메뉴 건너뛰기




Volumn 4, Issue , 2015, Pages 104-108

Redox regulated peroxisome homeostasis

Author keywords

Catalase; Oxidative stress; Peroxisome; Pexophagy; Redox

Indexed keywords

ACETYL COENZYME A ACYLTRANSFERASE; GLUCOSE 6 PHOSPHATE DEHYDROGENASE; GLUTAREDOXIN; GLUTAREDOXIN 1; GLUTAREDOXIN 2; GLYCEROL 3 PHOSPHATE DEHYDROGENASE; REACTIVE OXYGEN METABOLITE; TRANSLOCON; UNCLASSIFIED DRUG; CATALASE;

EID: 84920274916     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2014.12.006     Document Type: Review
Times cited : (44)

References (60)
  • 1
    • 84864485324 scopus 로고    scopus 로고
    • Plant peroxisomes: biogenesis and function
    • Hu J., Baker A., Bartel B., Linka N., Mullen R.T., Reumann S., Zolman B.K. Plant peroxisomes: biogenesis and function. Plant Cell 2012, 24(6):2279-2303. http://www.ncbi.nlm.nih.gov/pubmed/22669882, 10.1105/tpc.112.096586.
    • (2012) Plant Cell , vol.24 , Issue.6 , pp. 2279-2303
    • Hu, J.1    Baker, A.2    Bartel, B.3    Linka, N.4    Mullen, R.T.5    Reumann, S.6    Zolman, B.K.7
  • 3
    • 84880815442 scopus 로고    scopus 로고
    • Environmentally regulated glycosome protein composition in the African trypanosome
    • Bauer S., Morris J.C., Morris M.T. Environmentally regulated glycosome protein composition in the African trypanosome. Eukaryotic Cell 2013, 12(8):1072-1079. http://www.ncbi.nlm.nih.gov/pubmed/23709182, 10.1128/EC.00086-13.
    • (2013) Eukaryotic Cell , vol.12 , Issue.8 , pp. 1072-1079
    • Bauer, S.1    Morris, J.C.2    Morris, M.T.3
  • 4
    • 84907990434 scopus 로고    scopus 로고
    • Peroxisomal quality control mechanisms
    • Kumar S., Kawałek A., van der Klei I.J. Peroxisomal quality control mechanisms. Current Opinion in Microbiology 2014, 22C:30-37. http://www.ncbi.nlm.nih.gov/pubmed/25305535, 10.1016/j.mib.2014.09.009.
    • (2014) Current Opinion in Microbiology , vol.22 C , pp. 30-37
    • Kumar, S.1    Kawałek, A.2    van der Klei, I.J.3
  • 5
    • 84895098727 scopus 로고    scopus 로고
    • Peroxisomal metabolism and oxidative stress
    • Nordgren M., Fransen M. Peroxisomal metabolism and oxidative stress. Biochimie 2014, 98:56-62. http://www.ncbi.nlm.nih.gov/pubmed/23933092, 10.1016/j.biochi.2013.07.026.
    • (2014) Biochimie , vol.98 , pp. 56-62
    • Nordgren, M.1    Fransen, M.2
  • 6
    • 84895142640 scopus 로고    scopus 로고
    • The peroxisomal receptor dislocation pathway: to the exportomer and beyond
    • Platta H.W., Hagen S., Reidick C., Erdmann R. The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 2014, 98:16-28. http://www.ncbi.nlm.nih.gov/pubmed/24345375, 10.1016/j.biochi.2013.12.009.
    • (2014) Biochimie , vol.98 , pp. 16-28
    • Platta, H.W.1    Hagen, S.2    Reidick, C.3    Erdmann, R.4
  • 7
    • 0035958005 scopus 로고    scopus 로고
    • Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candidae boidinii
    • Horiguchi H., Yurimoto H., Kato N., Sakai Y. Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candidae boidinii. Journal of Biological Chemistry 2001, 276(17):14279-14288. http://www.ncbi.nlm.nih.gov/pubmed/11278957, 10.1074/jbc.M011661200.
    • (2001) Journal of Biological Chemistry , vol.276 , Issue.17 , pp. 14279-14288
    • Horiguchi, H.1    Yurimoto, H.2    Kato, N.3    Sakai, Y.4
  • 8
    • 0035681941 scopus 로고    scopus 로고
    • Peroxisomal catalase in the methylotrophic yeast Candidae boidinii: transport efficiency and metabolic significance
    • Horiguchi H., Yurimoto H., Goh T., Nakagawa T., Kato N., Sakai Y. Peroxisomal catalase in the methylotrophic yeast Candidae boidinii: transport efficiency and metabolic significance. Journal of Bacteriology 2001, 183(21):6372-6383. http://www.ncbi.nlm.nih.gov/pubmed/11591682, 10.1128/JB.183.21.6372-6383.2001.
    • (2001) Journal of Bacteriology , vol.183 , Issue.21 , pp. 6372-6383
    • Horiguchi, H.1    Yurimoto, H.2    Goh, T.3    Nakagawa, T.4    Kato, N.5    Sakai, Y.6
  • 9
    • 2942724221 scopus 로고    scopus 로고
    • Dual targeting of yeast catalase A to peroxisomes and mitochondria
    • Petrova V.Y., Drescher D., Kujumdzieva A.V., Schmitt M.J. Dual targeting of yeast catalase A to peroxisomes and mitochondria. Biochemical Journal 2004, 380(2):393-400. http://www.ncbi.nlm.nih.gov/pubmed/14998369, 10.1042/BJ20040042.
    • (2004) Biochemical Journal , vol.380 , Issue.2 , pp. 393-400
    • Petrova, V.Y.1    Drescher, D.2    Kujumdzieva, A.V.3    Schmitt, M.J.4
  • 10
    • 84863983857 scopus 로고    scopus 로고
    • Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium
    • Ohdate T., Inoue Y. Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium. Biochimica et Biophysica Acta 2012, 1821(9):1295-1305. http://www.ncbi.nlm.nih.gov/pubmed/22659048, 10.1016/j.bbalip.2012.05.004.
    • (2012) Biochimica et Biophysica Acta , vol.1821 , Issue.9 , pp. 1295-1305
    • Ohdate, T.1    Inoue, Y.2
  • 11
    • 84864065911 scopus 로고    scopus 로고
    • Transfer of metabolites across the peroxisomal membrane
    • Antonenkov V.D., Hiltunen J.K. Transfer of metabolites across the peroxisomal membrane. Biochimica et Biophysica Acta 2012, 1822(9):1374-1386. http://www.ncbi.nlm.nih.gov/pubmed/22206997, 10.1016/j.bbadis.2011.12.011.
    • (2012) Biochimica et Biophysica Acta , vol.1822 , Issue.9 , pp. 1374-1386
    • Antonenkov, V.D.1    Hiltunen, J.K.2
  • 12
    • 84920192732 scopus 로고    scopus 로고
    • The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis
    • Elbaz-Alon Y., Morgan B., Clancy A., Amoako T.N., Zalckvar E., Dick T.P., Schwappach B., Schuldiner M. The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis. FEMS Yeast Research 2014, 14:1055-1067. http://www.ncbi.nlm.nih.gov/pubmed/25130273, 10.1111/1567-1364.12196.
    • (2014) FEMS Yeast Research , vol.14 , pp. 1055-1067
    • Elbaz-Alon, Y.1    Morgan, B.2    Clancy, A.3    Amoako, T.N.4    Zalckvar, E.5    Dick, T.P.6    Schwappach, B.7    Schuldiner, M.8
  • 14
    • 33750380347 scopus 로고    scopus 로고
    • A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism
    • Barreto L., Garcerá A., Jansson K., Sunnerhagen P., Herrero E. A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism. Eukaryotic Cell 2006, 5(10):1748-1759. http://www.ncbi.nlm.nih.gov/pubmed/16936141, 10.1128/EC.00216-06.
    • (2006) Eukaryotic Cell , vol.5 , Issue.10 , pp. 1748-1759
    • Barreto, L.1    Garcerá, A.2    Jansson, K.3    Sunnerhagen, P.4    Herrero, E.5
  • 15
    • 0035212728 scopus 로고    scopus 로고
    • Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells
    • Corpas F.J., Barroso J.B., del Río L.A. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Sciences 2001, 6(4):145-150. http://www.ncbi.nlm.nih.gov/pubmed/11286918, 10.1016/S1360-1385(01)01898-2.
    • (2001) Trends in Plant Sciences , vol.6 , Issue.4 , pp. 145-150
    • Corpas, F.J.1    Barroso, J.B.2    del Río, L.A.3
  • 16
    • 0347296108 scopus 로고    scopus 로고
    • Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor
    • Kamigaki A., Mano S., Terauchi K., Nishi Y., Tachibe-Kinoshita Y., Nito K., Kondo M., Hayashi M., Nishimura M., Esaka M. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor. Plant Journal 2003, 33(1):161-175. http://www.ncbi.nlm.nih.gov/pubmed/12943550, 10.1046/j.0960-7412.2003.001605.x.
    • (2003) Plant Journal , vol.33 , Issue.1 , pp. 161-175
    • Kamigaki, A.1    Mano, S.2    Terauchi, K.3    Nishi, Y.4    Tachibe-Kinoshita, Y.5    Nito, K.6    Kondo, M.7    Hayashi, M.8    Nishimura, M.9    Esaka, M.10
  • 17
    • 44349154132 scopus 로고    scopus 로고
    • Plant catalase is imported into peroxisomes by Pex5p but is distinct from typical PTS1 import
    • Oshima Y., Kamigaki A., Nakamori C., Mano S., Hayashi M., Nishimura M., Esaka M. Plant catalase is imported into peroxisomes by Pex5p but is distinct from typical PTS1 import. Plant & Cell Physiology 2008, 49(4):671-677. http://www.ncbi.nlm.nih.gov/pubmed/18308759, 10.1093/pcp/pcn038.
    • (2008) Plant & Cell Physiology , vol.49 , Issue.4 , pp. 671-677
    • Oshima, Y.1    Kamigaki, A.2    Nakamori, C.3    Mano, S.4    Hayashi, M.5    Nishimura, M.6    Esaka, M.7
  • 18
    • 77953220024 scopus 로고    scopus 로고
    • Ankyrin repeat-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ascorbate PEROXIDASE3 in Arabidopsis
    • Shen G., Kuppu S., Venkataramani S., Wang J., Yan J., Qiu X., Zhang H. Ankyrin repeat-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ascorbate PEROXIDASE3 in Arabidopsis. Plant Cell 2010, 22(3):811-831. http://www.ncbi.nlm.nih.gov/pubmed/20215589, 10.1105/tpc.109.065979.
    • (2010) Plant Cell , vol.22 , Issue.3 , pp. 811-831
    • Shen, G.1    Kuppu, S.2    Venkataramani, S.3    Wang, J.4    Yan, J.5    Qiu, X.6    Zhang, H.7
  • 19
    • 31044444190 scopus 로고    scopus 로고
    • Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase
    • Lisenbee C.S., Lingard M.J., Trelease R.N. Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant Journal 2005, 43(6):900-914. http://www.ncbi.nlm.nih.gov/pubmed/16146528, 10.1111/j.1365-313X.2005.02503.x.
    • (2005) Plant Journal , vol.43 , Issue.6 , pp. 900-914
    • Lisenbee, C.S.1    Lingard, M.J.2    Trelease, R.N.3
  • 20
    • 37249016441 scopus 로고    scopus 로고
    • Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms
    • Reumann S., Babujee L., Ma C., Wienkoop S., Siemsen T., Antonicelli G.E., Rasche N., Lüder F., Weckwerth W., Jahn O. Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 2007, 19(10):3170-3193. http://www.ncbi.nlm.nih.gov/pubmed/17951448, 10.1105/tpc.107.050989.
    • (2007) Plant Cell , vol.19 , Issue.10 , pp. 3170-3193
    • Reumann, S.1    Babujee, L.2    Ma, C.3    Wienkoop, S.4    Siemsen, T.5    Antonicelli, G.E.6    Rasche, N.7    Lüder, F.8    Weckwerth, W.9    Jahn, O.10
  • 21
    • 66149148256 scopus 로고    scopus 로고
    • In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes
    • Reumann S., Quan S., Aung K., Yang P., Manandhar-Shrestha K., Holbrook D., Linka N., Switzenberg R., Wilkerson C.G., Weber A.P., et al. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiology 2009, 150(1):125-143. http://www.ncbi.nlm.nih.gov/pubmed/19329564, 10.1104/pp.109.137703.
    • (2009) Plant Physiology , vol.150 , Issue.1 , pp. 125-143
    • Reumann, S.1    Quan, S.2    Aung, K.3    Yang, P.4    Manandhar-Shrestha, K.5    Holbrook, D.6    Linka, N.7    Switzenberg, R.8    Wilkerson, C.G.9    Weber, A.P.10
  • 22
    • 84863082820 scopus 로고    scopus 로고
    • Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis
    • Huang C.H., Kuo W.Y., Weiss C., Jinn T.L. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis. Plant Physiology 2012, 158(2):737-746. http://www.ncbi.nlm.nih.gov/pubmed/22186608, 10.1104/pp.111.190223.
    • (2012) Plant Physiology , vol.158 , Issue.2 , pp. 737-746
    • Huang, C.H.1    Kuo, W.Y.2    Weiss, C.3    Jinn, T.L.4
  • 23
    • 64949203222 scopus 로고    scopus 로고
    • Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily
    • Dixon D.P., Hawkins T., Hussey P.J., Edwards R. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. Journal of Experimental Botany 2009, 60(4):1207-1218. http://www.ncbi.nlm.nih.gov/pubmed/19174456, 10.1093/jxb/ern365.
    • (2009) Journal of Experimental Botany , vol.60 , Issue.4 , pp. 1207-1218
    • Dixon, D.P.1    Hawkins, T.2    Hussey, P.J.3    Edwards, R.4
  • 24
    • 67949122010 scopus 로고    scopus 로고
    • Turnover of organelles by autophagy in yeast
    • Farré J.C., Krick R., Subramani S., Thumm M. Turnover of organelles by autophagy in yeast. Current Opinion in Cell Biology 2009, 21(4):522-530. http://www.ncbi.nlm.nih.gov/pubmed/19515549, 10.1016/j.ceb.2009.04.015.
    • (2009) Current Opinion in Cell Biology , vol.21 , Issue.4 , pp. 522-530
    • Farré, J.C.1    Krick, R.2    Subramani, S.3    Thumm, M.4
  • 25
    • 77950470469 scopus 로고    scopus 로고
    • Molecular mechanism and physiological role of pexophagy
    • Manjithaya R., Nazarko T.Y., Farré J.C., Subramani S. Molecular mechanism and physiological role of pexophagy. FEBS Letters 2010, 584(7):1367-1373. http://www.ncbi.nlm.nih.gov/pubmed/20083110, 10.1016/j.febslet.2010.01.019.
    • (2010) FEBS Letters , vol.584 , Issue.7 , pp. 1367-1373
    • Manjithaya, R.1    Nazarko, T.Y.2    Farré, J.C.3    Subramani, S.4
  • 26
    • 77949883591 scopus 로고    scopus 로고
    • Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress
    • Jung S., Marelli M., Rachubinski R.A., Goodlett D.R., Aitchison J.D. Dynamic changes in the subcellular distribution of Gpd1p in response to cell stress. Journal of Biological Chemistry 2010, 285(9):6739-6749. http://www.ncbi.nlm.nih.gov/pubmed/20026609, 10.1074/jbc.M109.058552.
    • (2010) Journal of Biological Chemistry , vol.285 , Issue.9 , pp. 6739-6749
    • Jung, S.1    Marelli, M.2    Rachubinski, R.A.3    Goodlett, D.R.4    Aitchison, J.D.5
  • 27
    • 79957626987 scopus 로고    scopus 로고
    • Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol
    • Meyer T., Hölscher C., Schwöppe C., von Schaewen A. Alternative targeting of Arabidopsis plastidic glucose-6-phosphate dehydrogenase G6PD1 involves cysteine-dependent interaction with G6PD4 in the cytosol. Plant Journal 2011, 66(5):745-758. http://www.ncbi.nlm.nih.gov/pubmed/21309870, 10.1111/j.1365-313X.2011.04535.x.
    • (2011) Plant Journal , vol.66 , Issue.5 , pp. 745-758
    • Meyer, T.1    Hölscher, C.2    Schwöppe, C.3    von Schaewen, A.4
  • 28
    • 77954945975 scopus 로고    scopus 로고
    • Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch
    • Pye V.E., Christensen C.E., Dyer J.H., Arent S., Henriksen A. Peroxisomal plant 3-ketoacyl-CoA thiolase structure and activity are regulated by a sensitive redox switch. Journal of Biological Chemistry 2010, 285(31):24078-24088. http://www.ncbi.nlm.nih.gov/pubmed/20463027, 10.1074/jbc.M110.106013.
    • (2010) Journal of Biological Chemistry , vol.285 , Issue.31 , pp. 24078-24088
    • Pye, V.E.1    Christensen, C.E.2    Dyer, J.H.3    Arent, S.4    Henriksen, A.5
  • 29
    • 33646202811 scopus 로고    scopus 로고
    • The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation
    • Sundaramoorthy R., Micossi E., Alphey M.S., Germain V., Bryce J.H., Smith S.M., Leonard G.A., Hunter W.N. The crystal structure of a plant 3-ketoacyl-CoA thiolase reveals the potential for redox control of peroxisomal fatty acid beta-oxidation. Journal of Molecular Biology 2006, 359(2):347-357. http://www.ncbi.nlm.nih.gov/pubmed/16630629, 10.1016/j.jmb.2006.03.032.
    • (2006) Journal of Molecular Biology , vol.359 , Issue.2 , pp. 347-357
    • Sundaramoorthy, R.1    Micossi, E.2    Alphey, M.S.3    Germain, V.4    Bryce, J.H.5    Smith, S.M.6    Leonard, G.A.7    Hunter, W.N.8
  • 30
    • 84884579723 scopus 로고    scopus 로고
    • Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5
    • Ma C., Hagstrom D., Polley S.G., Subramani S. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. Journal of Biological Chemistry 2013, 288(38):27220-27231. http://www.ncbi.nlm.nih.gov/pubmed/23902771, 10.1074/jbc.M113.492694.
    • (2013) Journal of Biological Chemistry , vol.288 , Issue.38 , pp. 27220-27231
    • Ma, C.1    Hagstrom, D.2    Polley, S.G.3    Subramani, S.4
  • 32
    • 0029792856 scopus 로고    scopus 로고
    • Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division
    • Marshall P.A., Dyer J.M., Quick M.E., Goodman J.M. Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. Journal of Cell Biology 1996, 135(1):123-137. http://www.ncbi.nlm.nih.gov/pubmed/8858168, 10.1083/jcb.135.1.123.
    • (1996) Journal of Cell Biology , vol.135 , Issue.1 , pp. 123-137
    • Marshall, P.A.1    Dyer, J.M.2    Quick, M.E.3    Goodman, J.M.4
  • 33
    • 69949102267 scopus 로고    scopus 로고
    • The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p
    • Ma C., Schumann U., Rayapuram N., Subramani S. The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Molecular Biology of the Cell 2009, 20(16):3680-3689. http://www.ncbi.nlm.nih.gov/pubmed/19570913, 10.1091/mbc.E09-01-0037.
    • (2009) Molecular Biology of the Cell , vol.20 , Issue.16 , pp. 3680-3689
    • Ma, C.1    Schumann, U.2    Rayapuram, N.3    Subramani, S.4
  • 34
    • 77649267086 scopus 로고    scopus 로고
    • The peroxisomal importomer constitutes a large and highly dynamic pore
    • Meinecke M., Cizmowski C., Schliebs W., Krüger V., Beck S., Wagner R., Erdmann R. The peroxisomal importomer constitutes a large and highly dynamic pore. Nature Cell Biology 2010, 12(3):273-277. http://www.ncbi.nlm.nih.gov/pubmed/20154681, 10.1038/ncb2027.
    • (2010) Nature Cell Biology , vol.12 , Issue.3 , pp. 273-277
    • Meinecke, M.1    Cizmowski, C.2    Schliebs, W.3    Krüger, V.4    Beck, S.5    Wagner, R.6    Erdmann, R.7
  • 35
    • 34247487864 scopus 로고    scopus 로고
    • Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling
    • Platta H.W., El Magraoui F., Schlee D., Grunau S., Girzalsky W., Erdmann R. Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. Journal of Cell Biology 2007, 177(2):197-204. http://www.ncbi.nlm.nih.gov/pubmed/17452527, 10.1083/jcb.200611012.
    • (2007) Journal of Cell Biology , vol.177 , Issue.2 , pp. 197-204
    • Platta, H.W.1    El Magraoui, F.2    Schlee, D.3    Grunau, S.4    Girzalsky, W.5    Erdmann, R.6
  • 36
    • 70350447348 scopus 로고    scopus 로고
    • Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import
    • Platta H.W., El Magraoui F., Bäumer B.E., Schlee D., Girzalsky W., Erdmann R. Pex2 and pex12 function as protein-ubiquitin ligases in peroxisomal protein import. Molecular and Cellular Biology 2009, 29(20):5505-5516. http://www.ncbi.nlm.nih.gov/pubmed/19687296, 10.1128/MCB.00388-09.
    • (2009) Molecular and Cellular Biology , vol.29 , Issue.20 , pp. 5505-5516
    • Platta, H.W.1    El Magraoui, F.2    Bäumer, B.E.3    Schlee, D.4    Girzalsky, W.5    Erdmann, R.6
  • 37
    • 84889598580 scopus 로고    scopus 로고
    • PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein
    • Apanasets O., Grou C.P., Van Veldhoven P.P., Brees C., Wang B., Nordgren M., Dodt G., Azevedo J.E., Fransen M. PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 2014, 15(1):94-103. http://www.ncbi.nlm.nih.gov/pubmed/24118911, 10.1111/tra.12129.
    • (2014) Traffic , vol.15 , Issue.1 , pp. 94-103
    • Apanasets, O.1    Grou, C.P.2    Van Veldhoven, P.P.3    Brees, C.4    Wang, B.5    Nordgren, M.6    Dodt, G.7    Azevedo, J.E.8    Fransen, M.9
  • 39
    • 84899115843 scopus 로고    scopus 로고
    • Chaperone and protease functions of LON protease 2 modulate the peroxisomal transition and degradation with autophagy
    • Goto-Yamada S., Mano S., Nakamori C., Kondo M., Yamawaki R., Kato A., Nishimura M. Chaperone and protease functions of LON protease 2 modulate the peroxisomal transition and degradation with autophagy. Plant & Cell Physiology 2014, 55(3):482-496. http://www.ncbi.nlm.nih.gov/pubmed/24492254, 10.1093/pcp/pcu017.
    • (2014) Plant & Cell Physiology , vol.55 , Issue.3 , pp. 482-496
    • Goto-Yamada, S.1    Mano, S.2    Nakamori, C.3    Kondo, M.4    Yamawaki, R.5    Kato, A.6    Nishimura, M.7
  • 41
    • 84871743525 scopus 로고    scopus 로고
    • Genetic dissection of peroxisome-associated matrix protein degradation in Arabidopsis thaliana
    • Burkhart S.E., Lingard M.J., Bartel B. Genetic dissection of peroxisome-associated matrix protein degradation in Arabidopsis thaliana. Genetics 2013, 193(1):125-141. http://www.ncbi.nlm.nih.gov/pubmed/23150599, 10.1534/genetics.112.146100.
    • (2013) Genetics , vol.193 , Issue.1 , pp. 125-141
    • Burkhart, S.E.1    Lingard, M.J.2    Bartel, B.3
  • 42
    • 84880863470 scopus 로고    scopus 로고
    • Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events
    • Manivannan S., de Boer R., Veenhuis M., van der Klei I.J. Lumenal peroxisomal protein aggregates are removed by concerted fission and autophagy events. Autophagy 2013, 9(7):1044-1056. http://www.ncbi.nlm.nih.gov/pubmed/23614977, 10.4161/auto.24543.
    • (2013) Autophagy , vol.9 , Issue.7 , pp. 1044-1056
    • Manivannan, S.1    de Boer, R.2    Veenhuis, M.3    van der Klei, I.J.4
  • 43
    • 84898400392 scopus 로고    scopus 로고
    • The progression of peroxisomal degradation through autophagy requires peroxisomal division
    • Mao K., Liu X., Feng Y., Klionsky D.J. The progression of peroxisomal degradation through autophagy requires peroxisomal division. Autophagy 2014, 10(4):652-661. http://www.ncbi.nlm.nih.gov/pubmed/24451165, 10.4161/auto.27852.
    • (2014) Autophagy , vol.10 , Issue.4 , pp. 652-661
    • Mao, K.1    Liu, X.2    Feng, Y.3    Klionsky, D.J.4
  • 44
    • 77951168347 scopus 로고    scopus 로고
    • A yeast MAPK cascade regulates pexophagy but not other autophagy pathways
    • Manjithaya R., Jain S., Farré J.C., Subramani S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. Journal of Cell Biology 2010, 189(2):303-310. http://www.ncbi.nlm.nih.gov/pubmed/20385774, 10.1083/jcb.200909154.
    • (2010) Journal of Cell Biology , vol.189 , Issue.2 , pp. 303-310
    • Manjithaya, R.1    Jain, S.2    Farré, J.C.3    Subramani, S.4
  • 45
    • 79958219318 scopus 로고    scopus 로고
    • Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae
    • Mao K., Wang K., Zhao M., Xu T., Klionsky D.J. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. Journal of Cell Biology 2011, 193(4):755-767. http://www.ncbi.nlm.nih.gov/pubmed/21576396, 10.1083/jcb.201102092.
    • (2011) Journal of Cell Biology , vol.193 , Issue.4 , pp. 755-767
    • Mao, K.1    Wang, K.2    Zhao, M.3    Xu, T.4    Klionsky, D.J.5
  • 46
    • 42049094041 scopus 로고    scopus 로고
    • PpAtg30 tags peroxisomes for turnover by selective autophagy
    • Farré J.C., Manjithaya R., Mathewson R.D., Subramani S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Developmental Cell 2008, 14(3):365-376. http://www.ncbi.nlm.nih.gov/pubmed/18331717, 10.1016/j.devcel.2007.12.011.
    • (2008) Developmental Cell , vol.14 , Issue.3 , pp. 365-376
    • Farré, J.C.1    Manjithaya, R.2    Mathewson, R.D.3    Subramani, S.4
  • 47
    • 84894030921 scopus 로고    scopus 로고
    • Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy
    • Nazarko T.Y., Ozeki K., Till A., Ramakrishnan G., Lotfi P., Yan M., Subramani S. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. Journal of Cell Biology 2014, 204(4):541-557. http://www.ncbi.nlm.nih.gov/pubmed/24535825, 10.1083/jcb.201307050.
    • (2014) Journal of Cell Biology , vol.204 , Issue.4 , pp. 541-557
    • Nazarko, T.Y.1    Ozeki, K.2    Till, A.3    Ramakrishnan, G.4    Lotfi, P.5    Yan, M.6    Subramani, S.7
  • 48
    • 84863843241 scopus 로고    scopus 로고
    • Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
    • Motley A.M., Nuttall J.M., Hettema E.H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO Journal 2012, 31(13):2852-2868. http://www.ncbi.nlm.nih.gov/pubmed/22643220, 10.1038/emboj.2012.151.
    • (2012) EMBO Journal , vol.31 , Issue.13 , pp. 2852-2868
    • Motley, A.M.1    Nuttall, J.M.2    Hettema, E.H.3
  • 49
    • 33846170088 scopus 로고    scopus 로고
    • The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers
    • Nazarko T.Y., Polupanov A.S., Manjithaya R.R., Subramani S., Sibirny A.A. The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Molecular Biology of the Cell 2007, 18(1):106-118. http://www.ncbi.nlm.nih.gov/pubmed/17079731, 10.1091/mbc.E06-06-0554.
    • (2007) Molecular Biology of the Cell , vol.18 , Issue.1 , pp. 106-118
    • Nazarko, T.Y.1    Polupanov, A.S.2    Manjithaya, R.R.3    Subramani, S.4    Sibirny, A.A.5
  • 50
    • 55149097659 scopus 로고    scopus 로고
    • The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes
    • Hara-Kuge S., Fujiki Y. The peroxin Pex14p is involved in LC3-dependent degradation of mammalian peroxisomes. Experimental Cell Research 2008, 314(19):3531-3541. http://www.ncbi.nlm.nih.gov/pubmed/18848543, 10.1016/j.yexcr.2008.09.015.
    • (2008) Experimental Cell Research , vol.314 , Issue.19 , pp. 3531-3541
    • Hara-Kuge, S.1    Fujiki, Y.2
  • 51
    • 84930150889 scopus 로고    scopus 로고
    • Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II
    • Jiang L., Hara-Kuge S., Yamashita S.I., Fujiki Y. Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II. Genes to Cells 2014, http://www.ncbi.nlm.nih.gov/pubmed/25358256, 10.1111/gtc.12198.
    • (2014) Genes to Cells
    • Jiang, L.1    Hara-Kuge, S.2    Yamashita, S.I.3    Fujiki, Y.4
  • 53
    • 84877579321 scopus 로고    scopus 로고
    • Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
    • Farré J.C., Burkenroad A., Burnett S.F., Subramani S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Reports 2013, 14(5):441-449. http://www.ncbi.nlm.nih.gov/pubmed/23559066, 10.1038/embor.2013.40.
    • (2013) EMBO Reports , vol.14 , Issue.5 , pp. 441-449
    • Farré, J.C.1    Burkenroad, A.2    Burnett, S.F.3    Subramani, S.4
  • 57
    • 84888418176 scopus 로고    scopus 로고
    • Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation
    • Farmer L.M., Rinaldi M.A., Young P.G., Danan C.H., Burkhart S.E., Bartel B. Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation. Plant Cell 2013, 25(10):4085-4100. http://www.ncbi.nlm.nih.gov/pubmed/24179123, 10.1105/tpc.113.113407.
    • (2013) Plant Cell , vol.25 , Issue.10 , pp. 4085-4100
    • Farmer, L.M.1    Rinaldi, M.A.2    Young, P.G.3    Danan, C.H.4    Burkhart, S.E.5    Bartel, B.6
  • 58
    • 64649087881 scopus 로고    scopus 로고
    • Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms
    • Yokota S., Dariush Fahimi H. Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms. Histochemistry and Cell Biology 2009, 131(4):455-458. http://www.ncbi.nlm.nih.gov/pubmed/19229553, 10.1007/s00418-009-0564-6.
    • (2009) Histochemistry and Cell Biology , vol.131 , Issue.4 , pp. 455-458
    • Yokota, S.1    Dariush Fahimi, H.2
  • 59
    • 84893114070 scopus 로고    scopus 로고
    • Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth
    • Kim J., Lee H., Lee H.N., Kim S.H., Shin K.D., Chung T. Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell 2013, 25(12):4956-4966. http://www.ncbi.nlm.nih.gov/pubmed/24368791, 10.1105/tpc.113.117960.
    • (2013) Plant Cell , vol.25 , Issue.12 , pp. 4956-4966
    • Kim, J.1    Lee, H.2    Lee, H.N.3    Kim, S.H.4    Shin, K.D.5    Chung, T.6
  • 60
    • 0035983934 scopus 로고    scopus 로고
    • Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene
    • Hanaoka H., Noda T., Shirano Y., Kato T., Hayashi H., Shibata D., Tabata S., Ohsumi Y. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiology 2002, 129(3):1181-1193. http://www.ncbi.nlm.nih.gov/pubmed/12114572, 10.1104/pp.011024.
    • (2002) Plant Physiology , vol.129 , Issue.3 , pp. 1181-1193
    • Hanaoka, H.1    Noda, T.2    Shirano, Y.3    Kato, T.4    Hayashi, H.5    Shibata, D.6    Tabata, S.7    Ohsumi, Y.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.