-
1
-
-
84865203739
-
Fine-tuning multiprotein complexes using small molecules
-
1 Thompson, A.D., et al. Fine-tuning multiprotein complexes using small molecules. ACS Chem. Biol. 7 (2012), 1311–1320.
-
(2012)
ACS Chem. Biol.
, vol.7
, pp. 1311-1320
-
-
Thompson, A.D.1
-
3
-
-
84905496728
-
Phenotypic screening in cancer drug discovery–past, present and future
-
3 Moffat, J.G., et al. Phenotypic screening in cancer drug discovery–past, present and future. Nat. Rev. Drug Discov. 13 (2014), 588–602.
-
(2014)
Nat. Rev. Drug Discov.
, vol.13
, pp. 588-602
-
-
Moffat, J.G.1
-
4
-
-
84875458314
-
Target identification and mechanism of action in chemical biology and drug discovery
-
4 Schenone, M., et al. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9 (2013), 232–240.
-
(2013)
Nat. Chem. Biol.
, vol.9
, pp. 232-240
-
-
Schenone, M.1
-
5
-
-
0033615357
-
Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen
-
5 Mayer, T.U., et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286 (1999), 971–974.
-
(1999)
Science
, vol.286
, pp. 971-974
-
-
Mayer, T.U.1
-
6
-
-
0034605123
-
Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5
-
6 Kapoor, T.M., et al. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150 (2000), 975–988.
-
(2000)
J. Cell Biol.
, vol.150
, pp. 975-988
-
-
Kapoor, T.M.1
-
7
-
-
84869082150
-
Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide
-
7 Lopez-Girona, A.E.A., Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26 (2012), 2326–2335.
-
(2012)
Leukemia
, vol.26
, pp. 2326-2335
-
-
Lopez-Girona, A.E.A.1
-
8
-
-
84875825507
-
Target identification of small molecules based on chemical biology approaches
-
8 Futamura, Y.M., et al. Target identification of small molecules based on chemical biology approaches. Mol. Biosyst. 9 (2013), 897–914.
-
(2013)
Mol. Biosyst.
, vol.9
, pp. 897-914
-
-
Futamura, Y.M.1
-
9
-
-
84855360379
-
Probing small molecule–protein interactions: a new perspective for functional proteomics
-
9 Lenz, T., et al. Probing small molecule–protein interactions: a new perspective for functional proteomics. J. Proteomics 75 (2011), 100–115.
-
(2011)
J. Proteomics
, vol.75
, pp. 100-115
-
-
Lenz, T.1
-
10
-
-
84871394690
-
The future of peptide-based drugs
-
10 Craik, D.J.F., et al. The future of peptide-based drugs. Chem. Biol. Drug Des. 81 (2013), 136–147.
-
(2013)
Chem. Biol. Drug Des.
, vol.81
, pp. 136-147
-
-
Craik, D.J.F.1
-
11
-
-
84939992928
-
Cell-based peptide screening to access the undruggable target space
-
11 Hennemann, H.W., et al. Cell-based peptide screening to access the undruggable target space. Eur. J. Med. Chem. 94 (2015), 489–496.
-
(2015)
Eur. J. Med. Chem.
, vol.94
, pp. 489-496
-
-
Hennemann, H.W.1
-
12
-
-
84875436143
-
Inhibition of alpha-helix-mediated protein–protein interactions using designed molecules
-
12 Azzarito, V., et al. Inhibition of alpha-helix-mediated protein–protein interactions using designed molecules. Nat. Chem. 5 (2013), 161–173.
-
(2013)
Nat. Chem.
, vol.5
, pp. 161-173
-
-
Azzarito, V.1
-
13
-
-
10744221485
-
In vivo activation of the p53 pathway by small-molecule antagonists of MDM2
-
13 Vassilev, L.T., et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303 (2004), 844–848.
-
(2004)
Science
, vol.303
, pp. 844-848
-
-
Vassilev, L.T.1
-
14
-
-
84897443073
-
Oncogenic protein interfaces: small molecules, big challenges
-
14 Nero, T.L., et al. Oncogenic protein interfaces: small molecules, big challenges. Nat. Rev. Cancer 14 (2014), 248–262.
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 248-262
-
-
Nero, T.L.1
-
15
-
-
84930015010
-
Peptide therapeutics: targeting the undruggable space
-
15 Tsomaia, N., Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem. 94 (2015), 459–470.
-
(2015)
Eur. J. Med. Chem.
, vol.94
, pp. 459-470
-
-
Tsomaia, N.1
-
16
-
-
84863270608
-
Enabling large-scale design, synthesis and validation of small molecule protein–protein antagonists
-
16 Koes, D., et al. Enabling large-scale design, synthesis and validation of small molecule protein–protein antagonists. PLoS One, 7, 2012, e32839.
-
(2012)
PLoS One
, vol.7
, pp. e32839
-
-
Koes, D.1
-
17
-
-
84876002671
-
Natural products: a continuing source of novel drug leads
-
17 Cragg, G.M., Newman, D.J., Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830 (2013), 3670–3695.
-
(2013)
Biochim. Biophys. Acta
, vol.1830
, pp. 3670-3695
-
-
Cragg, G.M.1
Newman, D.J.2
-
18
-
-
33644839988
-
Diversity-oriented synthesis: exploring the intersections between chemistry and biology
-
18 Tan, D.S., Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat. Chem. Biol. 1 (2005), 74–84.
-
(2005)
Nat. Chem. Biol.
, vol.1
, pp. 74-84
-
-
Tan, D.S.1
-
19
-
-
84904815625
-
SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information
-
19 Biasini, M., et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42 (2014), W252–W258.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. W252-W258
-
-
Biasini, M.1
-
20
-
-
84888851991
-
Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how
-
20 London, N.R., et al. Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr. Opin. Struct. Biol. 23 (2013), 894–902.
-
(2013)
Curr. Opin. Struct. Biol.
, vol.23
, pp. 894-902
-
-
London, N.R.1
-
21
-
-
84875150414
-
The holistic integration of virtual screening in drug discovery
-
21 Tanrikulu, Y., et al. The holistic integration of virtual screening in drug discovery. Drug Discov. Today 18 (2013), 358–364.
-
(2013)
Drug Discov. Today
, vol.18
, pp. 358-364
-
-
Tanrikulu, Y.1
-
22
-
-
84861087763
-
Networks of protein–protein interactions: from uncertainty to molecular details
-
22 Garcia-Garcia, J., et al. Networks of protein–protein interactions: from uncertainty to molecular details. Mol. Inform. 31 (2012), 342–362.
-
(2012)
Mol. Inform.
, vol.31
, pp. 342-362
-
-
Garcia-Garcia, J.1
-
23
-
-
84880048544
-
Identification of protein interactions involved in cellular signaling
-
23 Westermarck, J., et al. Identification of protein interactions involved in cellular signaling. Mol. Cell. Proteomics 12 (2013), 1752–1763.
-
(2013)
Mol. Cell. Proteomics
, vol.12
, pp. 1752-1763
-
-
Westermarck, J.1
-
24
-
-
77955505357
-
Protein–protein interactions essentials: key concepts to building and analyzing interactome networks
-
24 De Las Rivas, J., Fontanillo, C., Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput. Biol., 6, 2010, e1000807.
-
(2010)
PLoS Comput. Biol.
, vol.6
, pp. e1000807
-
-
De Las Rivas, J.1
Fontanillo, C.2
-
25
-
-
84906702408
-
RNAi screening comes of age: improved techniques and complementary approaches
-
25 Mohr, S.E., et al. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15 (2014), 591–600.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 591-600
-
-
Mohr, S.E.1
-
26
-
-
84928205754
-
High-throughput functional genomics using CRISPR–Cas9
-
26 Shalem, O., et al. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16 (2015), 299–311.
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 299-311
-
-
Shalem, O.1
-
27
-
-
79955592811
-
Harnessing synthetic lethal interactions in anticancer drug discovery
-
27 Chan, D.A., Giaccia, A.J., Harnessing synthetic lethal interactions in anticancer drug discovery. Nat. Rev. Drug Discov. 10 (2011), 351–364.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 351-364
-
-
Chan, D.A.1
Giaccia, A.J.2
-
28
-
-
84959286152
-
Pioneering apoptosis-targeted cancer drug poised for FDA approval
-
28 Mullard, A., Pioneering apoptosis-targeted cancer drug poised for FDA approval. Nat. Rev. Drug Discov. 15 (2016), 147–149.
-
(2016)
Nat. Rev. Drug Discov.
, vol.15
, pp. 147-149
-
-
Mullard, A.1
-
29
-
-
20444486559
-
An inhibitor of Bcl-2 family proteins induces regression of solid tumours
-
29 Oltersdorf, T., et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435 (2005), 677–681.
-
(2005)
Nature
, vol.435
, pp. 677-681
-
-
Oltersdorf, T.1
-
30
-
-
0029836953
-
Discovering high-affinity ligands for proteins: SAR by NMR
-
30 Shuker, S.B., et al. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274 (1996), 1531–1534.
-
(1996)
Science
, vol.274
, pp. 1531-1534
-
-
Shuker, S.B.1
-
31
-
-
84928645682
-
Alternative modulation of protein–protein interactions by small molecules
-
31 Fischer, G., et al. Alternative modulation of protein–protein interactions by small molecules. Curr. Opin. Biotechnol. 35 (2015), 78–85.
-
(2015)
Curr. Opin. Biotechnol.
, vol.35
, pp. 78-85
-
-
Fischer, G.1
-
32
-
-
84909587217
-
Small-molecule inhibitors of protein-protein interactions: progressing toward the reality
-
32 Arkin, M.R., et al. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem. Biol. 21 (2014), 1102–1114.
-
(2014)
Chem. Biol.
, vol.21
, pp. 1102-1114
-
-
Arkin, M.R.1
-
33
-
-
84888639050
-
K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions
-
33 Ostrem, J.M., et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503 (2013), 548–551.
-
(2013)
Nature
, vol.503
, pp. 548-551
-
-
Ostrem, J.M.1
-
34
-
-
84906309147
-
Dissecting allosteric effects of activator–coactivator complexes using a covalent small molecule ligand
-
34 Wang, N., et al. Dissecting allosteric effects of activator–coactivator complexes using a covalent small molecule ligand. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 12061–12066.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 12061-12066
-
-
Wang, N.1
-
35
-
-
84960331999
-
Stabilization of protein–protein interaction complexes through small molecules
-
35 Zarzycka, B., et al. Stabilization of protein–protein interaction complexes through small molecules. Drug Discov. Today 21 (2016), 48–57.
-
(2016)
Drug Discov. Today
, vol.21
, pp. 48-57
-
-
Zarzycka, B.1
-
36
-
-
84857509304
-
Small-molecule stabilization of protein–protein interactions: an underestimated concept in drug discovery?
-
36 Thiel, P., et al. Small-molecule stabilization of protein–protein interactions: an underestimated concept in drug discovery?. Angew. Chem. Int. Ed. Engl. 51 (2012), 2012–2018.
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, pp. 2012-2018
-
-
Thiel, P.1
-
37
-
-
84883432191
-
Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy
-
37 Chang, Y.S., et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), E3445–E3454.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. E3445-E3454
-
-
Chang, Y.S.1
-
38
-
-
84863966819
-
Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization
-
38 Graves, B., et al. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 11788–11793.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11788-11793
-
-
Graves, B.1
-
39
-
-
0032479179
-
Anatomy of hot spots in protein interfaces
-
39 Bogan, A.A., Thorn, K.S., Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280 (1998), 1–9.
-
(1998)
J. Mol. Biol.
, vol.280
, pp. 1-9
-
-
Bogan, A.A.1
Thorn, K.S.2
-
40
-
-
0028916599
-
A hot spot of binding energy in a hormone–receptor interface
-
40 Clackson, T., Wells, J.A., A hot spot of binding energy in a hormone–receptor interface. Science 267 (1995), 383–386.
-
(1995)
Science
, vol.267
, pp. 383-386
-
-
Clackson, T.1
Wells, J.A.2
-
41
-
-
84890137047
-
Druggable protein–protein interactions–from hot spots to hot segments
-
41 London, N., et al. Druggable protein–protein interactions–from hot spots to hot segments. Curr. Opin. Chem. Biol. 17 (2013), 952–959.
-
(2013)
Curr. Opin. Chem. Biol.
, vol.17
, pp. 952-959
-
-
London, N.1
-
42
-
-
0024403619
-
High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis
-
42 Cunningham, B.C., Wells, J.A., High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244 (1989), 1081–1085.
-
(1989)
Science
, vol.244
, pp. 1081-1085
-
-
Cunningham, B.C.1
Wells, J.A.2
-
43
-
-
3242879771
-
Computational alanine scanning of protein–protein interfaces
-
43 Kortemme, T., et al. Computational alanine scanning of protein–protein interfaces. Sci. Signal., 2004, 2004, pl2.
-
(2004)
Sci. Signal.
, vol.2004
, pp. pl2
-
-
Kortemme, T.1
-
44
-
-
0042710087
-
Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies
-
44 Massova, I., Kollman, P.A., Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 121 (1999), 8133–8143.
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 8133-8143
-
-
Massova, I.1
Kollman, P.A.2
-
45
-
-
77958105231
-
Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors
-
45 Jochim, A.L., Arora, P.S., Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem. Biol. 5 (2010), 919–923.
-
(2010)
ACS Chem. Biol.
, vol.5
, pp. 919-923
-
-
Jochim, A.L.1
Arora, P.S.2
-
46
-
-
84946204230
-
Lessons from hot spot analysis for fragment-based drug discovery
-
46 Hall, D.R., et al. Lessons from hot spot analysis for fragment-based drug discovery. Trends Pharmacol. Sci. 36 (2015), 724–736.
-
(2015)
Trends Pharmacol. Sci.
, vol.36
, pp. 724-736
-
-
Hall, D.R.1
-
47
-
-
0030575937
-
Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain
-
47 Kussie, P.H., et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274 (1996), 948–953.
-
(1996)
Science
, vol.274
, pp. 948-953
-
-
Kussie, P.H.1
-
48
-
-
0027964904
-
Immunochemical analysis of the interaction of p53 with MDM2–fine mapping of the MDM2 binding site on p53 using synthetic peptides
-
48 Picksley, S.M., et al. Immunochemical analysis of the interaction of p53 with MDM2–fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9 (1994), 2523–2529.
-
(1994)
Oncogene
, vol.9
, pp. 2523-2529
-
-
Picksley, S.M.1
-
49
-
-
73249140963
-
Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction
-
49 Yu, S., et al. Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. J. Med. Chem. 52 (2009), 7970–7973.
-
(2009)
J. Med. Chem.
, vol.52
, pp. 7970-7973
-
-
Yu, S.1
-
50
-
-
18844423053
-
Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction
-
50 Yin, H., et al. Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew. Chem. Int. Ed. Engl. 44 (2005), 2704–2707.
-
(2005)
Angew. Chem. Int. Ed. Engl.
, vol.44
, pp. 2704-2707
-
-
Yin, H.1
-
51
-
-
3543098742
-
Helical β-peptide inhibitors of the p53–hDM2 interaction
-
51 Kritzer, J.A., et al. Helical β-peptide inhibitors of the p53–hDM2 interaction. J. Am. Chem. Soc. 126 (2004), 9468–9469.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 9468-9469
-
-
Kritzer, J.A.1
-
52
-
-
3843091516
-
Anchor residues in protein–protein interactions
-
52 Rajamani, D., et al. Anchor residues in protein–protein interactions. Proc. Natl. Acad. Sci. U.S.A. 101 (2004), 11287–11292.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 11287-11292
-
-
Rajamani, D.1
-
53
-
-
84940200063
-
AlphaSpace: fragment-centric topographical mapping to target protein–protein interaction interfaces
-
53 Rooklin, D., et al. AlphaSpace: fragment-centric topographical mapping to target protein–protein interaction interfaces. J. Chem. Inf. Model. 55 (2015), 1585–1599.
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 1585-1599
-
-
Rooklin, D.1
-
54
-
-
0028881975
-
SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions
-
54 Laskowski, R.A., SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13 (1995), 323–330.
-
(1995)
J. Mol. Graph.
, vol.13
, pp. 323-330
-
-
Laskowski, R.A.1
-
55
-
-
84864464925
-
FTMAP: extended protein mapping with user-selected probe molecules
-
55 Ngan, C.H., et al. FTMAP: extended protein mapping with user-selected probe molecules. Nucleic Acids Res. 40 (2012), W271–W275.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. W271-W275
-
-
Ngan, C.H.1
-
56
-
-
84901937652
-
Rational design of topographical helix mimics as potent inhibitors of protein–protein interactions
-
56 Lao, B.B., et al. Rational design of topographical helix mimics as potent inhibitors of protein–protein interactions. J. Am. Chem. Soc. 136 (2014), 7877–7888.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 7877-7888
-
-
Lao, B.B.1
-
57
-
-
34547583152
-
Transient pockets on protein surfaces involved in protein–protein interaction
-
57 Eyrisch, S., Helms, V., Transient pockets on protein surfaces involved in protein–protein interaction. J. Med. Chem. 50 (2007), 3457–3464.
-
(2007)
J. Med. Chem.
, vol.50
, pp. 3457-3464
-
-
Eyrisch, S.1
Helms, V.2
-
58
-
-
84875984520
-
Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface
-
58 Johnson, D.K., Karanicolas, J., Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput. Biol., 9, 2013, e1002951.
-
(2013)
PLoS Comput. Biol.
, vol.9
, pp. e1002951
-
-
Johnson, D.K.1
Karanicolas, J.2
-
59
-
-
84940447298
-
Computational close up on protein–protein interactions: how to unravel the invisible using molecular dynamics simulations?
-
59 Rakers, C., et al. Computational close up on protein–protein interactions: how to unravel the invisible using molecular dynamics simulations?. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5 (2015), 345–359.
-
(2015)
Wiley Interdiscip. Rev. Comput. Mol. Sci.
, vol.5
, pp. 345-359
-
-
Rakers, C.1
-
60
-
-
84863939894
-
Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites
-
60 Bowman, G.R., Geissler, P.L., Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 11681–11686.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11681-11686
-
-
Bowman, G.R.1
Geissler, P.L.2
-
61
-
-
84937518958
-
Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes
-
61 Pelay-Gimeno, M., et al. Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angew. Chem. Int. Ed. Engl. 54 (2015), 8896–8927.
-
(2015)
Angew. Chem. Int. Ed. Engl.
, vol.54
, pp. 8896-8927
-
-
Pelay-Gimeno, M.1
-
62
-
-
77649233664
-
Rationalizing the chemical space of protein–protein interaction inhibitors
-
62 Sperandio, O., et al. Rationalizing the chemical space of protein–protein interaction inhibitors. Drug Discov. Today 15 (2010), 220–229.
-
(2010)
Drug Discov. Today
, vol.15
, pp. 220-229
-
-
Sperandio, O.1
-
63
-
-
84944726079
-
Fragment-based drug discovery and protein–protein interactions
-
63 Turnbull, A.P., et al. Fragment-based drug discovery and protein–protein interactions. Res. Rep. Biochem. 4 (2014), 13–26.
-
(2014)
Res. Rep. Biochem.
, vol.4
, pp. 13-26
-
-
Turnbull, A.P.1
-
64
-
-
84858131639
-
Targeting protein–protein interactions and fragment-based drug discovery
-
64 Valkov, E., et al. Targeting protein–protein interactions and fragment-based drug discovery. Top. Curr. Chem. 317 (2012), 145–179.
-
(2012)
Top. Curr. Chem.
, vol.317
, pp. 145-179
-
-
Valkov, E.1
-
65
-
-
84929703042
-
Progress in discovery of small-molecule modulators of protein–protein interactions via fragment screening
-
65 Magee, T.V., Progress in discovery of small-molecule modulators of protein–protein interactions via fragment screening. Bioorg. Med. Chem. Lett. 25 (2015), 2461–2468.
-
(2015)
Bioorg. Med. Chem. Lett.
, vol.25
, pp. 2461-2468
-
-
Magee, T.V.1
-
66
-
-
0034662911
-
Site-directed ligand discovery
-
66 Erlanson, D.A., et al. Site-directed ligand discovery. Proc. Natl. Acad. Sci. U.S.A. 97 (2000), 9367–9372.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 9367-9372
-
-
Erlanson, D.A.1
-
67
-
-
0037337035
-
In situ assembly of enzyme inhibitors using extended tethering
-
67 Erlanson, D.A., et al. In situ assembly of enzyme inhibitors using extended tethering. Nat. Biotechnol. 21 (2003), 308–314.
-
(2003)
Nat. Biotechnol.
, vol.21
, pp. 308-314
-
-
Erlanson, D.A.1
-
68
-
-
84895094959
-
FP Tethering: a screening technique to rapidly identify compounds that disrupt protein-protein interactions
-
68 Lodge, J.M., et al. FP Tethering: a screening technique to rapidly identify compounds that disrupt protein-protein interactions. Medchemcomm 5 (2014), 370–375.
-
(2014)
Medchemcomm
, vol.5
, pp. 370-375
-
-
Lodge, J.M.1
-
69
-
-
0037452709
-
Binding of small molecules to an adaptive protein–protein interface
-
69 Arkin, M.R., et al. Binding of small molecules to an adaptive protein–protein interface. Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 1603–1608.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 1603-1608
-
-
Arkin, M.R.1
-
70
-
-
84856935181
-
Introduction to fragment-based drug discovery
-
70 Erlanson, D.A., Introduction to fragment-based drug discovery. Top. Curr. Chem. 317 (2012), 1–32.
-
(2012)
Top. Curr. Chem.
, vol.317
, pp. 1-32
-
-
Erlanson, D.A.1
-
71
-
-
84900422135
-
NMR-based approaches for the identification and optimization of inhibitors of protein–protein interactions
-
71 Barile, E., Pellecchia, M., NMR-based approaches for the identification and optimization of inhibitors of protein–protein interactions. Chem. Rev. 114 (2014), 4749–4763.
-
(2014)
Chem. Rev.
, vol.114
, pp. 4749-4763
-
-
Barile, E.1
Pellecchia, M.2
-
72
-
-
84882635398
-
Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR screening and similarity searching
-
72 Chu, S., Gochin, M., Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR screening and similarity searching. Bioorg. Med. Chem. Lett. 23 (2013), 5114–5118.
-
(2013)
Bioorg. Med. Chem. Lett.
, vol.23
, pp. 5114-5118
-
-
Chu, S.1
Gochin, M.2
-
73
-
-
80052384557
-
L and Mcl-1
-
L and Mcl-1. J. Med. Chem. 54 (2011), 6000–6013.
-
(2011)
J. Med. Chem.
, vol.54
, pp. 6000-6013
-
-
Rega, M.F.1
-
74
-
-
84862649997
-
Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation
-
74 Sun, Q., et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem. Int. Ed. Engl. 51 (2012), 6140–6143.
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, pp. 6140-6143
-
-
Sun, Q.1
-
76
-
-
84872928524
-
HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery
-
76 Wu, B., et al. HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery. Chem. Biol. 20 (2013), 19–33.
-
(2013)
Chem. Biol.
, vol.20
, pp. 19-33
-
-
Wu, B.1
-
77
-
-
84873433440
-
Using a fragment-based approach to target protein–protein interactions
-
77 Scott, D.E., et al. Using a fragment-based approach to target protein–protein interactions. Chembiochem 14 (2013), 332–342.
-
(2013)
Chembiochem
, vol.14
, pp. 332-342
-
-
Scott, D.E.1
-
78
-
-
84868026890
-
Dissecting fragment-based lead discovery at the von Hippel–Lindau protein:hypoxia inducible factor 1α protein–protein interface
-
78 Van Molle, I., et al. Dissecting fragment-based lead discovery at the von Hippel–Lindau protein:hypoxia inducible factor 1α protein–protein interface. Chem. Biol. 19 (2012), 1300–1312.
-
(2012)
Chem. Biol.
, vol.19
, pp. 1300-1312
-
-
Van Molle, I.1
-
79
-
-
84870810902
-
Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery
-
79 Winter, A., et al. Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Q. Rev. Biophys. 45 (2012), 383–426.
-
(2012)
Q. Rev. Biophys.
, vol.45
, pp. 383-426
-
-
Winter, A.1
-
80
-
-
34548141882
-
Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein–protein interactions
-
80 Guharoy, M., Chakrabarti, P., Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein–protein interactions. Bioinformatics 23 (2007), 1909–1918.
-
(2007)
Bioinformatics
, vol.23
, pp. 1909-1918
-
-
Guharoy, M.1
Chakrabarti, P.2
-
81
-
-
84919945753
-
A potent α/β-peptide analogue of GLP-1 with prolonged action in vivo
-
81 Johnson, L.M., et al. A potent α/β-peptide analogue of GLP-1 with prolonged action in vivo. J. Am. Chem. Soc. 136 (2014), 12848–12851.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 12848-12851
-
-
Johnson, L.M.1
-
82
-
-
80052566586
-
Assessing helical protein interfaces for inhibitor design
-
82 Bullock, B.N., et al. Assessing helical protein interfaces for inhibitor design. J. Am. Chem. Soc. 133 (2011), 14220–14223.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 14220-14223
-
-
Bullock, B.N.1
-
83
-
-
84906254338
-
Anatomy of β-strands at protein–protein interfaces
-
83 Watkins, A.M., Arora, P.S., Anatomy of β-strands at protein–protein interfaces. ACS Chem. Biol. 9 (2014), 1747–1754.
-
(2014)
ACS Chem. Biol.
, vol.9
, pp. 1747-1754
-
-
Watkins, A.M.1
Arora, P.S.2
-
84
-
-
84906327241
-
Comprehensive analysis of loops at protein–protein interfaces for macrocycle design
-
84 Gavenonis, J., et al. Comprehensive analysis of loops at protein–protein interfaces for macrocycle design. Nat. Chem. Biol. 10 (2014), 716–722.
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 716-722
-
-
Gavenonis, J.1
-
85
-
-
84941794787
-
Protein–protein interactions mediated by helical tertiary structure motifs
-
85 Watkins, A.M., et al. Protein–protein interactions mediated by helical tertiary structure motifs. J. Am. Chem. Soc. 137 (2015), 11622–11630.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 11622-11630
-
-
Watkins, A.M.1
-
86
-
-
0034801374
-
Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an α-helix
-
86 Orner, B.P., et al. Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an α-helix. J. Am. Chem. Soc. 123 (2001), 5382–5383.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 5382-5383
-
-
Orner, B.P.1
-
87
-
-
57549092075
-
Contemporary strategies for the stabilization of peptides in the α-helical conformation
-
87 Henchey, L.K., et al. Contemporary strategies for the stabilization of peptides in the α-helical conformation. Curr. Opin. Chem. Biol. 12 (2008), 692–697.
-
(2008)
Curr. Opin. Chem. Biol.
, vol.12
, pp. 692-697
-
-
Henchey, L.K.1
-
88
-
-
79955921951
-
Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone
-
88 Sawada, T., Gellman, S.H., Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone. J. Am. Chem. Soc. 133 (2011), 7336–7339.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 7336-7339
-
-
Sawada, T.1
Gellman, S.H.2
-
89
-
-
84884640689
-
Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling
-
89 Kushal, S., et al. Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 15602–15607.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 15602-15607
-
-
Kushal, S.1
-
90
-
-
84901681947
-
Hydrocarbon-stapled peptides: principles, practice, and progress
-
90 Walensky, L.D., Bird, G.H., Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem. 57 (2014), 6275–6288.
-
(2014)
J. Med. Chem.
, vol.57
, pp. 6275-6288
-
-
Walensky, L.D.1
Bird, G.H.2
-
91
-
-
84900433934
-
Modulators of protein–protein interactions
-
91 Milroy, L-G., et al. Modulators of protein–protein interactions. Chem. Rev. 114 (2014), 4695–4748.
-
(2014)
Chem. Rev.
, vol.114
, pp. 4695-4748
-
-
Milroy, L.-G.1
-
92
-
-
29044447377
-
Nonpeptidic foldamers from amino acids: synthesis and characterization of 1,3-substituted triazole oligomers
-
92 Angelo, N.G., Arora, P.S., Nonpeptidic foldamers from amino acids: synthesis and characterization of 1,3-substituted triazole oligomers. J. Am. Chem. Soc. 127 (2005), 17134–17135.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 17134-17135
-
-
Angelo, N.G.1
Arora, P.S.2
-
93
-
-
84983719090
-
Triazolo-β-aza-ɛ-amino acid and its aromatic analogue as novel scaffolds for β-turn peptidomimetics
-
93 Bag, S.S., et al. Triazolo-β-aza-ɛ-amino acid and its aromatic analogue as novel scaffolds for β-turn peptidomimetics. Chem. Commun. (Camb.) 51 (2015), 5242–5245.
-
(2015)
Chem. Commun. (Camb.)
, vol.51
, pp. 5242-5245
-
-
Bag, S.S.1
-
94
-
-
67650522906
-
Macrocyclic design strategies for small, stable parallel β-sheet scaffolds
-
94 Freire, F., Gellman, S.H., Macrocyclic design strategies for small, stable parallel β-sheet scaffolds. J. Am. Chem. Soc. 131 (2009), 7970–7972.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 7970-7972
-
-
Freire, F.1
Gellman, S.H.2
-
95
-
-
67650468079
-
Evaluating β-turn mimics as β-sheet folding nucleators
-
95 Fuller, A.A., et al. Evaluating β-turn mimics as β-sheet folding nucleators. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 11067–11072.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 11067-11072
-
-
Fuller, A.A.1
-
96
-
-
84946197224
-
β-Strand mimics based on tetrahydropyridazinedione (tpd) peptide stitching
-
96 Kang, C.W., et al. β-Strand mimics based on tetrahydropyridazinedione (tpd) peptide stitching. Chem. Commun. (Camb.) 51 (2015), 16259–16262.
-
(2015)
Chem. Commun. (Camb.)
, vol.51
, pp. 16259-16262
-
-
Kang, C.W.1
-
97
-
-
84871568871
-
Substituted imidazo[1,2-a]pyridines as β-strand peptidomimetics
-
97 Kang, C.W., et al. Substituted imidazo[1,2-a]pyridines as β-strand peptidomimetics. Org. Lett. 14 (2012), 6162–6165.
-
(2012)
Org. Lett.
, vol.14
, pp. 6162-6165
-
-
Kang, C.W.1
-
98
-
-
84897390934
-
Diphenylacetylene-linked peptide strands induce bidirectional β-sheet formation
-
98 Lingard, H., et al. Diphenylacetylene-linked peptide strands induce bidirectional β-sheet formation. Angew. Chem. Int. Ed. Engl. 53 (2014), 3650–3653.
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, pp. 3650-3653
-
-
Lingard, H.1
-
99
-
-
79951850614
-
Update 1 of: β-strand mimetics
-
99 Loughlin, W.A., et al. Update 1 of: β-strand mimetics. Chem. Rev. 110 (2010), PR32–PR69.
-
(2010)
Chem. Rev.
, vol.110
, pp. PR32-PR69
-
-
Loughlin, W.A.1
-
100
-
-
57349151828
-
Beta-hairpin peptidomimetics: design, structures and biological activities
-
100 Robinson, J.A., Beta-hairpin peptidomimetics: design, structures and biological activities. Acc. Chem. Res. 41 (2008), 1278–1288.
-
(2008)
Acc. Chem. Res.
, vol.41
, pp. 1278-1288
-
-
Robinson, J.A.1
-
101
-
-
84906307859
-
How proteins bind macrocycles
-
101 Villar, E.A., et al. How proteins bind macrocycles. Nat. Chem. Biol. 10 (2014), 723–731.
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 723-731
-
-
Villar, E.A.1
-
102
-
-
84902176344
-
Selection-based discovery of druglike macrocyclic peptides
-
102 Passioura, T., et al. Selection-based discovery of druglike macrocyclic peptides. Annu. Rev. Biochem. 83 (2014), 727–752.
-
(2014)
Annu. Rev. Biochem.
, vol.83
, pp. 727-752
-
-
Passioura, T.1
-
103
-
-
79959580534
-
Contemporary strategies for peptide macrocyclization
-
103 White, C.J., Yudin, A.K., Contemporary strategies for peptide macrocyclization. Nat. Chem. 3 (2011), 509–524.
-
(2011)
Nat. Chem.
, vol.3
, pp. 509-524
-
-
White, C.J.1
Yudin, A.K.2
-
104
-
-
84882282136
-
Screening bicyclic peptide libraries for protein–protein interaction inhibitors: discovery of a tumor necrosis factor-α antagonist
-
104 Lian, W., et al. Screening bicyclic peptide libraries for protein–protein interaction inhibitors: discovery of a tumor necrosis factor-α antagonist. J. Am. Chem. Soc. 135 (2013), 11990–11995.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 11990-11995
-
-
Lian, W.1
-
106
-
-
84865291649
-
Structural insights for engineering binding proteins based on non-antibody scaffolds
-
106 Gilbreth, R.N., Koide, S., Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr. Opin. Struct. Biol. 22 (2012), 413–420.
-
(2012)
Curr. Opin. Struct. Biol.
, vol.22
, pp. 413-420
-
-
Gilbreth, R.N.1
Koide, S.2
-
107
-
-
0242331757
-
Therapeutic potential of venom peptides
-
107 Lewis, R.J., Garcia, M.L., Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2 (2003), 790–802.
-
(2003)
Nat. Rev. Drug Discov.
, vol.2
, pp. 790-802
-
-
Lewis, R.J.1
Garcia, M.L.2
-
108
-
-
84887625627
-
Beyond antibodies: using biological principles to guide the development of next-generation protein therapeutics
-
108 Kariolis, M.S., et al. Beyond antibodies: using biological principles to guide the development of next-generation protein therapeutics. Curr. Opin. Biotechnol. 24 (2013), 1072–1077.
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 1072-1077
-
-
Kariolis, M.S.1
-
109
-
-
29344448254
-
A new generation of protein display scaffolds for molecular recognition
-
109 Hosse, R.J., et al. A new generation of protein display scaffolds for molecular recognition. Protein Sci. 15 (2006), 14–27.
-
(2006)
Protein Sci.
, vol.15
, pp. 14-27
-
-
Hosse, R.J.1
-
110
-
-
84928038747
-
Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold
-
110 Checco, J.W., et al. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 4552–4557.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 4552-4557
-
-
Checco, J.W.1
-
111
-
-
33846947579
-
High-resolution structure of a β-peptide bundle
-
111 Daniels, D.S., et al. High-resolution structure of a β-peptide bundle. J. Am. Chem. Soc. 129 (2007), 1532–1533.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 1532-1533
-
-
Daniels, D.S.1
-
112
-
-
84960920136
-
Comparison of design strategies for α-helix backbone modification in a protein tertiary fold
-
112 Tavenor, N.A., et al. Comparison of design strategies for α-helix backbone modification in a protein tertiary fold. Chem. Commun. (Camb.) 52 (2016), 3789–3792.
-
(2016)
Chem. Commun. (Camb.)
, vol.52
, pp. 3789-3792
-
-
Tavenor, N.A.1
-
113
-
-
84941766190
-
An effective strategy for stabilizing minimal coiled coil mimetics
-
113 Wuo, M.G., et al. An effective strategy for stabilizing minimal coiled coil mimetics. J. Am. Chem. Soc. 137 (2015), 11618–11621.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 11618-11621
-
-
Wuo, M.G.1
-
114
-
-
84883256420
-
Future directions for peptide therapeutics development
-
114 Kaspar, A.A., Reichert, J.M., Future directions for peptide therapeutics development. Drug Discov. Today 18 (2013), 807–817.
-
(2013)
Drug Discov. Today
, vol.18
, pp. 807-817
-
-
Kaspar, A.A.1
Reichert, J.M.2
-
115
-
-
84947551578
-
Targeting transcription is no longer a quixotic quest
-
115 Mapp, A.K., et al. Targeting transcription is no longer a quixotic quest. Nat. Chem. Biol. 11 (2015), 891–894.
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 891-894
-
-
Mapp, A.K.1
-
116
-
-
0037188377
-
Intrinsic disorder and protein function
-
116 Dunker, A.K., et al. Intrinsic disorder and protein function. Biochemistry 41 (2002), 6573–6582.
-
(2002)
Biochemistry
, vol.41
, pp. 6573-6582
-
-
Dunker, A.K.1
-
117
-
-
77955327536
-
Intrinsically disordered proteins are potential drug targets
-
117 Metallo, S.J., Intrinsically disordered proteins are potential drug targets. Curr. Opin. Chem. Biol. 14 (2010), 481–488.
-
(2010)
Curr. Opin. Chem. Biol.
, vol.14
, pp. 481-488
-
-
Metallo, S.J.1
-
118
-
-
14644435825
-
Intrinsically unstructured proteins and their functions
-
118 Dyson, H.J., Wright, P.E., Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6 (2005), 197–208.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 197-208
-
-
Dyson, H.J.1
Wright, P.E.2
|