y.4
-
8
-
-
0035681941
-
Peroxisomal catalase in the methylotrophic yeast Candidae boidinii: transport efficiency and metabolic significance
-
Horiguchi H., Yurimoto H., Goh T., Nakagawa T., Kato N., Sakai Y. Peroxisomal catalase in the methylotrophic yeast Candidae boidinii: transport efficiency and metabolic significance. Journal of Bacteriology 2001, 183(21):6372-6383. http://www.ncbi.nlm.nih.gov/pubmed/11591682, 10.1128/JB.183.21.6372-6383.2001.
-
(2001)
Journal of Bacteriology
, vol.183
, Issue.21
, pp. 6372-6383
-
-
Horiguchi, H.1
Yurimoto, H.2
Goh, T.3
Nakagawa, T.4
Kato, N.5
Sakai, Y.6
-
9
-
-
2942724221
-
Dual targeting of yeast catalase A to peroxisomes and mitochondria
-
Petrova V.Y., Drescher D., Kujumdzieva A.V., Schmitt M.J. Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochemical Journal 2004, 380(2):393-400. http://www.ncbi.nlm.nih.gov/pubmed/14998369, 10.1042/BJ20040042.
-
(2004)
Biochemical Journal
, vol.380
, Issue.2
, pp. 393-400
-
-
Petrova, V.Y.1
Drescher, D.2
Kujumdzieva, A.V.3
Schmitt, M.J.4
-
10
-
-
84863983857
-
Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium
-
Ohdate T., Inoue Y. Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium. Biochimica et Biophysica Acta 2012, 1821(9):1295-1305. http://www.ncbi.nlm.nih.gov/pubmed/22659048, 10.1016/j.bbalip.2012.05.004.
-
(2012)
Biochimica et Biophysica Acta
, vol.1821
, Issue.9
, pp. 1295-1305
-
-
Ohdate, T.1
Inoue, Y.2
-
11
-
-
84864065911
-
Transfer of metabolites across the peroxisomal membrane
-
Antonenkov V.D., Hiltunen J.K. Transfer of metabolites across the peroxisomal membrane. Biochimica et Biophysica Acta 2012, 1822(9):1374-1386. http://www.ncbi.nlm.nih.gov/pubmed/22206997, 10.1016/j.bbadis.2011.12.011.
-
(2012)
Biochimica et Biophysica Acta
, vol.1822
, Issue.9
, pp. 1374-1386
-
-
Antonenkov, V.D.1
Hiltunen, J.K.2
-
12
-
-
84920192732
-
The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis
-
Elbaz-Alon Y., Morgan B., Clancy A., Amoako T.N., Zalckvar E., Dick T.P., Schwappach B., Schuldiner M. The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis. FEMS Yeast Research 2014, 14:1055-1067. http://www.ncbi.nlm.nih.gov/pubmed/25130273, 10.1111/1567-1364.12196.
-
(2014)
FEMS Yeast Research
, vol.14
, pp. 1055-1067
-
-
Elbaz-Alon, Y.1
Morgan, B.2
Clancy, A.3
Amoako, T.N.4
Zalckvar, E.5
Dick, T.P.6
Schwappach, B.7
Schuldiner, M.8
-
13
-
-
0037053371
-
The yeast glutaredoxins are active as glutathione peroxidases
-
Collinson E.J., Wheeler G.L., Garrido E.O., Avery A.M., Avery S.V., Grant C.M. The yeast glutaredoxins are active as glutathione peroxidases. Journal of Biological Chemistry 2002, 277(19):16712-16717. http://www.ncbi.nlm.nih.gov/pubmed/11875065, 10.1074/jbc.M111686200.
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.19
, pp. 16712-16717
-
-
Collinson, E.J.1
Wheeler, G.L.2
Garrido, E.O.3
Avery, A.M.4
Avery, S.V.5
Grant, C.M.6
-
14
-
-
33750380347
-
A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism
-
Barreto L., Garcerá A., Jansson K., Sunnerhagen P., Herrero E. A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism. Eukaryotic Cell 2006, 5(10):1748-1759. http://www.ncbi.nlm.nih.gov/pubmed/16936141, 10.1128/EC.00216-06.
-
(2006)
Eukaryotic Cell
, vol.5
, Issue.10
, pp. 1748-1759
-
-
Barreto, L.1
Garcerá, A.2
Jansson, K.3
Sunnerhagen, P.4
Herrero, E.5
-
15
-
-
0035212728
-
Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells
-
Corpas F.J., Barroso J.B., del Río L.A. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Sciences 2001, 6(4):145-150. http://www.ncbi.nlm.nih.gov/pubmed/11286918, 10.1016/S1360-1385(01)01898-2.
-
(2001)
Trends in Plant Sciences
, vol.6
, Issue.4
, pp. 145-150
-
-
Corpas, F.J.1
Barroso, J.B.2
del Río, L.A.3
-
16
-
-
0347296108
-
Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor
-
Kamigaki A., Mano S., Terauchi K., Nishi Y., Tachibe-Kinoshita Y., Nito K., Kondo M., Hayashi M., Nishimura M., Esaka M. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor. Plant Journal 2003, 33(1):161-175. http://www.ncbi.nlm.nih.gov/pubmed/12943550, 10.1046/j.0960-7412.2003.001605.x.
-
(2003)
Plant Journal
, vol.33
, Issue.1
, pp. 161-175
-
-
Kamigaki, A.1
Mano, S.2
Terauchi, K.3
Nishi, Y.4
Tachibe-Kinoshita, Y.5
Nito, K.6
Kondo, M.7
Hayashi, M.8
Nishimura, M.9
Esaka, M.10
-
17
-
-
44349154132
-
Plant catalase is imported into peroxisomes by Pex5p but is distinct from typical PTS1 import
-
Oshima Y., Kamigaki A., Nakamori C., Mano S., Hayashi M., Nishimura M., Esaka M. Plant catalase is imported into peroxisomes by Pex5p but is distinct from typical PTS1 import. Plant & Cell Physiology 2008, 49(4):671-677. http://www.ncbi.nlm.nih.gov/pubmed/18308759, 10.1093/pcp/pcn038.
-
(2008)
Plant & Cell Physiology
, vol.49
, Issue.4
, pp. 671-677
-
-
Oshima, Y.1
Kamigaki, A.2
Nakamori, C.3
Mano, S.4
Hayashi, M.5
Nishimura, M.6
Esaka, M.7
-
18
-
-
77953220024
-
Ankyrin repeat-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ascorbate PEROXIDASE3 in Arabidopsis
-
Shen G., Kuppu S., Venkataramani S., Wang J., Yan J., Qiu X., Zhang H. Ankyrin repeat-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ascorbate PEROXIDASE3 in Arabidopsis. Plant Cell 2010, 22(3):811-831. http://www.ncbi.nlm.nih.gov/pubmed/20215589, 10.1105/tpc.109.065979.
-
(2010)
Plant Cell
, vol.22
, Issue.3
, pp. 811-831
-
-
Shen, G.1
Kuppu, S.2
Venkataramani, S.3
Wang, J.4
Yan, J.5
Qiu, X.6
Zhang, H.7
-
19
-
-
31044444190
-
Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase
-
Lisenbee C.S., Lingard M.J., Trelease R.N. Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant Journal 2005, 43(6):900-914. http://www.ncbi.nlm.nih.gov/pubmed/16146528, 10.1111/j.1365-313X.2005.02503.x.
-
(2005)
Plant Journal
, vol.43
, Issue.6
, pp. 900-914
-
-
Lisenbee, C.S.1
Lingard, M.J.2
Trelease, R.N.3
-
20
-
-
37249016441
-
Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms
-
Reumann S., Babujee L., Ma C., Wienkoop S., Siemsen T., Antonicelli G.E., Rasche N., Lüder F., Weckwerth W., Jahn O. Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 2007, 19(10):3170-3193. http://www.ncbi.nlm.nih.gov/pubmed/17951448, 10.1105/tpc.107.050989.
-
(2007)
Plant Cell
, vol.19
, Issue.10
, pp. 3170-3193
-
-
Reumann, S.1
Babujee, L.2
Ma, C.3
Wienkoop, S.4
Siemsen, T.5
Antonicelli, G.E.6
Rasche, N.7
Lüder, F.8
Weckwerth, W.9
Jahn, O.10
-
21
-
-
66149148256
-
In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes
-
Reumann S., Quan S., Aung K., Yang P., Manandhar-Shrestha K., Holbrook D., Linka N., Switzenberg R., Wilkerson C.G., Weber A.P., et al. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiology 2009, 150(1):125-143. http://www.ncbi.nlm.nih.gov/pubmed/19329564, 10.1104/pp.109.137703.
-
(2009)
Plant Physiology
, vol.150
, Issue.1
, pp. 125-143
-
-
Reumann, S.1
Quan, S.2
Aung, K.3
Yang, P.4
Manandhar-Shrestha, K.5
Holbrook, D.6
Linka, N.7
Switzenberg, R.8
Wilkerson, C.G.9
Weber, A.P.10
-
22
-
-
84863082820
-
Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis
-
Huang C.H., Kuo W.Y., Weiss C., Jinn T.L. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis. Plant Physiology 2012, 158(2):737-746. http://www.ncbi.nlm.nih.gov/pubmed/22186608, 10.1104/pp.111.190223.
-
(2012)
Plant Physiology
, vol.158
, Issue.2
, pp. 737-746
-
-
Huang, C.H.1
Kuo, W.Y.2
Weiss, C.3
Jinn, T.L.4
-
23
-
-
64949203222
-
Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily
-
Dixon D.P., Hawkins T., Hussey P.J., Edwards R. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. Journal of Experimental Botany 2009, 60(4):1207-1218. http://www.ncbi.nlm.nih.gov/pubmed/19174456, 10.1093/jxb/ern365.
-
(2009)
Journal of Experimental Botany
, vol.60
, Issue.4
, pp. 1207-1218
-
-
Dixon, D.P.1
Hawkins, T.2
Hussey, P.J.3
Edwards, R.4
-
24
-
-
67949122010
-
Turnover of organelles by autophagy in yeast
-
Farré J.C., Krick R., Subramani S., Thumm M. Turnover of organelles by autophagy in yeast. Current Opinion in Cell Biology 2009, 21(4):522-530. http://www.ncbi.nlm.nih.gov/pubmed/19515549, 10.1016/j.ceb.2009.04.015.
-
(2009)
Current Opinion in Cell Biology
, vol.21
, Issue.4
, pp. 522-530
-
-
Farré, J.C.1
Krick, R.2
Subramani, S.3
Thumm, M.4
-
25
-
-
77950470469
-
Molecular mechanism and physiological role of pexophagy
-
Manjithaya R., Nazarko T.Y., Farré J.C., Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Letters 2010, 584(7):1367-1373. http://www.ncbi.nlm.nih.gov/pubmed/20083110, 10.1016/j.febslet.2010.01.019.
-
(2010)
FEBS Letters
, vol.584
, Issue.7
, pp. 1367-1373
-
-
Manjithaya, R.1
Nazarko, T.Y.2
Farré, J.C.3
Subramani, S.4
-
26
-
-
77949883591
-
Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress
-
Jung S., Marelli M., Rachubinski R.A., Goodlett D.R., Aitchison J.D. Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. Journal of Biological Chemistry 2010, 285(9):6739-6749. http://www.ncbi.nlm.nih.gov/pubmed/20026609, 10.1074/jbc.M109.058552.
-
(2010)
Journal of Biological Chemistry
, vol.285
, Issue.9
, pp. 6739-6749
-
-
Jung, S.1
Marelli, M.2
Rachubinski, R.A.3
Goodlett, D.R.4
Aitchison, J.D.5
-
27
-
-
79957626987
-
Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol
-
Meyer T., Hölscher C., Schwöppe C., von Schaewen A. Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol. Plant Journal 2011, 66(5):745-758. http://www.ncbi.nlm.nih.gov/pubmed/21309870, 10.1111/j.1365-313X.2011.04535.x.
-
(2011)
Plant Journal
, vol.66
, Issue.5
, pp. 745-758
-
-
Meyer, T.1
Hölscher, C.2
Schwöppe, C.3
von Schaewen, A.4
-
28
-
-
77954945975
-
Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch
-
Pye V.E., Christensen C.E., Dyer J.H., Arent S., Henriksen A. Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. Journal of Biological Chemistry 2010, 285(31):24078-24088. http://www.ncbi.nlm.nih.gov/pubmed/20463027, 10.1074/jbc.M110.106013.
-
(2010)
Journal of Biological Chemistry
, vol.285
, Issue.31
, pp. 24078-24088
-
-
Pye, V.E.1
Christensen, C.E.2
Dyer, J.H.3
Arent, S.4
Henriksen, A.5
-
29
-
-
33646202811
-
The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation
-
Sundaramoorthy R., Micossi E., Alphey M.S., Germain V., Bryce J.H., Smith S.M., Leonard G.A., Hunter W.N. The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation. Journal of Molecular Biology 2006, 359(2):347-357. http://www.ncbi.nlm.nih.gov/pubmed/16630629, 10.1016/j.jmb.2006.03.032.
-
(2006)
Journal of Molecular Biology
, vol.359
, Issue.2
, pp. 347-357
-
-
Sundaramoorthy, R.1
Micossi, E.2
Alphey, M.S.3
Germain, V.4
Bryce, J.H.5
Smith, S.M.6
Leonard, G.A.7
Hunter, W.N.8
-
30
-
-
84884579723
-
Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5
-
Ma C., Hagstrom D., Polley S.G., Subramani S. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. Journal of Biological Chemistry 2013, 288(38):27220-27231. http://www.ncbi.nlm.nih.gov/pubmed/23902771, 10.1074/jbc.M113.492694.
-
(2013)
Journal of Biological Chemistry
, vol.288
, Issue.38
, pp. 27220-27231
-
-
Ma, C.1
Hagstrom, D.2
Polley, S.G.3
Subramani, S.4
-
31
-
-
53049103994
-
Absence of the peroxiredoxin Pmp20 causes peroxisomal protein leakage and necrotic cell death
-
Bener Aksam E., Jungwirth H., Kohlwein S.D., Ring J., Madeo F., Veenhuis M., van der Klei I.J. Absence of the peroxiredoxin Pmp20 causes peroxisomal protein leakage and necrotic cell death. Free Radical Biology and Medicine 2008, 45(8):1115-1124. http://www.ncbi.nlm.nih.gov/pubmed/18694816, 10.1016/j.freeradbiomed.2008.07.010.
-
(2008)
Free Radical Biology and Medicine
, vol.45
, Issue.8
, pp. 1115-1124
-
-
Bener Aksam, E.1
Jungwirth, H.2
Kohlwein, S.D.3
Ring, J.4
Madeo, F.5
Veenhuis, M.6
van der Klei, I.J.7
-
32
-
-
0029792856
-
Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division
-
Marshall P.A., Dyer J.M., Quick M.E., Goodman J.M. Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. Journal of Cell Biology 1996, 135(1):123-137. http://www.ncbi.nlm.nih.gov/pubmed/8858168, 10.1083/jcb.135.1.123.
-
(1996)
Journal of Cell Biology
, vol.135
, Issue.1
, pp. 123-137
-
-
Marshall, P.A.1
Dyer, J.M.2
Quick, M.E.3
Goodman, J.M.4
-
33
-
-
69949102267
-
The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p
-
Ma C., Schumann U., Rayapuram N., Subramani S. The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Molecular Biology of the Cell 2009, 20(16):3680-3689. http://www.ncbi.nlm.nih.gov/pubmed/19570913, 10.1091/mbc.E09-01-0037.
-
(2009)
Molecular Biology of the Cell
, vol.20
, Issue.16
, pp. 3680-3689
-
-
Ma, C.1
Schumann, U.2
Rayapuram, N.3
Subramani, S.4
-
34
-
-
77649267086
-
The peroxisomal importomer constitutes a large and highly dynamic pore
-
Meinecke M., Cizmowski C., Schliebs W., Krüger V., Beck S., Wagner R., Erdmann R. The peroxisomal importomer constitutes a large and highly dynamic pore. Nature Cell Biology 2010, 12(3):273-277. http://www.ncbi.nlm.nih.gov/pubmed/20154681, 10.1038/ncb2027.
-
(2010)
Nature Cell Biology
, vol.12
, Issue.3
, pp. 273-277
-
-
Meinecke, M.1
Cizmowski, C.2
Schliebs, W.3
Krüger, V.4
Beck, S.5
Wagner, R.6
Erdmann, R.7
-
35
-
-
34247487864
-
Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling
-
Platta H.W., El Magraoui F., Schlee D., Grunau S., Girzalsky W., Erdmann R. Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. Journal of Cell Biology 2007, 177(2):197-204. http://www.ncbi.nlm.nih.gov/pubmed/17452527, 10.1083/jcb.200611012.
-
(2007)
Journal of Cell Biology
, vol.177
, Issue.2
, pp. 197-204
-
-
Platta, H.W.1
El Magraoui, F.2
Schlee, D.3
Grunau, S.4
Girzalsky, W.5
Erdmann, R.6
-
36
-
-
70350447348
-
Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import
-
Platta H.W., El Magraoui F., Bäumer B.E., Schlee D., Girzalsky W., Erdmann R. Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Molecular and Cellular Biology 2009, 29(20):5505-5516. http://www.ncbi.nlm.nih.gov/pubmed/19687296, 10.1128/MCB.00388-09.
-
(2009)
Molecular and Cellular Biology
, vol.29
, Issue.20
, pp. 5505-5516
-
-
Platta, H.W.1
El Magraoui, F.2
Bäumer, B.E.3
Schlee, D.4
Girzalsky, W.5
Erdmann, R.6
-
37
-
-
84889598580
-
PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein
-
Apanasets O., Grou C.P., Van Veldhoven P.P., Brees C., Wang B., Nordgren M., Dodt G., Azevedo J.E., Fransen M. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 2014, 15(1):94-103. http://www.ncbi.nlm.nih.gov/pubmed/24118911, 10.1111/tra.12129.
-
(2014)
Traffic
, vol.15
, Issue.1
, pp. 94-103
-
-
Apanasets, O.1
Grou, C.P.2
Van Veldhoven, P.P.3
Brees, C.4
Wang, B.5
Nordgren, M.6
Dodt, G.7
Azevedo, J.E.8
Fransen, M.9
-
38
-
-
84864992299
-
Peroxisomal proteostasis involves a Lon family protein that functions as protease and chaperone
-
Bartoszewska M., Williams C., Kikhney A., Opaliński Ł., van Roermund C.W., de Boer R., Veenhuis M., van der Klei I.J. Peroxisomal proteostasis involves a Lon family protein that functions as protease and chaperone. Journal of Biological Chemistry 2012, 287(33):27380-27395. http://www.ncbi.nlm.nih.gov/pubmed/22733816, 10.1074/jbc.M112.381566.
-
(2012)
Journal of Biological Chemistry
, vol.287
, Issue.33
, pp. 27380-27395
-
-
Bartoszewska, M.1
Williams, C.2
Kikhney, A.3
Opaliński, Ł.4
van Roermund, C.W.5
de Boer, R.6
Veenhuis, M.7
van der Klei, I.J.8
-
39
-
-
84899115843
-
Chaperone and protease functions of LON protease 2 modulate the peroxisomal transition and degradation with autophagy
-
Goto-Yamada S., Mano S., Nakamori C., Kondo M., Yamawaki R., Kato A., Nishimura M. Chaperone and protease functions of LON protease 2 modulate the peroxisomal transition and degradation with autophagy. Plant & Cell Physiology 2014, 55(3):482-496. http://www.ncbi.nlm.nih.gov/pubmed/24492254, 10.1093/pcp/pcu017.
-
(2014)
Plant & Cell Physiology
, vol.55
, Issue.3
, pp. 482-496
-
-
Goto-Yamada, S.1
Mano, S.2
Nakamori, C.3
Kondo, M.4
Yamawaki, R.5
Kato, A.6
Nishimura, M.7
-
40
-
-
63149168967
-
Peroxisome-associated matrix protein degradation in Arabidopsis
-
Lingard M.J., Monroe-Augustus M., Bartel B. Peroxisome-associated matrix protein degradation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 2009, 106(11):4561-4566. http://www.ncbi.nlm.nih.gov/pubmed/19246395, 10.1073/pnas.0811329106.
-
(2009)
Proceedings of the National Academy of Sciences of the United States of America
, vol.106
, Issue.11
, pp. 4561-4566
-
-
Lingard, M.J.1
Monroe-Augustus, M.2
Bartel, B.3
-
41
-
-
84871743525
-
Genetic dissection of peroxisome-associated matrix protein degradation in Arabidopsis thaliana
-
Burkhart S.E., Lingard M.J., Bartel B. Genetic dissection of peroxisome-associated matrix protein degradation in Arabidopsis thaliana. Genetics 2013, 193(1):125-141. http://www.ncbi.nlm.nih.gov/pubmed/23150599, 10.1534/genetics.112.146100.
-
(2013)
Genetics
, vol.193
, Issue.1
, pp. 125-141
-
-
Burkhart, S.E.1
Lingard, M.J.2
Bartel, B.3
-
42
-
-
84880863470
-
Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events
-
Manivannan S., de Boer R., Veenhuis M., van der Klei I.J. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy 2013, 9(7):1044-1056. http://www.ncbi.nlm.nih.gov/pubmed/23614977, 10.4161/auto.24543.
-
(2013)
Autophagy
, vol.9
, Issue.7
, pp. 1044-1056
-
-
Manivannan, S.1
de Boer, R.2
Veenhuis, M.3
van der Klei, I.J.4
-
43
-
-
84898400392
-
The progression of peroxisomal degradation through autophagy requires peroxisomal division
-
Mao K., Liu X., Feng Y., Klionsky D.J. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy 2014, 10(4):652-661. http://www.ncbi.nlm.nih.gov/pubmed/24451165, 10.4161/auto.27852.
-
(2014)
Autophagy
, vol.10
, Issue.4
, pp. 652-661
-
-
Mao, K.1
Liu, X.2
Feng, Y.3
Klionsky, D.J.4
-
44
-
-
77951168347
-
A yeast MAPK cascade regulates pexophagy but not other autophagy pathways
-
Manjithaya R., Jain S., Farré J.C., Subramani S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. Journal of Cell Biology 2010, 189(2):303-310. http://www.ncbi.nlm.nih.gov/pubmed/20385774, 10.1083/jcb.200909154.
-
(2010)
Journal of Cell Biology
, vol.189
, Issue.2
, pp. 303-310
-
-
Manjithaya, R.1
Jain, S.2
Farré, J.C.3
Subramani, S.4
-
45
-
-
79958219318
-
Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae
-
Mao K., Wang K., Zhao M., Xu T., Klionsky D.J. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. Journal of Cell Biology 2011, 193(4):755-767. http://www.ncbi.nlm.nih.gov/pubmed/21576396, 10.1083/jcb.201102092.
-
(2011)
Journal of Cell Biology
, vol.193
, Issue.4
, pp. 755-767
-
-
Mao, K.1
Wang, K.2
Zhao, M.3
Xu, T.4
Klionsky, D.J.5
-
46
-
-
42049094041
-
PpAtg30 tags peroxisomes for turnover by selective autophagy
-
Farré J.C., Manjithaya R., Mathewson R.D., Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Developmental Cell 2008, 14(3):365-376. http://www.ncbi.nlm.nih.gov/pubmed/18331717, 10.1016/j.devcel.2007.12.011.
-
(2008)
Developmental Cell
, vol.14
, Issue.3
, pp. 365-376
-
-
Farré, J.C.1
Manjithaya, R.2
Mathewson, R.D.3
Subramani, S.4
-
47
-
-
84894030921
-
Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy
-
Nazarko T.Y., Ozeki K., Till A., Ramakrishnan G., Lotfi P., Yan M., Subramani S. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. Journal of Cell Biology 2014, 204(4):541-557. http://www.ncbi.nlm.nih.gov/pubmed/24535825, 10.1083/jcb.201307050.
-
(2014)
Journal of Cell Biology
, vol.204
, Issue.4
, pp. 541-557
-
-
Nazarko, T.Y.1
Ozeki, K.2
Till, A.3
Ramakrishnan, G.4
Lotfi, P.5
Yan, M.6
Subramani, S.7
-
48
-
-
84863843241
-
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
-
Motley A.M., Nuttall J.M., Hettema E.H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO Journal 2012, 31(13):2852-2868. http://www.ncbi.nlm.nih.gov/pubmed/22643220, 10.1038/emboj.2012.151.
-
(2012)
EMBO Journal
, vol.31
, Issue.13
, pp. 2852-2868
-
-
Motley, A.M.1
Nuttall, J.M.2
Hettema, E.H.3
-
49
-
-
33846170088
-
The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers
-
Nazarko T.Y., Polupanov A.S., Manjithaya R.R., Subramani S., Sibirny A.A. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Molecular Biology of the Cell 2007, 18(1):106-118. http://www.ncbi.nlm.nih.gov/pubmed/17079731, 10.1091/mbc.E06-06-0554.
-
(2007)
Molecular Biology of the Cell
, vol.18
, Issue.1
, pp. 106-118
-
-
Nazarko, T.Y.1
Polupanov, A.S.2
Manjithaya, R.R.3
Subramani, S.4
Sibirny, A.A.5
-
50
-
-
55149097659
-
The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes
-
Hara-Kuge S., Fujiki Y. The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. Experimental Cell Research 2008, 314(19):3531-3541. http://www.ncbi.nlm.nih.gov/pubmed/18848543, 10.1016/j.yexcr.2008.09.015.
-
(2008)
Experimental Cell Research
, vol.314
, Issue.19
, pp. 3531-3541
-
-
Hara-Kuge, S.1
Fujiki, Y.2
-
51
-
-
84930150889
-
Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II
-
Jiang L., Hara-Kuge S., Yamashita S.I., Fujiki Y. Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II. Genes to Cells 2014, http://www.ncbi.nlm.nih.gov/pubmed/25358256, 10.1111/gtc.12198.
-
(2014)
Genes to Cells
-
-
Jiang, L.1
Hara-Kuge, S.2
Yamashita, S.I.3
Fujiki, Y.4
-
52
-
-
58549084167
-
Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
-
Kim P.K., Hailey D.W., Mullen R.T., Lippincott-Schwartz J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(52):20567-20574. http://www.ncbi.nlm.nih.gov/pubmed/19074260, 10.1073/pnas.0810611105.
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.52
, pp. 20567-20574
-
-
Kim, P.K.1
Hailey, D.W.2
Mullen, R.T.3
Lippincott-Schwartz, J.4
-
53
-
-
84877579321
-
Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
-
Farré J.C., Burkenroad A., Burnett S.F., Subramani S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Reports 2013, 14(5):441-449. http://www.ncbi.nlm.nih.gov/pubmed/23559066, 10.1038/embor.2013.40.
-
(2013)
EMBO Reports
, vol.14
, Issue.5
, pp. 441-449
-
-
Farré, J.C.1
Burkenroad, A.2
Burnett, S.F.3
Subramani, S.4
-
54
-
-
84908361088
-
Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins
-
Tanaka C., Tan L.J., Mochida K., Kirisako H., Koizumi M., Asai E., Sakoh-Nakatogawa M., Ohsumi Y., Nakatogawa H. Hrr25 triggers selective autophagy-related pathways by phosphorylating receptor proteins. Journal of Cell Biology 2014, 207(1):91-105. http://www.ncbi.nlm.nih.gov/pubmed/25287303, 10.1083/jcb.201402128.
-
(2014)
Journal of Cell Biology
, vol.207
, Issue.1
, pp. 91-105
-
-
Tanaka, C.1
Tan, L.J.2
Mochida, K.3
Kirisako, H.4
Koizumi, M.5
Asai, E.6
Sakoh-Nakatogawa, M.7
Ohsumi, Y.8
Nakatogawa, H.9
-
55
-
-
84893060553
-
Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis
-
Shibata M., Oikawa K., Yoshimoto K., Kondo M., Mano S., Yamada K., Hayashi M., Sakamoto W., Ohsumi Y., Nishimura M. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. Plant Cell 2013, 25(12):4967-4983. http://www.ncbi.nlm.nih.gov/pubmed/24368788, 10.1105/tpc.113.116947.
-
(2013)
Plant Cell
, vol.25
, Issue.12
, pp. 4967-4983
-
-
Shibata, M.1
Oikawa, K.2
Yoshimoto, K.3
Kondo, M.4
Mano, S.5
Yamada, K.6
Hayashi, M.7
Sakamoto, W.8
Ohsumi, Y.9
Nishimura, M.10
-
56
-
-
84903365485
-
Organ-specific quality control of plant peroxisomes is mediated by autophagy
-
Yoshimoto K., Shibata M., Kondo M., Oikawa K., Sato M., Toyooka K., Shirasu K., Nishimura M., Ohsumi Y. Organ-specific quality control of plant peroxisomes is mediated by autophagy. Journal of Cell Science 2014, 127(6):1161-1168. http://www.ncbi.nlm.nih.gov/pubmed/24463818, 10.1242/jcs.139709.
-
(2014)
Journal of Cell Science
, vol.127
, Issue.6
, pp. 1161-1168
-
-
Yoshimoto, K.1
Shibata, M.2
Kondo, M.3
Oikawa, K.4
Sato, M.5
Toyooka, K.6
Shirasu, K.7
Nishimura, M.8
Ohsumi, Y.9
-
57
-
-
84888418176
-
Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation
-
Farmer L.M., Rinaldi M.A., Young P.G., Danan C.H., Burkhart S.E., Bartel B. Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell 2013, 25(10):4085-4100. http://www.ncbi.nlm.nih.gov/pubmed/24179123, 10.1105/tpc.113.113407.
-
(2013)
Plant Cell
, vol.25
, Issue.10
, pp. 4085-4100
-
-
Farmer, L.M.1
Rinaldi, M.A.2
Young, P.G.3
Danan, C.H.4
Burkhart, S.E.5
Bartel, B.6
-
58
-
-
64649087881
-
Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms
-
Yokota S., Dariush Fahimi H. Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochemistry and Cell Biology 2009, 131(4):455-458. http://www.ncbi.nlm.nih.gov/pubmed/19229553, 10.1007/s00418-009-0564-6.
-
(2009)
Histochemistry and Cell Biology
, vol.131
, Issue.4
, pp. 455-458
-
-
Yokota, S.1
Dariush Fahimi, H.2
-
59
-
-
84893114070
-
Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth
-
Kim J., Lee H., Lee H.N., Kim S.H., Shin K.D., Chung T. Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell 2013, 25(12):4956-4966. http://www.ncbi.nlm.nih.gov/pubmed/24368791, 10.1105/tpc.113.117960.
-
(2013)
Plant Cell
, vol.25
, Issue.12
, pp. 4956-4966
-
-
Kim, J.1
Lee, H.2
Lee, H.N.3
Kim, S.H.4
Shin, K.D.5
Chung, T.6
-
60
-
-
0035983934
-
Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene
-
Hanaoka H., Noda T., Shirano Y., Kato T., Hayashi H., Shibata D., Tabata S., Ohsumi Y. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiology 2002, 129(3):1181-1193. http://www.ncbi.nlm.nih.gov/pubmed/12114572, 10.1104/pp.011024.
-
(2002)
Plant Physiology
, vol.129
, Issue.3
, pp. 1181-1193
-
-
Hanaoka, H.1
Noda, T.2
Shirano, Y.3
Kato, T.4
Hayashi, H.5
Shibata, D.6
Tabata, S.7
Ohsumi, Y.8
|