메뉴 건너뛰기




Volumn 37, Issue 8, 2016, Pages 702-713

Systematic Targeting of Protein–Protein Interactions

Author keywords

fragment based design; inhibitors; protein domain mimics; protein protein interactions; rational design; screening

Indexed keywords

LENALIDOMIDE; MONASTROL; PROTEIN BCL 2; PROTEIN INHIBITOR; PROTEIN MDMX; PROTEIN P53; RO 2443; RO 5963; UNCLASSIFIED DRUG; VENETOCLAX; BIOMIMETIC MATERIAL; PROTEIN;

EID: 84971622038     PISSN: 01656147     EISSN: 18733735     Source Type: Journal    
DOI: 10.1016/j.tips.2016.05.008     Document Type: Review
Times cited : (137)

References (118)
  • 1
    • 84865203739 scopus 로고    scopus 로고
    • Fine-tuning multiprotein complexes using small molecules
    • 1 Thompson, A.D., et al. Fine-tuning multiprotein complexes using small molecules. ACS Chem. Biol. 7 (2012), 1311–1320.
    • (2012) ACS Chem. Biol. , vol.7 , pp. 1311-1320
    • Thompson, A.D.1
  • 2
    • 79959929769 scopus 로고    scopus 로고
    • How were new medicines discovered?
    • 2 Swinney, D.C., Anthony, J., How were new medicines discovered?. Nat. Rev. Drug Discov. 10 (2011), 507–519.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 507-519
    • Swinney, D.C.1    Anthony, J.2
  • 3
    • 84905496728 scopus 로고    scopus 로고
    • Phenotypic screening in cancer drug discovery–past, present and future
    • 3 Moffat, J.G., et al. Phenotypic screening in cancer drug discovery–past, present and future. Nat. Rev. Drug Discov. 13 (2014), 588–602.
    • (2014) Nat. Rev. Drug Discov. , vol.13 , pp. 588-602
    • Moffat, J.G.1
  • 4
    • 84875458314 scopus 로고    scopus 로고
    • Target identification and mechanism of action in chemical biology and drug discovery
    • 4 Schenone, M., et al. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9 (2013), 232–240.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 232-240
    • Schenone, M.1
  • 5
    • 0033615357 scopus 로고    scopus 로고
    • Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen
    • 5 Mayer, T.U., et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286 (1999), 971–974.
    • (1999) Science , vol.286 , pp. 971-974
    • Mayer, T.U.1
  • 6
    • 0034605123 scopus 로고    scopus 로고
    • Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5
    • 6 Kapoor, T.M., et al. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150 (2000), 975–988.
    • (2000) J. Cell Biol. , vol.150 , pp. 975-988
    • Kapoor, T.M.1
  • 7
    • 84869082150 scopus 로고    scopus 로고
    • Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide
    • 7 Lopez-Girona, A.E.A., Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26 (2012), 2326–2335.
    • (2012) Leukemia , vol.26 , pp. 2326-2335
    • Lopez-Girona, A.E.A.1
  • 8
    • 84875825507 scopus 로고    scopus 로고
    • Target identification of small molecules based on chemical biology approaches
    • 8 Futamura, Y.M., et al. Target identification of small molecules based on chemical biology approaches. Mol. Biosyst. 9 (2013), 897–914.
    • (2013) Mol. Biosyst. , vol.9 , pp. 897-914
    • Futamura, Y.M.1
  • 9
    • 84855360379 scopus 로고    scopus 로고
    • Probing small molecule–protein interactions: a new perspective for functional proteomics
    • 9 Lenz, T., et al. Probing small molecule–protein interactions: a new perspective for functional proteomics. J. Proteomics 75 (2011), 100–115.
    • (2011) J. Proteomics , vol.75 , pp. 100-115
    • Lenz, T.1
  • 10
    • 84871394690 scopus 로고    scopus 로고
    • The future of peptide-based drugs
    • 10 Craik, D.J.F., et al. The future of peptide-based drugs. Chem. Biol. Drug Des. 81 (2013), 136–147.
    • (2013) Chem. Biol. Drug Des. , vol.81 , pp. 136-147
    • Craik, D.J.F.1
  • 11
    • 84939992928 scopus 로고    scopus 로고
    • Cell-based peptide screening to access the undruggable target space
    • 11 Hennemann, H.W., et al. Cell-based peptide screening to access the undruggable target space. Eur. J. Med. Chem. 94 (2015), 489–496.
    • (2015) Eur. J. Med. Chem. , vol.94 , pp. 489-496
    • Hennemann, H.W.1
  • 12
    • 84875436143 scopus 로고    scopus 로고
    • Inhibition of alpha-helix-mediated protein–protein interactions using designed molecules
    • 12 Azzarito, V., et al. Inhibition of alpha-helix-mediated protein–protein interactions using designed molecules. Nat. Chem. 5 (2013), 161–173.
    • (2013) Nat. Chem. , vol.5 , pp. 161-173
    • Azzarito, V.1
  • 13
    • 10744221485 scopus 로고    scopus 로고
    • In vivo activation of the p53 pathway by small-molecule antagonists of MDM2
    • 13 Vassilev, L.T., et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303 (2004), 844–848.
    • (2004) Science , vol.303 , pp. 844-848
    • Vassilev, L.T.1
  • 14
    • 84897443073 scopus 로고    scopus 로고
    • Oncogenic protein interfaces: small molecules, big challenges
    • 14 Nero, T.L., et al. Oncogenic protein interfaces: small molecules, big challenges. Nat. Rev. Cancer 14 (2014), 248–262.
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 248-262
    • Nero, T.L.1
  • 15
    • 84930015010 scopus 로고    scopus 로고
    • Peptide therapeutics: targeting the undruggable space
    • 15 Tsomaia, N., Peptide therapeutics: targeting the undruggable space. Eur. J. Med. Chem. 94 (2015), 459–470.
    • (2015) Eur. J. Med. Chem. , vol.94 , pp. 459-470
    • Tsomaia, N.1
  • 16
    • 84863270608 scopus 로고    scopus 로고
    • Enabling large-scale design, synthesis and validation of small molecule protein–protein antagonists
    • 16 Koes, D., et al. Enabling large-scale design, synthesis and validation of small molecule protein–protein antagonists. PLoS One, 7, 2012, e32839.
    • (2012) PLoS One , vol.7 , pp. e32839
    • Koes, D.1
  • 17
    • 84876002671 scopus 로고    scopus 로고
    • Natural products: a continuing source of novel drug leads
    • 17 Cragg, G.M., Newman, D.J., Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830 (2013), 3670–3695.
    • (2013) Biochim. Biophys. Acta , vol.1830 , pp. 3670-3695
    • Cragg, G.M.1    Newman, D.J.2
  • 18
    • 33644839988 scopus 로고    scopus 로고
    • Diversity-oriented synthesis: exploring the intersections between chemistry and biology
    • 18 Tan, D.S., Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat. Chem. Biol. 1 (2005), 74–84.
    • (2005) Nat. Chem. Biol. , vol.1 , pp. 74-84
    • Tan, D.S.1
  • 19
    • 84904815625 scopus 로고    scopus 로고
    • SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information
    • 19 Biasini, M., et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42 (2014), W252–W258.
    • (2014) Nucleic Acids Res. , vol.42 , pp. W252-W258
    • Biasini, M.1
  • 20
    • 84888851991 scopus 로고    scopus 로고
    • Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how
    • 20 London, N.R., et al. Peptide docking and structure-based characterization of peptide binding: from knowledge to know-how. Curr. Opin. Struct. Biol. 23 (2013), 894–902.
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 894-902
    • London, N.R.1
  • 21
    • 84875150414 scopus 로고    scopus 로고
    • The holistic integration of virtual screening in drug discovery
    • 21 Tanrikulu, Y., et al. The holistic integration of virtual screening in drug discovery. Drug Discov. Today 18 (2013), 358–364.
    • (2013) Drug Discov. Today , vol.18 , pp. 358-364
    • Tanrikulu, Y.1
  • 22
    • 84861087763 scopus 로고    scopus 로고
    • Networks of protein–protein interactions: from uncertainty to molecular details
    • 22 Garcia-Garcia, J., et al. Networks of protein–protein interactions: from uncertainty to molecular details. Mol. Inform. 31 (2012), 342–362.
    • (2012) Mol. Inform. , vol.31 , pp. 342-362
    • Garcia-Garcia, J.1
  • 23
    • 84880048544 scopus 로고    scopus 로고
    • Identification of protein interactions involved in cellular signaling
    • 23 Westermarck, J., et al. Identification of protein interactions involved in cellular signaling. Mol. Cell. Proteomics 12 (2013), 1752–1763.
    • (2013) Mol. Cell. Proteomics , vol.12 , pp. 1752-1763
    • Westermarck, J.1
  • 24
    • 77955505357 scopus 로고    scopus 로고
    • Protein–protein interactions essentials: key concepts to building and analyzing interactome networks
    • 24 De Las Rivas, J., Fontanillo, C., Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput. Biol., 6, 2010, e1000807.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000807
    • De Las Rivas, J.1    Fontanillo, C.2
  • 25
    • 84906702408 scopus 로고    scopus 로고
    • RNAi screening comes of age: improved techniques and complementary approaches
    • 25 Mohr, S.E., et al. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15 (2014), 591–600.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 591-600
    • Mohr, S.E.1
  • 26
    • 84928205754 scopus 로고    scopus 로고
    • High-throughput functional genomics using CRISPR–Cas9
    • 26 Shalem, O., et al. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16 (2015), 299–311.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 299-311
    • Shalem, O.1
  • 27
    • 79955592811 scopus 로고    scopus 로고
    • Harnessing synthetic lethal interactions in anticancer drug discovery
    • 27 Chan, D.A., Giaccia, A.J., Harnessing synthetic lethal interactions in anticancer drug discovery. Nat. Rev. Drug Discov. 10 (2011), 351–364.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 351-364
    • Chan, D.A.1    Giaccia, A.J.2
  • 28
    • 84959286152 scopus 로고    scopus 로고
    • Pioneering apoptosis-targeted cancer drug poised for FDA approval
    • 28 Mullard, A., Pioneering apoptosis-targeted cancer drug poised for FDA approval. Nat. Rev. Drug Discov. 15 (2016), 147–149.
    • (2016) Nat. Rev. Drug Discov. , vol.15 , pp. 147-149
    • Mullard, A.1
  • 29
    • 20444486559 scopus 로고    scopus 로고
    • An inhibitor of Bcl-2 family proteins induces regression of solid tumours
    • 29 Oltersdorf, T., et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435 (2005), 677–681.
    • (2005) Nature , vol.435 , pp. 677-681
    • Oltersdorf, T.1
  • 30
    • 0029836953 scopus 로고    scopus 로고
    • Discovering high-affinity ligands for proteins: SAR by NMR
    • 30 Shuker, S.B., et al. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274 (1996), 1531–1534.
    • (1996) Science , vol.274 , pp. 1531-1534
    • Shuker, S.B.1
  • 31
    • 84928645682 scopus 로고    scopus 로고
    • Alternative modulation of protein–protein interactions by small molecules
    • 31 Fischer, G., et al. Alternative modulation of protein–protein interactions by small molecules. Curr. Opin. Biotechnol. 35 (2015), 78–85.
    • (2015) Curr. Opin. Biotechnol. , vol.35 , pp. 78-85
    • Fischer, G.1
  • 32
    • 84909587217 scopus 로고    scopus 로고
    • Small-molecule inhibitors of protein-protein interactions: progressing toward the reality
    • 32 Arkin, M.R., et al. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chem. Biol. 21 (2014), 1102–1114.
    • (2014) Chem. Biol. , vol.21 , pp. 1102-1114
    • Arkin, M.R.1
  • 33
    • 84888639050 scopus 로고    scopus 로고
    • K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions
    • 33 Ostrem, J.M., et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503 (2013), 548–551.
    • (2013) Nature , vol.503 , pp. 548-551
    • Ostrem, J.M.1
  • 34
    • 84906309147 scopus 로고    scopus 로고
    • Dissecting allosteric effects of activator–coactivator complexes using a covalent small molecule ligand
    • 34 Wang, N., et al. Dissecting allosteric effects of activator–coactivator complexes using a covalent small molecule ligand. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 12061–12066.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 12061-12066
    • Wang, N.1
  • 35
    • 84960331999 scopus 로고    scopus 로고
    • Stabilization of protein–protein interaction complexes through small molecules
    • 35 Zarzycka, B., et al. Stabilization of protein–protein interaction complexes through small molecules. Drug Discov. Today 21 (2016), 48–57.
    • (2016) Drug Discov. Today , vol.21 , pp. 48-57
    • Zarzycka, B.1
  • 36
    • 84857509304 scopus 로고    scopus 로고
    • Small-molecule stabilization of protein–protein interactions: an underestimated concept in drug discovery?
    • 36 Thiel, P., et al. Small-molecule stabilization of protein–protein interactions: an underestimated concept in drug discovery?. Angew. Chem. Int. Ed. Engl. 51 (2012), 2012–2018.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 2012-2018
    • Thiel, P.1
  • 37
    • 84883432191 scopus 로고    scopus 로고
    • Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy
    • 37 Chang, Y.S., et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), E3445–E3454.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E3445-E3454
    • Chang, Y.S.1
  • 38
    • 84863966819 scopus 로고    scopus 로고
    • Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization
    • 38 Graves, B., et al. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 11788–11793.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11788-11793
    • Graves, B.1
  • 39
    • 0032479179 scopus 로고    scopus 로고
    • Anatomy of hot spots in protein interfaces
    • 39 Bogan, A.A., Thorn, K.S., Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280 (1998), 1–9.
    • (1998) J. Mol. Biol. , vol.280 , pp. 1-9
    • Bogan, A.A.1    Thorn, K.S.2
  • 40
    • 0028916599 scopus 로고
    • A hot spot of binding energy in a hormone–receptor interface
    • 40 Clackson, T., Wells, J.A., A hot spot of binding energy in a hormone–receptor interface. Science 267 (1995), 383–386.
    • (1995) Science , vol.267 , pp. 383-386
    • Clackson, T.1    Wells, J.A.2
  • 41
    • 84890137047 scopus 로고    scopus 로고
    • Druggable protein–protein interactions–from hot spots to hot segments
    • 41 London, N., et al. Druggable protein–protein interactions–from hot spots to hot segments. Curr. Opin. Chem. Biol. 17 (2013), 952–959.
    • (2013) Curr. Opin. Chem. Biol. , vol.17 , pp. 952-959
    • London, N.1
  • 42
    • 0024403619 scopus 로고
    • High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis
    • 42 Cunningham, B.C., Wells, J.A., High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244 (1989), 1081–1085.
    • (1989) Science , vol.244 , pp. 1081-1085
    • Cunningham, B.C.1    Wells, J.A.2
  • 43
    • 3242879771 scopus 로고    scopus 로고
    • Computational alanine scanning of protein–protein interfaces
    • 43 Kortemme, T., et al. Computational alanine scanning of protein–protein interfaces. Sci. Signal., 2004, 2004, pl2.
    • (2004) Sci. Signal. , vol.2004 , pp. pl2
    • Kortemme, T.1
  • 44
    • 0042710087 scopus 로고    scopus 로고
    • Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies
    • 44 Massova, I., Kollman, P.A., Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 121 (1999), 8133–8143.
    • (1999) J. Am. Chem. Soc. , vol.121 , pp. 8133-8143
    • Massova, I.1    Kollman, P.A.2
  • 45
    • 77958105231 scopus 로고    scopus 로고
    • Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors
    • 45 Jochim, A.L., Arora, P.S., Systematic analysis of helical protein interfaces reveals targets for synthetic inhibitors. ACS Chem. Biol. 5 (2010), 919–923.
    • (2010) ACS Chem. Biol. , vol.5 , pp. 919-923
    • Jochim, A.L.1    Arora, P.S.2
  • 46
    • 84946204230 scopus 로고    scopus 로고
    • Lessons from hot spot analysis for fragment-based drug discovery
    • 46 Hall, D.R., et al. Lessons from hot spot analysis for fragment-based drug discovery. Trends Pharmacol. Sci. 36 (2015), 724–736.
    • (2015) Trends Pharmacol. Sci. , vol.36 , pp. 724-736
    • Hall, D.R.1
  • 47
    • 0030575937 scopus 로고    scopus 로고
    • Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain
    • 47 Kussie, P.H., et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274 (1996), 948–953.
    • (1996) Science , vol.274 , pp. 948-953
    • Kussie, P.H.1
  • 48
    • 0027964904 scopus 로고
    • Immunochemical analysis of the interaction of p53 with MDM2–fine mapping of the MDM2 binding site on p53 using synthetic peptides
    • 48 Picksley, S.M., et al. Immunochemical analysis of the interaction of p53 with MDM2–fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9 (1994), 2523–2529.
    • (1994) Oncogene , vol.9 , pp. 2523-2529
    • Picksley, S.M.1
  • 49
    • 73249140963 scopus 로고    scopus 로고
    • Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction
    • 49 Yu, S., et al. Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. J. Med. Chem. 52 (2009), 7970–7973.
    • (2009) J. Med. Chem. , vol.52 , pp. 7970-7973
    • Yu, S.1
  • 50
    • 18844423053 scopus 로고    scopus 로고
    • Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction
    • 50 Yin, H., et al. Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew. Chem. Int. Ed. Engl. 44 (2005), 2704–2707.
    • (2005) Angew. Chem. Int. Ed. Engl. , vol.44 , pp. 2704-2707
    • Yin, H.1
  • 51
    • 3543098742 scopus 로고    scopus 로고
    • Helical β-peptide inhibitors of the p53–hDM2 interaction
    • 51 Kritzer, J.A., et al. Helical β-peptide inhibitors of the p53–hDM2 interaction. J. Am. Chem. Soc. 126 (2004), 9468–9469.
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 9468-9469
    • Kritzer, J.A.1
  • 52
    • 3843091516 scopus 로고    scopus 로고
    • Anchor residues in protein–protein interactions
    • 52 Rajamani, D., et al. Anchor residues in protein–protein interactions. Proc. Natl. Acad. Sci. U.S.A. 101 (2004), 11287–11292.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 11287-11292
    • Rajamani, D.1
  • 53
    • 84940200063 scopus 로고    scopus 로고
    • AlphaSpace: fragment-centric topographical mapping to target protein–protein interaction interfaces
    • 53 Rooklin, D., et al. AlphaSpace: fragment-centric topographical mapping to target protein–protein interaction interfaces. J. Chem. Inf. Model. 55 (2015), 1585–1599.
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 1585-1599
    • Rooklin, D.1
  • 54
    • 0028881975 scopus 로고
    • SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions
    • 54 Laskowski, R.A., SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 13 (1995), 323–330.
    • (1995) J. Mol. Graph. , vol.13 , pp. 323-330
    • Laskowski, R.A.1
  • 55
    • 84864464925 scopus 로고    scopus 로고
    • FTMAP: extended protein mapping with user-selected probe molecules
    • 55 Ngan, C.H., et al. FTMAP: extended protein mapping with user-selected probe molecules. Nucleic Acids Res. 40 (2012), W271–W275.
    • (2012) Nucleic Acids Res. , vol.40 , pp. W271-W275
    • Ngan, C.H.1
  • 56
    • 84901937652 scopus 로고    scopus 로고
    • Rational design of topographical helix mimics as potent inhibitors of protein–protein interactions
    • 56 Lao, B.B., et al. Rational design of topographical helix mimics as potent inhibitors of protein–protein interactions. J. Am. Chem. Soc. 136 (2014), 7877–7888.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 7877-7888
    • Lao, B.B.1
  • 57
    • 34547583152 scopus 로고    scopus 로고
    • Transient pockets on protein surfaces involved in protein–protein interaction
    • 57 Eyrisch, S., Helms, V., Transient pockets on protein surfaces involved in protein–protein interaction. J. Med. Chem. 50 (2007), 3457–3464.
    • (2007) J. Med. Chem. , vol.50 , pp. 3457-3464
    • Eyrisch, S.1    Helms, V.2
  • 58
    • 84875984520 scopus 로고    scopus 로고
    • Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface
    • 58 Johnson, D.K., Karanicolas, J., Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput. Biol., 9, 2013, e1002951.
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1002951
    • Johnson, D.K.1    Karanicolas, J.2
  • 59
    • 84940447298 scopus 로고    scopus 로고
    • Computational close up on protein–protein interactions: how to unravel the invisible using molecular dynamics simulations?
    • 59 Rakers, C., et al. Computational close up on protein–protein interactions: how to unravel the invisible using molecular dynamics simulations?. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5 (2015), 345–359.
    • (2015) Wiley Interdiscip. Rev. Comput. Mol. Sci. , vol.5 , pp. 345-359
    • Rakers, C.1
  • 60
    • 84863939894 scopus 로고    scopus 로고
    • Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites
    • 60 Bowman, G.R., Geissler, P.L., Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 11681–11686.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11681-11686
    • Bowman, G.R.1    Geissler, P.L.2
  • 61
    • 84937518958 scopus 로고    scopus 로고
    • Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes
    • 61 Pelay-Gimeno, M., et al. Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angew. Chem. Int. Ed. Engl. 54 (2015), 8896–8927.
    • (2015) Angew. Chem. Int. Ed. Engl. , vol.54 , pp. 8896-8927
    • Pelay-Gimeno, M.1
  • 62
    • 77649233664 scopus 로고    scopus 로고
    • Rationalizing the chemical space of protein–protein interaction inhibitors
    • 62 Sperandio, O., et al. Rationalizing the chemical space of protein–protein interaction inhibitors. Drug Discov. Today 15 (2010), 220–229.
    • (2010) Drug Discov. Today , vol.15 , pp. 220-229
    • Sperandio, O.1
  • 63
    • 84944726079 scopus 로고    scopus 로고
    • Fragment-based drug discovery and protein–protein interactions
    • 63 Turnbull, A.P., et al. Fragment-based drug discovery and protein–protein interactions. Res. Rep. Biochem. 4 (2014), 13–26.
    • (2014) Res. Rep. Biochem. , vol.4 , pp. 13-26
    • Turnbull, A.P.1
  • 64
    • 84858131639 scopus 로고    scopus 로고
    • Targeting protein–protein interactions and fragment-based drug discovery
    • 64 Valkov, E., et al. Targeting protein–protein interactions and fragment-based drug discovery. Top. Curr. Chem. 317 (2012), 145–179.
    • (2012) Top. Curr. Chem. , vol.317 , pp. 145-179
    • Valkov, E.1
  • 65
    • 84929703042 scopus 로고    scopus 로고
    • Progress in discovery of small-molecule modulators of protein–protein interactions via fragment screening
    • 65 Magee, T.V., Progress in discovery of small-molecule modulators of protein–protein interactions via fragment screening. Bioorg. Med. Chem. Lett. 25 (2015), 2461–2468.
    • (2015) Bioorg. Med. Chem. Lett. , vol.25 , pp. 2461-2468
    • Magee, T.V.1
  • 66
    • 0034662911 scopus 로고    scopus 로고
    • Site-directed ligand discovery
    • 66 Erlanson, D.A., et al. Site-directed ligand discovery. Proc. Natl. Acad. Sci. U.S.A. 97 (2000), 9367–9372.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 9367-9372
    • Erlanson, D.A.1
  • 67
    • 0037337035 scopus 로고    scopus 로고
    • In situ assembly of enzyme inhibitors using extended tethering
    • 67 Erlanson, D.A., et al. In situ assembly of enzyme inhibitors using extended tethering. Nat. Biotechnol. 21 (2003), 308–314.
    • (2003) Nat. Biotechnol. , vol.21 , pp. 308-314
    • Erlanson, D.A.1
  • 68
    • 84895094959 scopus 로고    scopus 로고
    • FP Tethering: a screening technique to rapidly identify compounds that disrupt protein-protein interactions
    • 68 Lodge, J.M., et al. FP Tethering: a screening technique to rapidly identify compounds that disrupt protein-protein interactions. Medchemcomm 5 (2014), 370–375.
    • (2014) Medchemcomm , vol.5 , pp. 370-375
    • Lodge, J.M.1
  • 69
    • 0037452709 scopus 로고    scopus 로고
    • Binding of small molecules to an adaptive protein–protein interface
    • 69 Arkin, M.R., et al. Binding of small molecules to an adaptive protein–protein interface. Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 1603–1608.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 1603-1608
    • Arkin, M.R.1
  • 70
    • 84856935181 scopus 로고    scopus 로고
    • Introduction to fragment-based drug discovery
    • 70 Erlanson, D.A., Introduction to fragment-based drug discovery. Top. Curr. Chem. 317 (2012), 1–32.
    • (2012) Top. Curr. Chem. , vol.317 , pp. 1-32
    • Erlanson, D.A.1
  • 71
    • 84900422135 scopus 로고    scopus 로고
    • NMR-based approaches for the identification and optimization of inhibitors of protein–protein interactions
    • 71 Barile, E., Pellecchia, M., NMR-based approaches for the identification and optimization of inhibitors of protein–protein interactions. Chem. Rev. 114 (2014), 4749–4763.
    • (2014) Chem. Rev. , vol.114 , pp. 4749-4763
    • Barile, E.1    Pellecchia, M.2
  • 72
    • 84882635398 scopus 로고    scopus 로고
    • Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR screening and similarity searching
    • 72 Chu, S., Gochin, M., Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR screening and similarity searching. Bioorg. Med. Chem. Lett. 23 (2013), 5114–5118.
    • (2013) Bioorg. Med. Chem. Lett. , vol.23 , pp. 5114-5118
    • Chu, S.1    Gochin, M.2
  • 73
    • 80052384557 scopus 로고    scopus 로고
    • L and Mcl-1
    • L and Mcl-1. J. Med. Chem. 54 (2011), 6000–6013.
    • (2011) J. Med. Chem. , vol.54 , pp. 6000-6013
    • Rega, M.F.1
  • 74
    • 84862649997 scopus 로고    scopus 로고
    • Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation
    • 74 Sun, Q., et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew. Chem. Int. Ed. Engl. 51 (2012), 6140–6143.
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , pp. 6140-6143
    • Sun, Q.1
  • 75
    • 32344445231 scopus 로고    scopus 로고
    • NMR studies of protein interactions
    • 75 Takeuchi, K., Wagner, G., NMR studies of protein interactions. Curr. Opin. Struct. Biol. 16 (2006), 109–117.
    • (2006) Curr. Opin. Struct. Biol. , vol.16 , pp. 109-117
    • Takeuchi, K.1    Wagner, G.2
  • 76
    • 84872928524 scopus 로고    scopus 로고
    • HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery
    • 76 Wu, B., et al. HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery. Chem. Biol. 20 (2013), 19–33.
    • (2013) Chem. Biol. , vol.20 , pp. 19-33
    • Wu, B.1
  • 77
    • 84873433440 scopus 로고    scopus 로고
    • Using a fragment-based approach to target protein–protein interactions
    • 77 Scott, D.E., et al. Using a fragment-based approach to target protein–protein interactions. Chembiochem 14 (2013), 332–342.
    • (2013) Chembiochem , vol.14 , pp. 332-342
    • Scott, D.E.1
  • 78
    • 84868026890 scopus 로고    scopus 로고
    • Dissecting fragment-based lead discovery at the von Hippel–Lindau protein:hypoxia inducible factor 1α protein–protein interface
    • 78 Van Molle, I., et al. Dissecting fragment-based lead discovery at the von Hippel–Lindau protein:hypoxia inducible factor 1α protein–protein interface. Chem. Biol. 19 (2012), 1300–1312.
    • (2012) Chem. Biol. , vol.19 , pp. 1300-1312
    • Van Molle, I.1
  • 79
    • 84870810902 scopus 로고    scopus 로고
    • Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery
    • 79 Winter, A., et al. Biophysical and computational fragment-based approaches to targeting protein–protein interactions: applications in structure-guided drug discovery. Q. Rev. Biophys. 45 (2012), 383–426.
    • (2012) Q. Rev. Biophys. , vol.45 , pp. 383-426
    • Winter, A.1
  • 80
    • 34548141882 scopus 로고    scopus 로고
    • Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein–protein interactions
    • 80 Guharoy, M., Chakrabarti, P., Secondary structure based analysis and classification of biological interfaces: identification of binding motifs in protein–protein interactions. Bioinformatics 23 (2007), 1909–1918.
    • (2007) Bioinformatics , vol.23 , pp. 1909-1918
    • Guharoy, M.1    Chakrabarti, P.2
  • 81
    • 84919945753 scopus 로고    scopus 로고
    • A potent α/β-peptide analogue of GLP-1 with prolonged action in vivo
    • 81 Johnson, L.M., et al. A potent α/β-peptide analogue of GLP-1 with prolonged action in vivo. J. Am. Chem. Soc. 136 (2014), 12848–12851.
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 12848-12851
    • Johnson, L.M.1
  • 82
    • 80052566586 scopus 로고    scopus 로고
    • Assessing helical protein interfaces for inhibitor design
    • 82 Bullock, B.N., et al. Assessing helical protein interfaces for inhibitor design. J. Am. Chem. Soc. 133 (2011), 14220–14223.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 14220-14223
    • Bullock, B.N.1
  • 83
    • 84906254338 scopus 로고    scopus 로고
    • Anatomy of β-strands at protein–protein interfaces
    • 83 Watkins, A.M., Arora, P.S., Anatomy of β-strands at protein–protein interfaces. ACS Chem. Biol. 9 (2014), 1747–1754.
    • (2014) ACS Chem. Biol. , vol.9 , pp. 1747-1754
    • Watkins, A.M.1    Arora, P.S.2
  • 84
    • 84906327241 scopus 로고    scopus 로고
    • Comprehensive analysis of loops at protein–protein interfaces for macrocycle design
    • 84 Gavenonis, J., et al. Comprehensive analysis of loops at protein–protein interfaces for macrocycle design. Nat. Chem. Biol. 10 (2014), 716–722.
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 716-722
    • Gavenonis, J.1
  • 85
    • 84941794787 scopus 로고    scopus 로고
    • Protein–protein interactions mediated by helical tertiary structure motifs
    • 85 Watkins, A.M., et al. Protein–protein interactions mediated by helical tertiary structure motifs. J. Am. Chem. Soc. 137 (2015), 11622–11630.
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 11622-11630
    • Watkins, A.M.1
  • 86
    • 0034801374 scopus 로고    scopus 로고
    • Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an α-helix
    • 86 Orner, B.P., et al. Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an α-helix. J. Am. Chem. Soc. 123 (2001), 5382–5383.
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 5382-5383
    • Orner, B.P.1
  • 87
    • 57549092075 scopus 로고    scopus 로고
    • Contemporary strategies for the stabilization of peptides in the α-helical conformation
    • 87 Henchey, L.K., et al. Contemporary strategies for the stabilization of peptides in the α-helical conformation. Curr. Opin. Chem. Biol. 12 (2008), 692–697.
    • (2008) Curr. Opin. Chem. Biol. , vol.12 , pp. 692-697
    • Henchey, L.K.1
  • 88
    • 79955921951 scopus 로고    scopus 로고
    • Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone
    • 88 Sawada, T., Gellman, S.H., Structural mimicry of the α-helix in aqueous solution with an isoatomic α/β/γ-peptide backbone. J. Am. Chem. Soc. 133 (2011), 7336–7339.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 7336-7339
    • Sawada, T.1    Gellman, S.H.2
  • 89
    • 84884640689 scopus 로고    scopus 로고
    • Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling
    • 89 Kushal, S., et al. Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 15602–15607.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 15602-15607
    • Kushal, S.1
  • 90
    • 84901681947 scopus 로고    scopus 로고
    • Hydrocarbon-stapled peptides: principles, practice, and progress
    • 90 Walensky, L.D., Bird, G.H., Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem. 57 (2014), 6275–6288.
    • (2014) J. Med. Chem. , vol.57 , pp. 6275-6288
    • Walensky, L.D.1    Bird, G.H.2
  • 91
    • 84900433934 scopus 로고    scopus 로고
    • Modulators of protein–protein interactions
    • 91 Milroy, L-G., et al. Modulators of protein–protein interactions. Chem. Rev. 114 (2014), 4695–4748.
    • (2014) Chem. Rev. , vol.114 , pp. 4695-4748
    • Milroy, L.-G.1
  • 92
    • 29044447377 scopus 로고    scopus 로고
    • Nonpeptidic foldamers from amino acids: synthesis and characterization of 1,3-substituted triazole oligomers
    • 92 Angelo, N.G., Arora, P.S., Nonpeptidic foldamers from amino acids: synthesis and characterization of 1,3-substituted triazole oligomers. J. Am. Chem. Soc. 127 (2005), 17134–17135.
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 17134-17135
    • Angelo, N.G.1    Arora, P.S.2
  • 93
    • 84983719090 scopus 로고    scopus 로고
    • Triazolo-β-aza-ɛ-amino acid and its aromatic analogue as novel scaffolds for β-turn peptidomimetics
    • 93 Bag, S.S., et al. Triazolo-β-aza-ɛ-amino acid and its aromatic analogue as novel scaffolds for β-turn peptidomimetics. Chem. Commun. (Camb.) 51 (2015), 5242–5245.
    • (2015) Chem. Commun. (Camb.) , vol.51 , pp. 5242-5245
    • Bag, S.S.1
  • 94
    • 67650522906 scopus 로고    scopus 로고
    • Macrocyclic design strategies for small, stable parallel β-sheet scaffolds
    • 94 Freire, F., Gellman, S.H., Macrocyclic design strategies for small, stable parallel β-sheet scaffolds. J. Am. Chem. Soc. 131 (2009), 7970–7972.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 7970-7972
    • Freire, F.1    Gellman, S.H.2
  • 95
    • 67650468079 scopus 로고    scopus 로고
    • Evaluating β-turn mimics as β-sheet folding nucleators
    • 95 Fuller, A.A., et al. Evaluating β-turn mimics as β-sheet folding nucleators. Proc. Natl. Acad. Sci. U.S.A. 106 (2009), 11067–11072.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 11067-11072
    • Fuller, A.A.1
  • 96
    • 84946197224 scopus 로고    scopus 로고
    • β-Strand mimics based on tetrahydropyridazinedione (tpd) peptide stitching
    • 96 Kang, C.W., et al. β-Strand mimics based on tetrahydropyridazinedione (tpd) peptide stitching. Chem. Commun. (Camb.) 51 (2015), 16259–16262.
    • (2015) Chem. Commun. (Camb.) , vol.51 , pp. 16259-16262
    • Kang, C.W.1
  • 97
    • 84871568871 scopus 로고    scopus 로고
    • Substituted imidazo[1,2-a]pyridines as β-strand peptidomimetics
    • 97 Kang, C.W., et al. Substituted imidazo[1,2-a]pyridines as β-strand peptidomimetics. Org. Lett. 14 (2012), 6162–6165.
    • (2012) Org. Lett. , vol.14 , pp. 6162-6165
    • Kang, C.W.1
  • 98
    • 84897390934 scopus 로고    scopus 로고
    • Diphenylacetylene-linked peptide strands induce bidirectional β-sheet formation
    • 98 Lingard, H., et al. Diphenylacetylene-linked peptide strands induce bidirectional β-sheet formation. Angew. Chem. Int. Ed. Engl. 53 (2014), 3650–3653.
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 3650-3653
    • Lingard, H.1
  • 99
    • 79951850614 scopus 로고    scopus 로고
    • Update 1 of: β-strand mimetics
    • 99 Loughlin, W.A., et al. Update 1 of: β-strand mimetics. Chem. Rev. 110 (2010), PR32–PR69.
    • (2010) Chem. Rev. , vol.110 , pp. PR32-PR69
    • Loughlin, W.A.1
  • 100
    • 57349151828 scopus 로고    scopus 로고
    • Beta-hairpin peptidomimetics: design, structures and biological activities
    • 100 Robinson, J.A., Beta-hairpin peptidomimetics: design, structures and biological activities. Acc. Chem. Res. 41 (2008), 1278–1288.
    • (2008) Acc. Chem. Res. , vol.41 , pp. 1278-1288
    • Robinson, J.A.1
  • 101
    • 84906307859 scopus 로고    scopus 로고
    • How proteins bind macrocycles
    • 101 Villar, E.A., et al. How proteins bind macrocycles. Nat. Chem. Biol. 10 (2014), 723–731.
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 723-731
    • Villar, E.A.1
  • 102
    • 84902176344 scopus 로고    scopus 로고
    • Selection-based discovery of druglike macrocyclic peptides
    • 102 Passioura, T., et al. Selection-based discovery of druglike macrocyclic peptides. Annu. Rev. Biochem. 83 (2014), 727–752.
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 727-752
    • Passioura, T.1
  • 103
    • 79959580534 scopus 로고    scopus 로고
    • Contemporary strategies for peptide macrocyclization
    • 103 White, C.J., Yudin, A.K., Contemporary strategies for peptide macrocyclization. Nat. Chem. 3 (2011), 509–524.
    • (2011) Nat. Chem. , vol.3 , pp. 509-524
    • White, C.J.1    Yudin, A.K.2
  • 104
    • 84882282136 scopus 로고    scopus 로고
    • Screening bicyclic peptide libraries for protein–protein interaction inhibitors: discovery of a tumor necrosis factor-α antagonist
    • 104 Lian, W., et al. Screening bicyclic peptide libraries for protein–protein interaction inhibitors: discovery of a tumor necrosis factor-α antagonist. J. Am. Chem. Soc. 135 (2013), 11990–11995.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 11990-11995
    • Lian, W.1
  • 106
    • 84865291649 scopus 로고    scopus 로고
    • Structural insights for engineering binding proteins based on non-antibody scaffolds
    • 106 Gilbreth, R.N., Koide, S., Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr. Opin. Struct. Biol. 22 (2012), 413–420.
    • (2012) Curr. Opin. Struct. Biol. , vol.22 , pp. 413-420
    • Gilbreth, R.N.1    Koide, S.2
  • 107
    • 0242331757 scopus 로고    scopus 로고
    • Therapeutic potential of venom peptides
    • 107 Lewis, R.J., Garcia, M.L., Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2 (2003), 790–802.
    • (2003) Nat. Rev. Drug Discov. , vol.2 , pp. 790-802
    • Lewis, R.J.1    Garcia, M.L.2
  • 108
    • 84887625627 scopus 로고    scopus 로고
    • Beyond antibodies: using biological principles to guide the development of next-generation protein therapeutics
    • 108 Kariolis, M.S., et al. Beyond antibodies: using biological principles to guide the development of next-generation protein therapeutics. Curr. Opin. Biotechnol. 24 (2013), 1072–1077.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 1072-1077
    • Kariolis, M.S.1
  • 109
    • 29344448254 scopus 로고    scopus 로고
    • A new generation of protein display scaffolds for molecular recognition
    • 109 Hosse, R.J., et al. A new generation of protein display scaffolds for molecular recognition. Protein Sci. 15 (2006), 14–27.
    • (2006) Protein Sci. , vol.15 , pp. 14-27
    • Hosse, R.J.1
  • 110
    • 84928038747 scopus 로고    scopus 로고
    • Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold
    • 110 Checco, J.W., et al. Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 4552–4557.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 4552-4557
    • Checco, J.W.1
  • 111
    • 33846947579 scopus 로고    scopus 로고
    • High-resolution structure of a β-peptide bundle
    • 111 Daniels, D.S., et al. High-resolution structure of a β-peptide bundle. J. Am. Chem. Soc. 129 (2007), 1532–1533.
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 1532-1533
    • Daniels, D.S.1
  • 112
    • 84960920136 scopus 로고    scopus 로고
    • Comparison of design strategies for α-helix backbone modification in a protein tertiary fold
    • 112 Tavenor, N.A., et al. Comparison of design strategies for α-helix backbone modification in a protein tertiary fold. Chem. Commun. (Camb.) 52 (2016), 3789–3792.
    • (2016) Chem. Commun. (Camb.) , vol.52 , pp. 3789-3792
    • Tavenor, N.A.1
  • 113
    • 84941766190 scopus 로고    scopus 로고
    • An effective strategy for stabilizing minimal coiled coil mimetics
    • 113 Wuo, M.G., et al. An effective strategy for stabilizing minimal coiled coil mimetics. J. Am. Chem. Soc. 137 (2015), 11618–11621.
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 11618-11621
    • Wuo, M.G.1
  • 114
    • 84883256420 scopus 로고    scopus 로고
    • Future directions for peptide therapeutics development
    • 114 Kaspar, A.A., Reichert, J.M., Future directions for peptide therapeutics development. Drug Discov. Today 18 (2013), 807–817.
    • (2013) Drug Discov. Today , vol.18 , pp. 807-817
    • Kaspar, A.A.1    Reichert, J.M.2
  • 115
    • 84947551578 scopus 로고    scopus 로고
    • Targeting transcription is no longer a quixotic quest
    • 115 Mapp, A.K., et al. Targeting transcription is no longer a quixotic quest. Nat. Chem. Biol. 11 (2015), 891–894.
    • (2015) Nat. Chem. Biol. , vol.11 , pp. 891-894
    • Mapp, A.K.1
  • 116
    • 0037188377 scopus 로고    scopus 로고
    • Intrinsic disorder and protein function
    • 116 Dunker, A.K., et al. Intrinsic disorder and protein function. Biochemistry 41 (2002), 6573–6582.
    • (2002) Biochemistry , vol.41 , pp. 6573-6582
    • Dunker, A.K.1
  • 117
    • 77955327536 scopus 로고    scopus 로고
    • Intrinsically disordered proteins are potential drug targets
    • 117 Metallo, S.J., Intrinsically disordered proteins are potential drug targets. Curr. Opin. Chem. Biol. 14 (2010), 481–488.
    • (2010) Curr. Opin. Chem. Biol. , vol.14 , pp. 481-488
    • Metallo, S.J.1
  • 118
    • 14644435825 scopus 로고    scopus 로고
    • Intrinsically unstructured proteins and their functions
    • 118 Dyson, H.J., Wright, P.E., Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6 (2005), 197–208.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 197-208
    • Dyson, H.J.1    Wright, P.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.