-
1
-
-
0015792521
-
Processing of adenovirus 2-induced proteins
-
Anderson, C.W., P.R. Baum, and R.F. Gesteland. 1973. Processing of adenovirus 2-induced proteins. J. Virol. 12:241-252.
-
(1973)
J. Virol
, vol.12
, pp. 241-252
-
-
Anderson, C.W.1
Baum, P.R.2
Gesteland, R.F.3
-
2
-
-
80052197610
-
Phosphorylation of Serine 114 on Atg32 mediates mitophagy
-
Aoki, Y., T. Kanki, Y. Hirota, Y. Kurihara, T. Saigusa, T. Uchiumi, and D. Kang. 2011. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell. 22:3206-3217. http://dx.doi.org/10.1091/mbc.E11-02-0145.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 3206-3217
-
-
Aoki, Y.1
Kanki, T.2
Hirota, Y.3
Kurihara, Y.4
Saigusa, T.5
Uchiumi, T.6
Kang, D.7
-
3
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Brachmann, C.B., A. Davies, G.J. Cost, E. Caputo, J. Li, P. Hieter, and J.D. Boeke. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 14:115-132. http://dx.doi.org/10.1002/ (SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
Boeke, J.D.7
-
4
-
-
77953077420
-
A global protein kinase and phosphatase interaction network in yeast
-
Breitkreutz, A., H. Choi, J.R. Sharom, L. Boucher, V. Neduva, B. Larsen, Z.Y. Lin, B.J. Breitkreutz, C. Stark, G. Liu, et al. 2010. A global protein kinase and phosphatase interaction network in yeast. Science. 328:1043-1046. http://dx.doi.org/10.1126/science.1176495.
-
(2010)
Science
, vol.328
, pp. 1043-1046
-
-
Breitkreutz, A.1
Choi, H.2
Sharom, J.R.3
Boucher, L.4
Neduva, V.5
Larsen, B.6
Lin, Z.Y.7
Breitkreutz, B.J.8
Stark, C.9
Liu, G.10
-
5
-
-
0026741994
-
The budding yeast HRR25 gene product is a casein kinase I isoform
-
DeMaggio, A.J., R.A. Lindberg, T. Hunter, and M.F. Hoekstra. 1992. The budding yeast HRR25 gene product is a casein kinase I isoform. Proc. Natl. Acad. Sci. USA. 89:7008-7012. http://dx.doi.org/10.1073/pnas.89.15.7008.
-
(1992)
Proc. Natl. Acad. Sci. USA
, vol.89
, pp. 7008-7012
-
-
DeMaggio, A.J.1
Lindberg, R.A.2
Hunter, T.3
Hoekstra, M.F.4
-
6
-
-
67649607465
-
Autophagy, immunity, and microbial adaptations
-
Deretic, V., and B. Levine. 2009. Autophagy, immunity, and microbial adaptations. Cell Host Microbe. 5:527-549. http://dx.doi.org/10.1016/ j.chom.2009.05.016.
-
(2009)
Cell Host Microbe
, vol.5
, pp. 527-549
-
-
Deretic, V.1
Levine, B.2
-
7
-
-
42049094041
-
PpAtg30 tags peroxisomes for turnover by selective autophagy
-
Farré, J.C., R. Manjithaya, R.D. Mathewson, and S. Subramani. 2008. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell. 14:365-376. http://dx.doi.org/10.1016/j.devcel.2007.12.011.
-
(2008)
Dev. Cell
, vol.14
, pp. 365-376
-
-
Farré, J.C.1
Manjithaya, R.2
Mathewson, R.D.3
Subramani, S.4
-
8
-
-
84877579321
-
Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11
-
Farré, J.C., A. Burkenroad, S.F. Burnett, and S. Subramani. 2013. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep. 14:441-449. http://dx.doi.org/10.1038/embor.2013.40.
-
(2013)
EMBO Rep
, vol.14
, pp. 441-449
-
-
Farré, J.C.1
Burkenroad, A.2
Burnett, S.F.3
Subramani, S.4
-
9
-
-
0025800543
-
HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA
-
Hoekstra, M.F., R.M. Liskay, A.C. Ou, A.J. DeMaggio, D.G. Burbee, and F. Heffron. 1991. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science. 253:1031-1034. http://dx.doi.org/10.1126/science.1887218.
-
(1991)
Science
, vol.253
, pp. 1031-1034
-
-
Hoekstra, M.F.1
Liskay, R.M.2
Ou, A.C.3
DeMaggio, A.J.4
Burbee, D.G.5
Heffron, F.6
-
10
-
-
0035827541
-
Vacuolar localization of oligomeric alpha-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae
-
Hutchins, M.U., and D.J. Klionsky. 2001. Vacuolar localization of oligomeric alpha-mannosidase requires the cytoplasm to vacuole targeting and autophagy pathway components in Saccharomyces cerevisiae. J. Biol. Chem. 276:20491-20498. http://dx.doi.org/10.1074/jbc.M101150200.
-
(2001)
J. Biol. Chem
, vol.276
, pp. 20491-20498
-
-
Hutchins, M.U.1
Klionsky, D.J.2
-
11
-
-
0035192612
-
Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
-
Ishihara, N., M. Hamasaki, S. Yokota, K. Suzuki, Y. Kamada, A. Kihara, T. Yoshimori, T. Noda, and Y. Ohsumi. 2001. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell. 12:3690-3702. http://dx.doi.org/10.1091/mbc.12.11.3690.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 3690-3702
-
-
Ishihara, N.1
Hamasaki, M.2
Yokota, S.3
Suzuki, K.4
Kamada, Y.5
Kihara, A.6
Yoshimori, T.7
Noda, T.8
Ohsumi, Y.9
-
12
-
-
4444271170
-
A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes
-
Janke, C., M.M. Magiera, N. Rathfelder, C. Taxis, S. Reber, H. Maekawa, A. Moreno-Borchart, G. Doenges, E. Schwob, E. Schiebel, and M. Knop. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 21:947-962. http://dx.doi.org/10.1002/yea.1142.
-
(2004)
Yeast
, vol.21
, pp. 947-962
-
-
Janke, C.1
Magiera, M.M.2
Rathfelder, N.3
Taxis, C.4
Reber, S.5
Maekawa, H.6
Moreno-Borchart, A.7
Doenges, G.8
Schwob, E.9
Schiebel, E.10
Knop, M.11
-
13
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen, T., and T. Lamark. 2011. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7:279-296. http://dx.doi.org/10.4161/ auto.7.3.14487.
-
(2011)
Autophagy
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
14
-
-
73949122199
-
A genomic screen for yeast mutants defective in selective mitochondria autophagy
-
Kanki, T., K. Wang, M. Baba, C.R. Bartholomew, M.A. Lynch-Day, Z. Du, J. Geng, K. Mao, Z. Yang, W.L. Yen, and D.J. Klionsky. 2009a. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol. Biol. Cell. 20:4730-4738. http://dx.doi.org/10.1091/mbc.E09-03-0225.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4730-4738
-
-
Kanki, T.1
Wang, K.2
Baba, M.3
Bartholomew, C.R.4
Lynch-Day, M.A.5
Du, Z.6
Geng, J.7
Mao, K.8
Yang, Z.9
Yen, W.L.10
Klionsky, D.J.11
-
15
-
-
67650264633
-
Atg32 is a mitochondrial protein that confers selectivity during mitophagy
-
Kanki, T., K. Wang, Y. Cao, M. Baba, and D.J. Klionsky. 2009b. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell. 17:98-109. http://dx.doi.org/10.1016/j.devcel.2009.06.014.
-
(2009)
Dev. Cell
, vol.17
, pp. 98-109
-
-
Kanki, T.1
Wang, K.2
Cao, Y.3
Baba, M.4
Klionsky, D.J.5
-
16
-
-
84883487916
-
Casein kinase 2 is essential for mitophagy
-
Kanki, T., Y. Kurihara, X. Jin, T. Goda, Y. Ono, M. Aihara, Y. Hirota, T. Saigusa, Y. Aoki, T. Uchiumi, and D. Kang. 2013. Casein kinase 2 is essential for mitophagy. EMBO Rep. 14:788-794. http://dx.doi.org/10.1038/embor.2013.114.
-
(2013)
EMBO Rep
, vol.14
, pp. 788-794
-
-
Kanki, T.1
Kurihara, Y.2
Jin, X.3
Goda, T.4
Ono, Y.5
Aihara, M.6
Hirota, Y.7
Saigusa, T.8
Aoki, Y.9
Uchiumi, T.10
Kang, D.11
-
17
-
-
0030997923
-
Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway
-
Kim, J., S.V. Scott, M.N. Oda, and D.J. Klionsky. 1997. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 137:609-618. http://dx.doi.org/10.1083/jcb.137.3.609.
-
(1997)
J. Cell Biol
, vol.137
, pp. 609-618
-
-
Kim, J.1
Scott, S.V.2
Oda, M.N.3
Klionsky, D.J.4
-
18
-
-
65549142204
-
A role for ubiquitin in selective autophagy
-
Kirkin, V., D.G. McEwan, I. Novak, and I. Dikic. 2009. A role for ubiquitin in selective autophagy. Mol. Cell. 34:259-269. http://dx.doi.org/ 10.1016/j.molcel.2009.04.026.
-
(2009)
Mol. Cell
, vol.34
, pp. 259-269
-
-
Kirkin, V.1
McEwan, D.G.2
Novak, I.3
Dikic, I.4
-
19
-
-
84858988067
-
Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy
-
Kondo-Okamoto, N., N.N. Noda, S.W. Suzuki, H. Nakatogawa, I. Takahashi, M. Matsunami, A. Hashimoto, F. Inagaki, Y. Ohsumi, and K. Okamoto. 2012. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287:10631-10638. http://dx.doi.org/10.1074/jbc.M111.299917.
-
(2012)
J. Biol. Chem
, vol.287
, pp. 10631-10638
-
-
Kondo-Okamoto, N.1
Noda, N.N.2
Suzuki, S.W.3
Nakatogawa, H.4
Takahashi, I.5
Matsunami, M.6
Hashimoto, A.7
Inagaki, F.8
Ohsumi, Y.9
Okamoto, K.10
-
20
-
-
43049138051
-
Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
-
Kraft, C., A. Deplazes, M. Sohrmann, and M. Peter. 2008. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 10:602-610. http://dx.doi.org/10.1038/ncb1723.
-
(2008)
Nat. Cell Biol
, vol.10
, pp. 602-610
-
-
Kraft, C.1
Deplazes, A.2
Sohrmann, M.3
Peter, M.4
-
21
-
-
84887132374
-
Arginine methylation modulates autophagic degradation of PGL granules in C
-
Li, S., P. Yang, E. Tian, and H. Zhang. 2013. Arginine methylation modulates autophagic degradation of PGL granules in C. elegans. Mol. Cell. 52:421-433. http://dx.doi.org/10.1016/j.molcel.2013.09.014.
-
(2013)
elegans. Mol. Cell
, vol.52
, pp. 421-433
-
-
Li, S.1
Yang, P.2
Tian, E.3
Zhang, H.4
-
22
-
-
84862789618
-
Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
-
Liu, L., D. Feng, G. Chen, M. Chen, Q. Zheng, P. Song, Q. Ma, C. Zhu, R. Wang, W. Qi, et al. 2012. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14:177-185. http://dx.doi.org/10.1038/ncb2422.
-
(2012)
Nat. Cell Biol
, vol.14
, pp. 177-185
-
-
Liu, L.1
Feng, D.2
Chen, G.3
Chen, M.4
Zheng, Q.5
Song, P.6
Ma, Q.7
Zhu, C.8
Wang, R.9
Qi, W.10
-
23
-
-
79955880405
-
Sequential interactions with Sec23 control the direction of vesicle traffic
-
Lord, C., D. Bhandari, S. Menon, M. Ghassemian, D. Nycz, J. Hay, P. Ghosh, and S. Ferro-Novick. 2011. Sequential interactions with Sec23 control the direction of vesicle traffic. Nature. 473:181-186. http://dx.doi.org/10.1038/nature09969.
-
(2011)
Nature
, vol.473
, pp. 181-186
-
-
Lord, C.1
Bhandari, D.2
Menon, S.3
Ghassemian, M.4
Nycz, D.5
Hay, J.6
Ghosh, P.7
Ferro-Novick, S.8
-
24
-
-
77950510302
-
The Cvt pathway as a model for selective autophagy
-
Lynch-Day, M.A., and D.J. Klionsky. 2010. The Cvt pathway as a model for selective autophagy. FEBS Lett. 584:1359-1366. http://dx.doi.org/10.1016/ j.febslet.2010.02.013.
-
(2010)
FEBS Lett
, vol.584
, pp. 1359-1366
-
-
Lynch-Day, M.A.1
Klionsky, D.J.2
-
25
-
-
82455172117
-
Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins
-
Matsumoto, G., K. Wada, M. Okuno, M. Kurosawa, and N. Nukina. 2011. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell. 44:279-289. http://dx.doi.org/10.1016/j.molcel.2011.07.039.
-
(2011)
Mol. Cell
, vol.44
, pp. 279-289
-
-
Matsumoto, G.1
Wada, K.2
Okuno, M.3
Kurosawa, M.4
Nukina, N.5
-
26
-
-
81055144784
-
Autophagy: renovation of cells and tissues
-
Mizushima, N., and M. Komatsu. 2011. Autophagy: renovation of cells and tissues. Cell. 147:728-741. http://dx.doi.org/10.1016/j.cell.2011.10.026.
-
(2011)
Cell
, vol.147
, pp. 728-741
-
-
Mizushima, N.1
Komatsu, M.2
-
27
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima, N., T. Yoshimori, and Y. Ohsumi. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27:107-132. http://dx.doi.org/10.1146/annurev-cellbio-092910-154005.
-
(2011)
Annu. Rev. Cell Dev. Biol
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
Yoshimori, T.2
Ohsumi, Y.3
-
28
-
-
84863843241
-
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
-
Motley, A.M., J.M. Nuttall, and E.H. Hettema. 2012. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J. 31:2852-2868. http://dx.doi.org/10.1038/emboj.2012.151.
-
(2012)
EMBO J
, vol.31
, pp. 2852-2868
-
-
Motley, A.M.1
Nuttall, J.M.2
Hettema, E.H.3
-
29
-
-
0033524921
-
The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum
-
Murakami, A., K. Kimura, and A. Nakano. 1999. The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum. J. Biol. Chem. 274:3804-3810. http://dx.doi.org/10.1074/jbc.274.6.3804.
-
(1999)
J. Biol. Chem
, vol.274
, pp. 3804-3810
-
-
Murakami, A.1
Kimura, K.2
Nakano, A.3
-
30
-
-
84858220413
-
SDS-PAGE techniques to study ubiquitin-like conjugation systems in yeast autophagy
-
Nakatogawa, H., and Y. Ohsumi. 2012. SDS-PAGE techniques to study ubiquitin-like conjugation systems in yeast autophagy. Methods Mol. Biol. 832:519-529. http://dx.doi.org/10.1007/978-1-61779-474-2_37.
-
(2012)
Methods Mol. Biol
, vol.832
, pp. 519-529
-
-
Nakatogawa, H.1
Ohsumi, Y.2
-
31
-
-
34447099450
-
Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
-
Nakatogawa, H., Y. Ichimura, and Y. Ohsumi. 2007. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell. 130:165-178. http://dx.doi.org/10.1016/ j.cell.2007.05.021.
-
(2007)
Cell
, vol.130
, pp. 165-178
-
-
Nakatogawa, H.1
Ichimura, Y.2
Ohsumi, Y.3
-
32
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: lessons from yeast
-
Nakatogawa, H., K. Suzuki, Y. Kamada, and Y. Ohsumi. 2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10:458-467. http://dx.doi.org/10.1038/nrm2708.
-
(2009)
Nat. Rev. Mol. Cell Biol
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
33
-
-
84857256919
-
Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis
-
Nakatogawa, H., J. Ishii, E. Asai, and Y. Ohsumi. 2012. Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy. 8:177-186. http://dx.doi.org/10.4161/auto.8.2.18373.
-
(2012)
Autophagy
, vol.8
, pp. 177-186
-
-
Nakatogawa, H.1
Ishii, J.2
Asai, E.3
Ohsumi, Y.4
-
34
-
-
73349085934
-
An auxin-based degron system for the rapid depletion of proteins in nonplant cells
-
Nishimura, K., T. Fukagawa, H. Takisawa, T. Kakimoto, and M. Kanemaki. 2009. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods. 6:917-922. http://dx.doi.org/10.1038/ nmeth.1401.
-
(2009)
Nat. Methods
, vol.6
, pp. 917-922
-
-
Nishimura, K.1
Fukagawa, T.2
Takisawa, H.3
Kakimoto, T.4
Kanemaki, M.5
-
35
-
-
57249083972
-
Structural basis of target recognition by Atg8/LC3 during selective autophagy
-
Noda, N.N., H. Kumeta, H. Nakatogawa, K. Satoo, W. Adachi, J. Ishii, Y. Fujioka, Y. Ohsumi, and F. Inagaki. 2008. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells. 13:1211-1218. http://dx.doi.org/10.1111/j.1365-2443.2008.01238.x.
-
(2008)
Genes Cells
, vol.13
, pp. 1211-1218
-
-
Noda, N.N.1
Kumeta, H.2
Nakatogawa, H.3
Satoo, K.4
Adachi, W.5
Ishii, J.6
Fujioka, Y.7
Ohsumi, Y.8
Inagaki, F.9
-
36
-
-
0029036915
-
Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae
-
Noda, T., A. Matsuura, Y. Wada, and Y. Ohsumi. 1995. Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 210:126-132. http://dx.doi.org/10.1006/bbrc.1995.1636.
-
(1995)
Biochem. Biophys. Res. Commun
, vol.210
, pp. 126-132
-
-
Noda, T.1
Matsuura, A.2
Wada, Y.3
Ohsumi, Y.4
-
37
-
-
67650246357
-
Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy
-
Okamoto, K., N. Kondo-Okamoto, and Y. Ohsumi. 2009. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell. 17:87-97. http://dx.doi.org/10.1016/j.devcel.2009.06.013.
-
(2009)
Dev. Cell
, vol.17
, pp. 87-97
-
-
Okamoto, K.1
Kondo-Okamoto, N.2
Ohsumi, Y.3
-
38
-
-
1942469479
-
Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae
-
Onodera, J., and Y. Ohsumi. 2004. Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J. Biol. Chem. 279:16071-16076. http://dx.doi.org/10.1074/jbc.M312706200.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 16071-16076
-
-
Onodera, J.1
Ohsumi, Y.2
-
39
-
-
33748607719
-
Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1
-
Petronczki, M., J. Matos, S. Mori, J. Gregan, A. Bogdanova, M. Schwickart, K. Mechtler, K. Shirahige, W. Zachariae, and K. Nasmyth. 2006. Monopolar attachment of sister kinetochores at meiosis I requires casein kinase 1. Cell. 126:1049-1064. http://dx.doi.org/10.1016/j.cell.2006.07.029.
-
(2006)
Cell
, vol.126
, pp. 1049-1064
-
-
Petronczki, M.1
Matos, J.2
Mori, S.3
Gregan, J.4
Bogdanova, A.5
Schwickart, M.6
Mechtler, K.7
Shirahige, K.8
Zachariae, W.9
Nasmyth, K.10
-
40
-
-
84905391741
-
Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19
-
Pfaffenwimmer, T., W. Reiter, T. Brach, V. Nogellova, D. Papinski, M. Schuschnig, C. Abert, G. Ammerer, S. Martens, and C. Kraft. 2014. Hrr25 kinase promotes selective autophagy by phosphorylating the cargo receptor Atg19. EMBO Rep. 15:862-870. http://dx.doi.org/10.15252/embr.201438932.
-
(2014)
EMBO Rep
, vol.15
, pp. 862-870
-
-
Pfaffenwimmer, T.1
Reiter, W.2
Brach, T.3
Nogellova, V.4
Papinski, D.5
Schuschnig, M.6
Abert, C.7
Ammerer, G.8
Martens, S.9
Kraft, C.10
-
41
-
-
33745228890
-
Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit
-
Schäfer, T., B. Maco, E. Petfalski, D. Tollervey, B. Böttcher, U. Aebi, and E. Hurt. 2006. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature. 441:651-655. http://dx.doi.org/10.1038/nature04840.
-
(2006)
Nature
, vol.441
, pp. 651-655
-
-
Schäfer, T.1
Maco, B.2
Petfalski, E.3
Tollervey, D.4
Böttcher, B.5
Aebi, U.6
Hurt, E.7
-
42
-
-
0034964443
-
Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway
-
Scott, S.V., J. Guan, M.U. Hutchins, J. Kim, and D.J. Klionsky. 2001. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell. 7:1131-1141. http://dx.doi.org/10.1016/S1097-2765(01)00263-5.
-
(2001)
Mol. Cell
, vol.7
, pp. 1131-1141
-
-
Scott, S.V.1
Guan, J.2
Hutchins, M.U.3
Kim, J.4
Klionsky, D.J.5
-
43
-
-
3142677196
-
Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway
-
Shintani, T., and D.J. Klionsky. 2004. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 279:29889-29894. http://dx.doi.org/10.1074/jbc.M404399200.
-
(2004)
J. Biol. Chem
, vol.279
, pp. 29889-29894
-
-
Shintani, T.1
Klionsky, D.J.2
-
44
-
-
0036901104
-
Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway
-
Shintani, T., W.P. Huang, P.E. Stromhaug, and D.J. Klionsky. 2002. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell. 3:825-837. http://dx.doi.org/10.1016/S1534-5807(02)00373-8.
-
(2002)
Dev. Cell
, vol.3
, pp. 825-837
-
-
Shintani, T.1
Huang, W.P.2
Stromhaug, P.E.3
Klionsky, D.J.4
-
45
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski, R.S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 122:19-27.
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
46
-
-
3342951135
-
Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy
-
Strømhaug, P.E., F. Reggiori, J. Guan, C.W. Wang, and D.J. Klionsky. 2004. Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol. Biol. Cell. 15:3553-3566. http://dx.doi.org/ 10.1091/mbc.E04-02-0147.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 3553-3566
-
-
Strømhaug, P.E.1
Reggiori, F.2
Guan, J.3
Wang, C.W.4
Klionsky, D.J.5
-
47
-
-
84871002139
-
Selective autophagy in budding yeast
-
Suzuki, K. 2013. Selective autophagy in budding yeast. Cell Death Differ. 20:43-48. http://dx.doi.org/10.1038/cdd.2012.73.
-
(2013)
Cell Death Differ
, vol.20
, pp. 43-48
-
-
Suzuki, K.1
-
48
-
-
0035503594
-
The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
Suzuki, K., T. Kirisako, Y. Kamada, N. Mizushima, T. Noda, and Y. Ohsumi. 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:5971-5981. http://dx.doi.org/10.1093/emboj/20.21.5971.
-
(2001)
EMBO J
, vol.20
, pp. 5971-5981
-
-
Suzuki, K.1
Kirisako, T.2
Kamada, Y.3
Mizushima, N.4
Noda, T.5
Ohsumi, Y.6
-
49
-
-
79959415069
-
Biogenesis and cargo selectivity of autophagosomes
-
Weidberg, H., E. Shvets, and Z. Elazar. 2011. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 80:125-156. http://dx.doi.org/10.1146/annurev-biochem-052709-094552.
-
(2011)
Annu. Rev. Biochem
, vol.80
, pp. 125-156
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
50
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild, P., H. Farhan, D.G. McEwan, S. Wagner, V.V. Rogov, N.R. Brady, B. Richter, J. Korac, O. Waidmann, C. Choudhary, et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science. 333:228-233. http://dx.doi.org/10.1126/science.1205405.
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
Farhan, H.2
McEwan, D.G.3
Wagner, S.4
Rogov, V.V.5
Brady, N.R.6
Richter, B.7
Korac, J.8
Waidmann, O.9
Choudhary, C.10
-
51
-
-
52649145895
-
GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy
-
Xue, Y., J. Ren, X. Gao, C. Jin, L. Wen, and X. Yao. 2008. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell. Proteomics. 7:1598-1608. http://dx.doi.org/10.1074/mcp.M700574-MCP200.
-
(2008)
Mol. Cell. Proteomics
, vol.7
, pp. 1598-1608
-
-
Xue, Y.1
Ren, J.2
Gao, X.3
Jin, C.4
Wen, L.5
Yao, X.6
-
52
-
-
77956404377
-
Eaten alive: a history of macroautophagy
-
Yang, Z., and D.J. Klionsky. 2010. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12:814-822. http://dx.doi.org/10.1038/ncb0910-814.
-
(2010)
Nat. Cell Biol
, vol.12
, pp. 814-822
-
-
Yang, Z.1
Klionsky, D.J.2
-
53
-
-
79953850827
-
Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae
-
Yuga, M., K. Gomi, D.J. Klionsky, and T. Shintani. 2011. Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J. Biol. Chem. 286:13704-13713. http://dx.doi.org/10.1074/jbc.M110.173906.
-
(2011)
J. Biol. Chem
, vol.286
, pp. 13704-13713
-
-
Yuga, M.1
Gomi, K.2
Klionsky, D.J.3
Shintani, T.4
|