-
1
-
-
51649127777
-
The mannose 6-phosphate glycoprotein proteome
-
18507433
-
D.E.Sleat, M.C.Della Valle, H.Zheng, D.F.Moore, P.Lobel. The mannose 6-phosphate glycoprotein proteome. J Proteome Res 2008; 7:3010-21; PMID:18507433; http://dx.doi.org/10.1021/pr800135v
-
(2008)
J Proteome Res
, vol.7
, pp. 3010-3021
-
-
Sleat, D.E.1
Della Valle, M.C.2
Zheng, H.3
Moore, D.F.4
Lobel, P.5
-
2
-
-
0037334339
-
At the acidic edge: emerging functions for lysosomal membrane proteins
-
12628346
-
E.L.Eskelinen, Y.Tanaka, P.Saftig. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol 2003; 13:137-45; PMID:12628346; http://dx.doi.org/10.1016/S0962-8924(03)00005-9
-
(2003)
Trends Cell Biol
, vol.13
, pp. 137-145
-
-
Eskelinen, E.L.1
Tanaka, Y.2
Saftig, P.3
-
3
-
-
0019805162
-
The Discovery of Lysosomes
-
D.F.Bainton. The Discovery of Lysosomes. J Cell Biol 1981; 91:S66-S76; http://dx.doi.org/10.1083/jcb.91.3.66s
-
(1981)
J Cell Biol
, vol.91
, pp. S66-S76
-
-
Bainton, D.F.1
-
4
-
-
84901801108
-
Organellophagy: eliminating cellular building blocks via selective autophagy
-
24862571
-
K.Okamoto. Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 2014; 205:435-45; PMID:24862571; http://dx.doi.org/10.1083/jcb.201402054
-
(2014)
J Cell Biol
, vol.205
, pp. 435-445
-
-
Okamoto, K.1
-
5
-
-
78650510609
-
mTOR: from growth signal integration to cancer, diabetes and ageing
-
21157483
-
R.Zoncu, A.Efeyan, D.M.Sabatini. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12:21-35; PMID:21157483; http://dx.doi.org/10.1038/nrm3025
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
6
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
20381137
-
Y.Sancak, L.Bar-Peled, R.Zoncu, A.L.Markhard, S.Nada, D.M.Sabatini. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141:290-303; PMID:20381137; http://dx.doi.org/10.1016/j.cell.2010.02.024
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
7
-
-
84880544460
-
Nutrients and growth factors in mTORC1 activation
-
A.Efeyan, D.M.Sabatini. Nutrients and growth factors in mTORC1 activation. Biochem Society Transactions 2013; 41:902-5; http://dx.doi.org/10.1042/BST20130063
-
(2013)
Biochem Society Transactions
, vol.41
, pp. 902-905
-
-
Efeyan, A.1
Sabatini, D.M.2
-
8
-
-
84876812269
-
Signals from the lysosome: a control centre for cellular clearance and energy metabolism
-
23609508
-
C.Settembre, A.Fraldi, D.L.Medina, A.Ballabio. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14:283-96; PMID:23609508; http://dx.doi.org/10.1038/nrm3565
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 283-296
-
-
Settembre, C.1
Fraldi, A.2
Medina, D.L.3
Ballabio, A.4
-
9
-
-
84866431363
-
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
-
22980980
-
L.Bar-Peled, L.D.Schweitzer, R.Zoncu, D.M.Sabatini. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 2012; 150:1196-208; PMID:22980980; http://dx.doi.org/10.1016/j.cell.2012.07.032
-
(2012)
Cell
, vol.150
, pp. 1196-1208
-
-
Bar-Peled, L.1
Schweitzer, L.D.2
Zoncu, R.3
Sabatini, D.M.4
-
10
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
18604198
-
E.Kim, P.Goraksha-Hicks, L.Li, T.P.Neufeld, K.L.Guan. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10:935-45; PMID:18604198; http://dx.doi.org/10.1038/ncb1753
-
(2008)
Nat Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
11
-
-
84922727084
-
Metabolism. Differential regulation of mTORC1 by leucine and glutamine
-
25567907
-
J.L.Jewell, Y.C.Kim, R.C.Russell, F.X.Yu, H.W.Park, S.W.Plouffe, V.S.Tagliabracci, K.L.Guan. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015; 347:194-8; PMID:25567907; http://dx.doi.org/10.1126/science.1259472
-
(2015)
Science
, vol.347
, pp. 194-198
-
-
Jewell, J.L.1
Kim, Y.C.2
Russell, R.C.3
Yu, F.X.4
Park, H.W.5
Plouffe, S.W.6
Tagliabracci, V.S.7
Guan, K.L.8
-
12
-
-
84925777835
-
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1
-
25561175
-
M.Rebsamen, L.Pochini, T.Stasyk, M.E.de Araujo, M.Galluccio, R.K.Kandasamy, B.Snijder, A.Fauster, E.L.Rudashevskaya, M.Bruckner, et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015; 519:477-81; PMID:25561175; http://dx.doi.org/10.1038/nature14107
-
(2015)
Nature
, vol.519
, pp. 477-481
-
-
Rebsamen, M.1
Pochini, L.2
Stasyk, T.3
de Araujo, M.E.4
Galluccio, M.5
Kandasamy, R.K.6
Snijder, B.7
Fauster, A.8
Rudashevskaya, E.L.9
Bruckner, M.10
-
13
-
-
84922743269
-
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1
-
25567906
-
S.Wang, Z.Y.Tsun, R.L.Wolfson, K.Shen, G.A.Wyant, M.E.Plovanich, E.D.Yuan, T.D.Jones, L.Chantranupong, W.Comb, et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015; 347:188-94; PMID:25567906; http://dx.doi.org/10.1126/science.1257132
-
(2015)
Science
, vol.347
, pp. 188-194
-
-
Wang, S.1
Tsun, Z.Y.2
Wolfson, R.L.3
Shen, K.4
Wyant, G.A.5
Plovanich, M.E.6
Yuan, E.D.7
Jones, T.D.8
Chantranupong, L.9
Comb, W.10
-
14
-
-
84940789032
-
Disruption of the Rag-Ragulator Complex by c17orf59 Inhibits mTORC1
-
26299971
-
L.D.Schweitzer, W.C.Comb, L.Bar-Peled, D.M.Sabatini. Disruption of the Rag-Ragulator Complex by c17orf59 Inhibits mTORC1. Cell Reports 2015; 12:1445-55; PMID:26299971; http://dx.doi.org/10.1016/j.celrep.2015.07.052
-
(2015)
Cell Reports
, vol.12
, pp. 1445-1455
-
-
Schweitzer, L.D.1
Comb, W.C.2
Bar-Peled, L.3
Sabatini, D.M.4
-
15
-
-
84928012389
-
BORC, a Multisubunit Complex that Regulates Lysosome Positioning
-
25898167
-
J.Pu, C.Schindler, R.Jia, M.Jarnik, P.Backlund, J.S.Bonifacino. BORC, a Multisubunit Complex that Regulates Lysosome Positioning. Developmental Cell 2015; 33:176-88; PMID:25898167; http://dx.doi.org/10.1016/j.devcel.2015.02.011
-
(2015)
Developmental Cell
, vol.33
, pp. 176-188
-
-
Pu, J.1
Schindler, C.2
Jia, R.3
Jarnik, M.4
Backlund, P.5
Bonifacino, J.S.6
-
16
-
-
80053586265
-
p62 Is a Key Regulator of Nutrient Sensing in the mTORC1 Pathway
-
21981924
-
A.Duran, R.Amanchy, J.F.Linares, J.Joshi, S.Abu-Baker, A.Porollo, M.Hansen, J.Moscat, M.T.Diaz-Meco. p62 Is a Key Regulator of Nutrient Sensing in the mTORC1 Pathway. Mol Cell 2011; 44:134-46; PMID:21981924; http://dx.doi.org/10.1016/j.molcel.2011.06.038
-
(2011)
Mol Cell
, vol.44
, pp. 134-146
-
-
Duran, A.1
Amanchy, R.2
Linares, J.F.3
Joshi, J.4
Abu-Baker, S.5
Porollo, A.6
Hansen, M.7
Moscat, J.8
Diaz-Meco, M.T.9
-
17
-
-
84881553725
-
K63 Polyubiquitination and Activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells
-
23911927
-
J.F.Linares, A.Duran, T.Yajima, M.Pasparakis, J.Moscat, M.T.Diaz-Meco. K63 Polyubiquitination and Activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell 2013; 51:283-96; PMID:23911927; http://dx.doi.org/10.1016/j.molcel.2013.06.020
-
(2013)
Mol Cell
, vol.51
, pp. 283-296
-
-
Linares, J.F.1
Duran, A.2
Yajima, T.3
Pasparakis, M.4
Moscat, J.5
Diaz-Meco, M.T.6
-
18
-
-
84878357685
-
A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
-
23723238
-
L.Bar-Peled, L.Chantranupong, A.D.Cherniack, W.W.Chen, K.A.Ottina, B.C.Grabiner, E.D.Spear, S.L.Carter, M.Meyerson, D.M.Sabatini. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013; 340:1100-6; PMID:23723238; http://dx.doi.org/10.1126/science.1232044
-
(2013)
Science
, vol.340
, pp. 1100-1106
-
-
Bar-Peled, L.1
Chantranupong, L.2
Cherniack, A.D.3
Chen, W.W.4
Ottina, K.A.5
Grabiner, B.C.6
Spear, E.D.7
Carter, S.L.8
Meyerson, M.9
Sabatini, D.M.10
-
19
-
-
84878353147
-
Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1
-
23716719
-
N.Panchaud, M.P.Peli-Gulli, C.De Virgilio. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal 2013; 6:ra42; PMID:23716719; http://dx.doi.org/10.1126/scisignal.2004112
-
(2013)
Sci Signal
, vol.6
, pp. ra42
-
-
Panchaud, N.1
Peli-Gulli, M.P.2
De Virgilio, C.3
-
20
-
-
84907991157
-
The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1
-
25263562
-
L.Chantranupong, R.L.Wolfson, J.M.Orozco, R.A.Saxton, S.M.Scaria, L.Bar-Peled, E.Spooner, M.Isasa, S.P.Gygi, D.M.Sabatini. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Reports 2014; 9:1-8; PMID:25263562; http://dx.doi.org/10.1016/j.celrep.2014.09.014
-
(2014)
Cell Reports
, vol.9
, pp. 1-8
-
-
Chantranupong, L.1
Wolfson, R.L.2
Orozco, J.M.3
Saxton, R.A.4
Scaria, S.M.5
Bar-Peled, L.6
Spooner, E.7
Isasa, M.8
Gygi, S.P.9
Sabatini, D.M.10
-
21
-
-
84912128530
-
Sestrins inhibit mTORC1 kinase activation through the GATOR complex
-
25457612
-
A.Parmigiani, A.Nourbakhsh, B.Ding, W.Wang, Y.C.Kim, K.Akopiants, K.L.Guan, M.Karin, A.V.Budanov. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Reports 2014; 9:1281-91; PMID:25457612; http://dx.doi.org/10.1016/j.celrep.2014.10.019
-
(2014)
Cell Reports
, vol.9
, pp. 1281-1291
-
-
Parmigiani, A.1
Nourbakhsh, A.2
Ding, B.3
Wang, W.4
Kim, Y.C.5
Akopiants, K.6
Guan, K.L.7
Karin, M.8
Budanov, A.V.9
-
22
-
-
84907525131
-
Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling
-
25259925
-
M.Peng, N.Yin, M.O.Li. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 2014; 159:122-33; PMID:25259925; http://dx.doi.org/10.1016/j.cell.2014.08.038
-
(2014)
Cell
, vol.159
, pp. 122-133
-
-
Peng, M.1
Yin, N.2
Li, M.O.3
-
23
-
-
80555143078
-
mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
-
22053050
-
R.Zoncu, L.Bar-Peled, A.Efeyan, S.Wang, Y.Sancak, D.M.Sabatini. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 2011; 334:678-83; PMID:22053050; http://dx.doi.org/10.1126/science.1207056
-
(2011)
Science
, vol.334
, pp. 678-683
-
-
Zoncu, R.1
Bar-Peled, L.2
Efeyan, A.3
Wang, S.4
Sancak, Y.5
Sabatini, D.M.6
-
24
-
-
84946569689
-
+-ATPase assembly
-
26378229
-
+-ATPase assembly. J Biol Chem 2015; 290:27360-9; PMID:26378229; http://dx.doi.org/10.1074/jbc.M115.659128
-
(2015)
J Biol Chem
, vol.290
, pp. 27360-27369
-
-
Stransky, L.A.1
Forgac, M.2
-
25
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
18497260
-
Y.Sancak, T.R.Peterson, Y.D.Shaul, R.A.Lindquist, C.C.Thoreen, L.Bar-Peled, D.M.Sabatini. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496-501; PMID:18497260; http://dx.doi.org/10.1126/science.1157535
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
Thoreen, C.C.5
Bar-Peled, L.6
Sabatini, D.M.7
-
26
-
-
84893477830
-
Amino Acids Activate Mammalian Target of Rapamycin (mTOR) Complex 1 without Changing Rag GTPase guanyl nucleotide charging
-
24337580
-
N.Oshiro, J.Rapley, J.Avruch. Amino Acids Activate Mammalian Target of Rapamycin (mTOR) Complex 1 without Changing Rag GTPase guanyl nucleotide charging. J Biol Chem 2014; 289:2658-74; PMID:24337580; http://dx.doi.org/10.1074/jbc.M113.528505
-
(2014)
J Biol Chem
, vol.289
, pp. 2658-2674
-
-
Oshiro, N.1
Rapley, J.2
Avruch, J.3
-
27
-
-
84894212463
-
Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
24529380
-
C.Demetriades, N.Doumpas, A.A.Teleman. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014; 156:786-99; PMID:24529380; http://dx.doi.org/10.1016/j.cell.2014.01.024
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
Doumpas, N.2
Teleman, A.A.3
-
28
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
12906785
-
A.R.Tee, B.D.Manning, P.P.Roux, L.C.Cantley, J.Blenis. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13:1259-68; PMID:12906785; http://dx.doi.org/10.1016/S0960-9822(03)00506-2
-
(2003)
Curr Biol
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
29
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
12869586
-
K.Inoki, Y.Li, T.Xu, K.L.Guan. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17:1829-34; PMID:12869586; http://dx.doi.org/10.1101/gad.1110003
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
30
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
15854902
-
X.Long, Y.Lin, S.Ortiz-Vega, K.Yonezawa, J.Avruch. Rheb binds and regulates the mTOR kinase. Curr Biol 2005; 15:702-13; PMID:15854902; http://dx.doi.org/10.1016/j.cub.2005.02.053
-
(2005)
Curr Biol
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
31
-
-
0036342294
-
Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway
-
12150915
-
B.D.Manning, A.R.Tee, M.N.Logsdon, J.Blenis, L.C.Cantley. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002; 10:151-62; PMID:12150915; http://dx.doi.org/10.1016/S1097-2765(02)00568-3
-
(2002)
Mol Cell
, vol.10
, pp. 151-162
-
-
Manning, B.D.1
Tee, A.R.2
Logsdon, M.N.3
Blenis, J.4
Cantley, L.C.5
-
32
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
12172553
-
K.Inoki, Y.Li, T.Q.Zhu, J.Wu, K.L.Guan. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002; 4:648-57; PMID:12172553; http://dx.doi.org/10.1038/ncb839
-
(2002)
Nat Cell Biol
, vol.4
, pp. 648-657
-
-
Inoki, K.1
Li, Y.2
Zhu, T.Q.3
Wu, J.4
Guan, K.L.5
-
33
-
-
0036714127
-
Akt regulates growth by directly phosphorylating Tsc2
-
12172554
-
C.J.Potter, L.G.Pedraza, T.Xu. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 2002; 4:658-65; PMID:12172554; http://dx.doi.org/10.1038/ncb840
-
(2002)
Nat Cell Biol
, vol.4
, pp. 658-665
-
-
Potter, C.J.1
Pedraza, L.G.2
Xu, T.3
-
34
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
24529379
-
S.Menon, C.C.Dibble, G.Talbott, G.Hoxhaj, A.J.Valvezan, H.Takahashi, L.C.Cantley, B.D.Manning. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014; 156:771-85; PMID:24529379; http://dx.doi.org/10.1016/j.cell.2013.11.049
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
Hoxhaj, G.4
Valvezan, A.J.5
Takahashi, H.6
Cantley, L.C.7
Manning, B.D.8
-
35
-
-
67650076833
-
Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb
-
19451232
-
M.N.Lee, S.H.Ha, J.Kim, A.Koh, C.S.Lee, J.H.Kim, H.Jeon, D.H.Kim, P.G.Suh, S.H.Ryu. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 2009; 29:3991-4001; PMID:19451232; http://dx.doi.org/10.1128/MCB.00165-09
-
(2009)
Mol Cell Biol
, vol.29
, pp. 3991-4001
-
-
Lee, M.N.1
Ha, S.H.2
Kim, J.3
Koh, A.4
Lee, C.S.5
Kim, J.H.6
Jeon, H.7
Kim, D.H.8
Suh, P.G.9
Ryu, S.H.10
-
36
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
14651849
-
K.Inoki, T.Zhu, K.L.Guan. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115:577-90; PMID:14651849; http://dx.doi.org/10.1016/S0092-8674(03)00929-2
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
37
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
21258367
-
J.Kim, M.Kundu, B.Viollet, K.L.Guan. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011; 13:132-41; PMID:21258367; http://dx.doi.org/10.1038/ncb2152
-
(2011)
Nat Cell Biol
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
Guan, K.L.4
-
38
-
-
84899028213
-
Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes
-
24726883
-
M.Yasuda, Y.Tanaka, S.Kume, Y.Morita, M.Chin-Kanasaki, H.Araki, K.Isshiki, S.Araki, D.Koya, M.Haneda, et al. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochimica Et Biophysica Acta 2014; 1842:1097-108; PMID:24726883; http://dx.doi.org/10.1016/j.bbadis.2014.04.001
-
(2014)
Biochimica Et Biophysica Acta
, vol.1842
, pp. 1097-1108
-
-
Yasuda, M.1
Tanaka, Y.2
Kume, S.3
Morita, Y.4
Chin-Kanasaki, M.5
Araki, H.6
Isshiki, K.7
Araki, S.8
Koya, D.9
Haneda, M.10
-
39
-
-
84941565389
-
Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by oleate is similar to metformin
-
26344902
-
B.Kwon, H.W.Querfurth. Palmitate activates mTOR/p70S6K through AMPK inhibition and hypophosphorylation of raptor in skeletal muscle cells: Reversal by oleate is similar to metformin. Biochimie 2015; 118:141-50; PMID:26344902; http://dx.doi.org/10.1016/j.biochi.2015.09.006
-
(2015)
Biochimie
, vol.118
, pp. 141-150
-
-
Kwon, B.1
Querfurth, H.W.2
-
40
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
18439900
-
D.M.Gwinn, D.B.Shackelford, D.F.Egan, M.M.Mihaylova, A.Mery, D.S.Vasquez, B.E.Turk, R.J.Shaw. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30:214-26; PMID:18439900; http://dx.doi.org/10.1016/j.molcel.2008.03.003
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
41
-
-
33748153690
-
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
16959574
-
K.Inoki, H.Ouyang, T.Zhu, C.Lindvall, Y.Wang, X.Zhang, Q.Yang, C.Bennett, Y.Harada, K.Stankunas, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126:955-68; PMID:16959574; http://dx.doi.org/10.1016/j.cell.2006.06.055
-
(2006)
Cell
, vol.126
, pp. 955-968
-
-
Inoki, K.1
Ouyang, H.2
Zhu, T.3
Lindvall, C.4
Wang, Y.5
Zhang, X.6
Yang, Q.7
Bennett, C.8
Harada, Y.9
Stankunas, K.10
-
42
-
-
84907519033
-
The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
-
25002183
-
C.S.Zhang, B.Jiang, M.Li, M.Zhu, Y.Peng, Y.L.Zhang, Y.Q.Wu, T.Y.Li, Y.Liang, Z.Lu, et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20:526-40; PMID:25002183; http://dx.doi.org/10.1016/j.cmet.2014.06.014
-
(2014)
Cell Metab
, vol.20
, pp. 526-540
-
-
Zhang, C.S.1
Jiang, B.2
Li, M.3
Zhu, M.4
Peng, Y.5
Zhang, Y.L.6
Wu, Y.Q.7
Li, T.Y.8
Liang, Y.9
Lu, Z.10
-
43
-
-
79953316595
-
Lysosomal positioning coordinates cellular nutrient responses
-
21394080
-
V.I.Korolchuk, S.Saiki, M.Lichtenberg, F.H.Siddiqi, E.A.Roberts, S.Imarisio, L.Jahreiss, S.Sarkar, M.Futter, F.M.Menzies, et al. Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 2011; 13:453-60; PMID:21394080; http://dx.doi.org/10.1038/ncb2204
-
(2011)
Nat Cell Biol
, vol.13
, pp. 453-460
-
-
Korolchuk, V.I.1
Saiki, S.2
Lichtenberg, M.3
Siddiqi, F.H.4
Roberts, E.A.5
Imarisio, S.6
Jahreiss, L.7
Sarkar, S.8
Futter, M.9
Menzies, F.M.10
-
44
-
-
67749122634
-
A gene network regulating lysosomal biogenesis and function
-
19556463
-
M.Sardiello, M.Palmieri, A.di Ronza, D.L.Medina, M.Valenza, V.A.Gennarino, C.Di Malta, F.Donaudy, V.Embrione, R.S.Polishchuk, et al. A gene network regulating lysosomal biogenesis and function. Science 2009; 325:473-7; PMID:19556463
-
(2009)
Science
, vol.325
, pp. 473-477
-
-
Sardiello, M.1
Palmieri, M.2
di Ronza, A.3
Medina, D.L.4
Valenza, M.5
Gennarino, V.A.6
Di Malta, C.7
Donaudy, F.8
Embrione, V.9
Polishchuk, R.S.10
-
45
-
-
0028062014
-
microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family
-
7958932
-
T.J.Hemesath, E.Steingrimsson, G.McGill, M.J.Hansen, J.Vaught, C.A.Hodgkinson, H.Arnheiter, N.G.Copeland, N.A.Jenkins, D.E.Fisher. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev 1994; 8:2770-80; PMID:7958932; http://dx.doi.org/10.1101/gad.8.22.2770
-
(1994)
Genes Dev
, vol.8
, pp. 2770-2780
-
-
Hemesath, T.J.1
Steingrimsson, E.2
McGill, G.3
Hansen, M.J.4
Vaught, J.5
Hodgkinson, C.A.6
Arnheiter, H.7
Copeland, N.G.8
Jenkins, N.A.9
Fisher, D.E.10
-
46
-
-
84893055506
-
The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris
-
24448649
-
J.A.Martina, H.I.Diab, L.Lishu, A.L.Jeong, S.Patange, N.Raben, R.Puertollano. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal 2014; 7:ra9; PMID:24448649; http://dx.doi.org/10.1126/scisignal.2004754
-
(2014)
Sci Signal
, vol.7
, pp. ra9
-
-
Martina, J.A.1
Diab, H.I.2
Lishu, L.3
Jeong, A.L.4
Patange, S.5
Raben, N.6
Puertollano, R.7
-
47
-
-
84874352229
-
Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes
-
23401004
-
J.A.Martina, R.Puertollano. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol 2013; 200:475-91; PMID:23401004; http://dx.doi.org/10.1083/jcb.201209135
-
(2013)
J Cell Biol
, vol.200
, pp. 475-491
-
-
Martina, J.A.1
Puertollano, R.2
-
48
-
-
84862539692
-
The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
-
22692423
-
A.Roczniak-Ferguson, C.S.Petit, F.Froehlich, S.Qian, J.Ky, B.Angarola, T.C.Walther, S.M.Ferguson. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 2012; 5:ra42; PMID:22692423; http://dx.doi.org/10.1126/scisignal.2002790
-
(2012)
Sci Signal
, vol.5
, pp. ra42
-
-
Roczniak-Ferguson, A.1
Petit, C.S.2
Froehlich, F.3
Qian, S.4
Ky, J.5
Angarola, B.6
Walther, T.C.7
Ferguson, S.M.8
-
49
-
-
33748301944
-
Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors
-
16822840
-
A.Bronisz, S.M.Sharma, R.Hu, J.Godlewski, G.Tzivion, K.C.Mansky, M.C.Ostrowski. Microphthalmia-associated transcription factor interactions with 14-3-3 modulate differentiation of committed myeloid precursors. Mol Biol Cell 2006; 17:3897-906; PMID:16822840; http://dx.doi.org/10.1091/mbc.E06-05-0470
-
(2006)
Mol Biol Cell
, vol.17
, pp. 3897-3906
-
-
Bronisz, A.1
Sharma, S.M.2
Hu, R.3
Godlewski, J.4
Tzivion, G.5
Mansky, K.C.6
Ostrowski, M.C.7
-
50
-
-
84864874958
-
MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB
-
22576015
-
J.A.Martina, Y.Chen, M.Gucek, R.Puertollano. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 2012; 8:903-14; PMID:22576015; http://dx.doi.org/10.4161/auto.19653
-
(2012)
Autophagy
, vol.8
, pp. 903-914
-
-
Martina, J.A.1
Chen, Y.2
Gucek, M.3
Puertollano, R.4
-
51
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
22343943
-
C.Settembre, R.Zoncu, D.L.Medina, F.Vetrini, S.Erdin, T.Huynh, M.Ferron, G.Karsenty, M.C.Vellard, V.Facchinetti, et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 2012; 31:1095-108; PMID:22343943; http://dx.doi.org/10.1038/emboj.2012.32
-
(2012)
EMBO J
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Huynh, T.6
Ferron, M.7
Karsenty, G.8
Vellard, M.C.9
Facchinetti, V.10
-
52
-
-
84940719535
-
mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival
-
26139536
-
M.J.Munson, G.F.G.Allen, R.Toth, D.G.Campbell, J.M.Lucocq, I.G.Ganley. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. Embo J 2015; 34:2272-90; PMID:26139536; http://dx.doi.org/10.15252/embj.201590992
-
(2015)
Embo J
, vol.34
, pp. 2272-2290
-
-
Munson, M.J.1
Allen, G.F.G.2
Toth, R.3
Campbell, D.G.4
Lucocq, J.M.5
Ganley, I.G.6
-
53
-
-
84874105202
-
mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state
-
23394946
-
C.Cang, Y.Zhou, B.Navarro, Y.J.Seo, K.Aranda, L.Shi, S.Battaglia-Hsu, I.Nissim, D.E.Clapham, D.Ren. mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state. Cell 2013; 152:778-90; PMID:23394946; http://dx.doi.org/10.1016/j.cell.2013.01.023
-
(2013)
Cell
, vol.152
, pp. 778-790
-
-
Cang, C.1
Zhou, Y.2
Navarro, B.3
Seo, Y.J.4
Aranda, K.5
Shi, L.6
Battaglia-Hsu, S.7
Nissim, I.8
Clapham, D.E.9
Ren, D.10
-
54
-
-
84925324770
-
Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation
-
25733853
-
W.Wang, Q.Gao, M.Yang, X.Zhang, L.Yu, M.Lawas, X.Li, M.Bryant-Genevier, N.T.Southall, J.Marugan, et al. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc Natl Acad Sci U S A 2015; 112:E1373-81; PMID:25733853; http://dx.doi.org/10.1073/pnas.1419669112
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E1373-E1381
-
-
Wang, W.1
Gao, Q.2
Yang, M.3
Zhang, X.4
Yu, L.5
Lawas, M.6
Li, X.7
Bryant-Genevier, M.8
Southall, N.T.9
Marugan, J.10
-
55
-
-
84867565289
-
TPC Proteins Are Phosphoinositide-Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes
-
23063126
-
X.Wang, X.L.Zhang, X.P.Dong, M.Samie, X.R.Li, X.P.Cheng, A.Goschka, D.B.Shen, Y.D.Zhou, J.Harlow, et al. TPC Proteins Are Phosphoinositide-Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell 2012; 151:372-83; PMID:23063126; http://dx.doi.org/10.1016/j.cell.2012.08.036
-
(2012)
Cell
, vol.151
, pp. 372-383
-
-
Wang, X.1
Zhang, X.L.2
Dong, X.P.3
Samie, M.4
Li, X.R.5
Cheng, X.P.6
Goschka, A.7
Shen, D.B.8
Zhou, Y.D.9
Harlow, J.10
-
56
-
-
80051473235
-
2+ release channels in the endolysosome
-
2+ release channels in the endolysosome. Nat Commun 2010; 1:38; http://dx.doi.org/10.1038/ncomms1037
-
(2010)
Nat Commun
, vol.1
, pp. 38
-
-
Dong, X.P.1
Shen, D.B.A.2
Wang, X.3
Dawson, T.4
Li, X.R.5
Zhang, Q.6
Cheng, X.P.7
Zhang, Y.L.8
Weisman, L.S.9
Delling, M.10
-
57
-
-
84885679000
-
Lysosomal storage diseases-the horizon expands
-
23938739
-
R.M.N.Boustany. Lysosomal storage diseases-the horizon expands. Nat Rev Neurol 2013; 9:583-98; PMID:23938739; http://dx.doi.org/10.1038/nrneurol.2013.163
-
(2013)
Nat Rev Neurol
, vol.9
, pp. 583-598
-
-
Boustany, R.M.N.1
-
58
-
-
79961100778
-
Lysosomal storage disorders: molecular basis and laboratory testing
-
21504867
-
M.Filocamo, A.Morrone. Lysosomal storage disorders: molecular basis and laboratory testing. Human Genomics 2011; 5:156-69; PMID:21504867; http://dx.doi.org/10.1186/1479-7364-5-3-156
-
(2011)
Human Genomics
, vol.5
, pp. 156-169
-
-
Filocamo, M.1
Morrone, A.2
-
59
-
-
53449093327
-
Pompe's disease
-
18929906
-
A.T.van der Ploeg, A.J.Reuser. Pompe's disease. Lancet 2008; 372:1342-53; PMID:18929906; http://dx.doi.org/10.1016/S0140-6736(08)61555-X
-
(2008)
Lancet
, vol.372
, pp. 1342-1353
-
-
van der Ploeg, A.T.1
Reuser, A.J.2
-
60
-
-
0027478365
-
In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in Wolman disease to chromosome 10q23.2-q23.3
-
8432549
-
R.A.Anderson, N.Rao, R.S.Byrum, C.B.Rothschild, D.W.Bowden, R.Hayworth, M.Pettenati. In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in Wolman disease to chromosome 10q23.2-q23.3. Genomics 1993; 15:245-7; PMID:8432549; http://dx.doi.org/10.1006/geno.1993.1052
-
(1993)
Genomics
, vol.15
, pp. 245-247
-
-
Anderson, R.A.1
Rao, N.2
Byrum, R.S.3
Rothschild, C.B.4
Bowden, D.W.5
Hayworth, R.6
Pettenati, M.7
-
61
-
-
0347579841
-
Lysosomal dysfunction in muscle with special reference to glycogen storage disease type II
-
12633905
-
R.P.Hesselink, A.J.Wagenmakers, M.R.Drost, G.J.Van der Vusse. Lysosomal dysfunction in muscle with special reference to glycogen storage disease type II. Biochimica Et Biophysica Acta 2003; 1637:164-70; PMID:12633905; http://dx.doi.org/10.1016/S0925-4439(02)00229-6
-
(2003)
Biochimica Et Biophysica Acta
, vol.1637
, pp. 164-170
-
-
Hesselink, R.P.1
Wagenmakers, A.J.2
Drost, M.R.3
Van der Vusse, G.J.4
-
62
-
-
84894456805
-
Clinical features of Pompe disease
-
24399863
-
F.Manganelli, L.Ruggiero. Clinical features of Pompe disease. Acta Myol 2013; 32:82-4; PMID:24399863
-
(2013)
Acta Myol
, vol.32
, pp. 82-84
-
-
Manganelli, F.1
Ruggiero, L.2
-
63
-
-
0032706624
-
A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases
-
10581036
-
F.W.Verheijen, E.Verbeek, N.Aula, C.E.Beerens, A.C.Havelaar, M.Joosse, L.Peltonen, P.Aula, H.Galjaard, P.J.van der Spek, et al. A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genetics 1999; 23:462-5; PMID:10581036; http://dx.doi.org/10.1038/70585
-
(1999)
Nat Genetics
, vol.23
, pp. 462-465
-
-
Verheijen, F.W.1
Verbeek, E.2
Aula, N.3
Beerens, C.E.4
Havelaar, A.C.5
Joosse, M.6
Peltonen, L.7
Aula, P.8
Galjaard, H.9
van der Spek, P.J.10
-
64
-
-
0025345583
-
Glucose-Transport in Lysosomal Membrane-Vesicles - Kinetic Demonstration of a Carrier for Neutral Hexoses
-
2373697
-
G.M.S.Mancini, C.E.M.T.Beerens, F.W.Verheijen. Glucose-Transport in Lysosomal Membrane-Vesicles - Kinetic Demonstration of a Carrier for Neutral Hexoses. J Biol Chem 1990; 265:12380-7; PMID:2373697
-
(1990)
J Biol Chem
, vol.265
, pp. 12380-12387
-
-
Mancini, G.M.S.1
Beerens, C.E.M.T.2
Verheijen, F.W.3
-
65
-
-
0020537506
-
Sugar-Transport in Rat-Liver Lysosomes - Direct Demonstration by Using Labeled Sugars
-
6409099
-
G.A.Maguire, K.Docherty, C.N.Hales. Sugar-Transport in Rat-Liver Lysosomes - Direct Demonstration by Using Labeled Sugars. Biochem J 1983; 212:211-8; PMID:6409099; http://dx.doi.org/10.1042/bj2120211
-
(1983)
Biochem J
, vol.212
, pp. 211-218
-
-
Maguire, G.A.1
Docherty, K.2
Hales, C.N.3
-
66
-
-
27744523940
-
GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment
-
16262729
-
R.Augustin, J.Riley, K.H.Moley. GLUT8 contains a [DE]XXXL[LI] sorting motif and localizes to a late endosomal/lysosomal compartment. Traffic 2005; 6:1196-212; PMID:16262729; http://dx.doi.org/10.1111/j.1600-0854.2005.00354.x
-
(2005)
Traffic
, vol.6
, pp. 1196-1212
-
-
Augustin, R.1
Riley, J.2
Moley, K.H.3
-
67
-
-
0022168951
-
Receptor-mediated endocytosis: concepts emerging from the LDL receptor system
-
J.L.Goldstein, M.S.Brown, R.G.Anderson, D.W.Russell, W.J.Schneider. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annual Rev Cell Biol 1985; 1:1-39; http://dx.doi.org/10.1146/annurev.cb.01.110185.000245
-
(1985)
Annual Rev Cell Biol
, vol.1
, pp. 1-39
-
-
Goldstein, J.L.1
Brown, M.S.2
Anderson, R.G.3
Russell, D.W.4
Schneider, W.J.5
-
68
-
-
0022549920
-
A receptor-mediated pathway for cholesterol homeostasis
-
3513311
-
M.S.Brown, J.L.Goldstein. A receptor-mediated pathway for cholesterol homeostasis. Science 1986; 232:34-47; PMID:3513311; http://dx.doi.org/10.1126/science.3513311
-
(1986)
Science
, vol.232
, pp. 34-47
-
-
Brown, M.S.1
Goldstein, J.L.2
-
69
-
-
0016836751
-
Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease
-
172501
-
J.L.Goldstein, S.E.Dana, J.R.Faust, A.L.Beaudet, M.S.Brown. Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein. Observations in cultured fibroblasts from a patient with cholesteryl ester storage disease. J Biol Chem 1975; 250:8487-95; PMID:172501
-
(1975)
J Biol Chem
, vol.250
, pp. 8487-8495
-
-
Goldstein, J.L.1
Dana, S.E.2
Faust, J.R.3
Beaudet, A.L.4
Brown, M.S.5
-
70
-
-
0024537740
-
A case of acid lipase deficiency: Wolman's disease
-
2726290
-
G.Bona, G.Bracco, M.R.Gallina, A.Iavarone, L.Artesani, A.Perona, M.Zaffaroni. A case of acid lipase deficiency: Wolman's disease. Panminerva Medica 1989; 31:49-53; PMID:2726290
-
(1989)
Panminerva Medica
, vol.31
, pp. 49-53
-
-
Bona, G.1
Bracco, G.2
Gallina, M.R.3
Iavarone, A.4
Artesani, L.5
Perona, A.6
Zaffaroni, M.7
-
71
-
-
0023850575
-
Type C Niemann-Pick disease. Lysosomal accumulation and defective intracellular mobilization of low density lipoprotein cholesterol
-
3277970
-
J.Sokol, J.Blanchette-Mackie, H.S.Kruth, N.K.Dwyer, L.M.Amende, J.D.Butler, E.Robinson, S.Patel, R.O.Brady, M.E.Comly, et al. Type C Niemann-Pick disease. Lysosomal accumulation and defective intracellular mobilization of low density lipoprotein cholesterol. J Biol Chem 1988; 263:3411-7; PMID:3277970
-
(1988)
J Biol Chem
, vol.263
, pp. 3411-3417
-
-
Sokol, J.1
Blanchette-Mackie, J.2
Kruth, H.S.3
Dwyer, N.K.4
Amende, L.M.5
Butler, J.D.6
Robinson, E.7
Patel, S.8
Brady, R.O.9
Comly, M.E.10
-
72
-
-
0030863352
-
Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis
-
9211849
-
E.D.Carstea, J.A.Morris, K.G.Coleman, S.K.Loftus, D.Zhang, C.Cummings, J.Gu, M.A.Rosenfeld, W.J.Pavan, D.B.Krizman, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 1997; 277:228-31; PMID:9211849; http://dx.doi.org/10.1126/science.277.5323.228
-
(1997)
Science
, vol.277
, pp. 228-231
-
-
Carstea, E.D.1
Morris, J.A.2
Coleman, K.G.3
Loftus, S.K.4
Zhang, D.5
Cummings, C.6
Gu, J.7
Rosenfeld, M.A.8
Pavan, W.J.9
Krizman, D.B.10
-
73
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
19339967
-
R.Singh, S.Kaushik, Y.Wang, Y.Xiang, I.Novak, M.Komatsu, K.Tanaka, A.M.Cuervo, M.J.Czaja. Autophagy regulates lipid metabolism. Nature 2009; 458:1131-5; PMID:19339967; http://dx.doi.org/10.1038/nature07976
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
Xiang, Y.4
Novak, I.5
Komatsu, M.6
Tanaka, K.7
Cuervo, A.M.8
Czaja, M.J.9
-
74
-
-
84929606449
-
The small GTPase Rab7 as a central regulator of hepatocellular lipophagy
-
B.Schroeder, R.J.Schulze, S.G.Weller, A.C.Sletten, C.A.Casey, M.A.McNiven. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatol 2015; 61:1896-907; http://dx.doi.org/10.1002/hep.27667
-
(2015)
Hepatol
, vol.61
, pp. 1896-1907
-
-
Schroeder, B.1
Schulze, R.J.2
Weller, S.G.3
Sletten, A.C.4
Casey, C.A.5
McNiven, M.A.6
-
75
-
-
69449107552
-
Lipases in lysosomes, what for?
-
19502773
-
M.J.Czaja, A.M.Cuervo. Lipases in lysosomes, what for? Autophagy 2009; 5:866-7; PMID:19502773; http://dx.doi.org/10.4161/auto.9040
-
(2009)
Autophagy
, vol.5
, pp. 866-867
-
-
Czaja, M.J.1
Cuervo, A.M.2
-
76
-
-
73649120236
-
Potential role of autophagy in modulation of lipid metabolism
-
19887596
-
J.Kovsan, N.Bashan, A.S.Greenberg, A.Rudich. Potential role of autophagy in modulation of lipid metabolism. Am J Physiol Endocrinol Metab 2010; 298:E1-7; PMID:19887596; http://dx.doi.org/10.1152/ajpendo.00562.2009
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, pp. E1-E7
-
-
Kovsan, J.1
Bashan, N.2
Greenberg, A.S.3
Rudich, A.4
-
77
-
-
84878533962
-
MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
-
23604316
-
E.J.O'Rourke, G.Ruvkun. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat Cell Biol 2013; 15:668-76; PMID:23604316; http://dx.doi.org/10.1038/ncb2741
-
(2013)
Nat Cell Biol
, vol.15
, pp. 668-676
-
-
O'Rourke, E.J.1
Ruvkun, G.2
-
78
-
-
67650594823
-
A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors
-
19632181
-
C.A.Grove, F.De Masi, M.I.Barrasa, D.E.Newburger, M.J.Alkema, M.L.Bulyk, A.J.Walhout. A multiparameter network reveals extensive divergence between C. elegans bHLH transcription factors. Cell 2009; 138:314-27; PMID:19632181; http://dx.doi.org/10.1016/j.cell.2009.04.058
-
(2009)
Cell
, vol.138
, pp. 314-327
-
-
Grove, C.A.1
De Masi, F.2
Barrasa, M.I.3
Newburger, D.E.4
Alkema, M.J.5
Bulyk, M.L.6
Walhout, A.J.7
-
79
-
-
20444465269
-
The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae
-
A.Jandrositz, J.Petschnigg, R.Zimmermann, K.Natter, H.Scholze, A.Hermetter, S.D.Kohlwein, R.Leber. The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae. Biochim Et Biophysica Acta 2005; 1735:50-8; http://dx.doi.org/10.1016/j.bbalip.2005.04.005
-
(2005)
Biochim Et Biophysica Acta
, vol.1735
, pp. 50-58
-
-
Jandrositz, A.1
Petschnigg, J.2
Zimmermann, R.3
Natter, K.4
Scholze, H.5
Hermetter, A.6
Kohlwein, S.D.7
Leber, R.8
-
80
-
-
84923295947
-
Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans
-
25554789
-
A.Folick, H.D.Oakley, Y.Yu, E.H.Armstrong, M.Kumari, L.Sanor, D.D.Moore, E.A.Ortlund, R.Zechner, M.C.Wang. Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 2015; 347:83-6; PMID:25554789; http://dx.doi.org/10.1126/science.1258857
-
(2015)
Science
, vol.347
, pp. 83-86
-
-
Folick, A.1
Oakley, H.D.2
Yu, Y.3
Armstrong, E.H.4
Kumari, M.5
Sanor, L.6
Moore, D.D.7
Ortlund, E.A.8
Zechner, R.9
Wang, M.C.10
-
81
-
-
0035064152
-
Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span
-
11290820
-
H.Du, M.Heur, M.Duanmu, G.A.Grabowski, D.Y.Hui, D.P.Witte, J.Y.Mishra. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J Lipid Res 2001; 42:489-500; PMID:11290820
-
(2001)
J Lipid Res
, vol.42
, pp. 489-500
-
-
Du, H.1
Heur, M.2
Duanmu, M.3
Grabowski, G.A.4
Hui, D.Y.5
Witte, D.P.6
Mishra, J.Y.7
-
82
-
-
84913592131
-
Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation
-
25043815
-
J.L.Schneider, Y.Suh, A.M.Cuervo. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab 2014; 20:417-32; PMID:25043815; http://dx.doi.org/10.1016/j.cmet.2014.06.009
-
(2014)
Cell Metab
, vol.20
, pp. 417-432
-
-
Schneider, J.L.1
Suh, Y.2
Cuervo, A.M.3
-
83
-
-
0028848119
-
Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation
-
7491910
-
A.M.Cuervo, E.Knecht, S.R.Terlecky, J.F.Dice. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am J Physiol 1995; 269:C1200-8; PMID:7491910
-
(1995)
Am J Physiol
, vol.269
, pp. C1200-C1208
-
-
Cuervo, A.M.1
Knecht, E.2
Terlecky, S.R.3
Dice, J.F.4
-
84
-
-
84930182353
-
Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis
-
25961502
-
S.Kaushik, A.M.Cuervo. Degradation of lipid droplet-associated proteins by chaperone-mediated autophagy facilitates lipolysis. Nat Cell Biol 2015; 17:759-70; PMID:25961502; http://dx.doi.org/10.1038/ncb3166
-
(2015)
Nat Cell Biol
, vol.17
, pp. 759-770
-
-
Kaushik, S.1
Cuervo, A.M.2
-
85
-
-
84925324049
-
Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics
-
25752962
-
A.S.Rambold, S.Cohen, J.Lippincott-Schwartz. Fatty Acid Trafficking in Starved Cells: Regulation by Lipid Droplet Lipolysis, Autophagy, and Mitochondrial Fusion Dynamics. Dev Cell 2015; 32:678-92; PMID:25752962; http://dx.doi.org/10.1016/j.devcel.2015.01.029
-
(2015)
Dev Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
Cohen, S.2
Lippincott-Schwartz, J.3
-
86
-
-
0025363276
-
Studies on the mechanisms of autophagy: formation of the autophagic vacuole
-
2351689
-
W.A.Dunn, Jr. Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 1990; 110:1923-33; PMID:2351689; http://dx.doi.org/10.1083/jcb.110.6.1923
-
(1990)
J Cell Biol
, vol.110
, pp. 1923-1933
-
-
Dunn, W.A.1
-
87
-
-
33845407202
-
Atg22 recycles amino acids to link the degradative and recycling functions of autophagy
-
17021250
-
Z.Yang, J.Huang, J.Geng, U.Nair, D.J.Klionsky. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 2006; 17:5094-104; PMID:17021250; http://dx.doi.org/10.1091/mbc.E06-06-0479
-
(2006)
Mol Biol Cell
, vol.17
, pp. 5094-5104
-
-
Yang, Z.1
Huang, J.2
Geng, J.3
Nair, U.4
Klionsky, D.J.5
-
88
-
-
0021875579
-
Distribution of cathepsins B and H in rat tissues and peripheral blood cells
-
3900059
-
E.Kominami, T.Tsukahara, Y.Bando, N.Katunuma. Distribution of cathepsins B and H in rat tissues and peripheral blood cells. J Biochem 1985; 98:87-93; PMID:3900059
-
(1985)
J Biochem
, vol.98
, pp. 87-93
-
-
Kominami, E.1
Tsukahara, T.2
Bando, Y.3
Katunuma, N.4
-
89
-
-
0022376534
-
Different immunolocalizations of cathepsins B, H, and L in the liver
-
4056381
-
K.Ii, K.Hizawa, E.Kominami, Y.Bando, N.Katunuma. Different immunolocalizations of cathepsins B, H, and L in the liver. J Histochem Cytochem 1985; 33:1173-5; PMID:4056381; http://dx.doi.org/10.1177/33.11.4056381
-
(1985)
J Histochem Cytochem
, vol.33
, pp. 1173-1175
-
-
Ii, K.1
Hizawa, K.2
Kominami, E.3
Bando, Y.4
Katunuma, N.5
-
90
-
-
0023389657
-
The role of aspartic and cysteine proteinases in albumin degradation by rat kidney cortical lysosomes
-
W.H.Baricos, Y.W.Zhou, R.S.Fuerst, A.J.Barrett, S.V.Shah. The role of aspartic and cysteine proteinases in albumin degradation by rat kidney cortical lysosomes. Arch Biochem Biophy 1987; 256:687-91; http://dx.doi.org/10.1016/0003-9861(87)90625-4
-
(1987)
Arch Biochem Biophy
, vol.256
, pp. 687-691
-
-
Baricos, W.H.1
Zhou, Y.W.2
Fuerst, R.S.3
Barrett, A.J.4
Shah, S.V.5
-
91
-
-
33745023775
-
Chaperone-mediated autophagy in aging and disease
-
A.C.Massey, C.Zhang, A.M.Cuervo. Chaperone-mediated autophagy in aging and disease. Curr Topics Dev Biol 2006; 73:205-35; http://dx.doi.org/10.1016/S0070-2153(05)73007-6
-
(2006)
Curr Topics Dev Biol
, vol.73
, pp. 205-235
-
-
Massey, A.C.1
Zhang, C.2
Cuervo, A.M.3
-
92
-
-
33748374920
-
Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy
-
16917501
-
S.Kaushik, A.C.Massey, A.M.Cuervo. Lysosome membrane lipid microdomains: novel regulators of chaperone-mediated autophagy. EMBO J 2006; 25:3921-33; PMID:16917501; http://dx.doi.org/10.1038/sj.emboj.7601283
-
(2006)
EMBO J
, vol.25
, pp. 3921-3933
-
-
Kaushik, S.1
Massey, A.C.2
Cuervo, A.M.3
-
93
-
-
0031945551
-
A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis
-
9537412
-
M.Town, G.Jean, S.Cherqui, M.Attard, L.Forestier, S.A.Whitmore, D.F.Callen, O.Gribouval, M.Broyer, G.P.Bates, et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genetics 1998; 18:319-24; PMID:9537412; http://dx.doi.org/10.1038/ng0498-319
-
(1998)
Nat Genetics
, vol.18
, pp. 319-324
-
-
Town, M.1
Jean, G.2
Cherqui, S.3
Attard, M.4
Forestier, L.5
Whitmore, S.A.6
Callen, D.F.7
Gribouval, O.8
Broyer, M.9
Bates, G.P.10
-
94
-
-
84863997137
-
LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis
-
22822152
-
B.Liu, H.Du, R.Rutkowski, A.Gartner, X.Wang. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 2012; 337:351-4; PMID:22822152; http://dx.doi.org/10.1126/science.1220281
-
(2012)
Science
, vol.337
, pp. 351-354
-
-
Liu, B.1
Du, H.2
Rutkowski, R.3
Gartner, A.4
Wang, X.5
-
95
-
-
84907835250
-
Lysosome-related organelles as mediators of metal homeostasis
-
25160625
-
C.E.Blaby-Haas, S.S.Merchant. Lysosome-related organelles as mediators of metal homeostasis. J Biol Chem 2014; 289:28129-36; PMID:25160625; http://dx.doi.org/10.1074/jbc.R114.592618
-
(2014)
J Biol Chem
, vol.289
, pp. 28129-28136
-
-
Blaby-Haas, C.E.1
Merchant, S.S.2
-
96
-
-
84855471897
-
Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans
-
22225878
-
H.C.Roh, S.Collier, J.Guthrie, J.D.Robertson, K.Kornfeld. Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab 2012; 15:88-99; PMID:22225878; http://dx.doi.org/10.1016/j.cmet.2011.12.003
-
(2012)
Cell Metab
, vol.15
, pp. 88-99
-
-
Roh, H.C.1
Collier, S.2
Guthrie, J.3
Robertson, J.D.4
Kornfeld, K.5
-
97
-
-
0041654309
-
Down-regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes
-
6326124
-
L.Beguinot, R.M.Lyall, M.C.Willingham, I.Pastan. Down-regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes. Proc Natl Acad Sci U S A 1984; 81:2384-8; PMID:6326124; http://dx.doi.org/10.1073/pnas.81.8.2384
-
(1984)
Proc Natl Acad Sci U S A
, vol.81
, pp. 2384-2388
-
-
Beguinot, L.1
Lyall, R.M.2
Willingham, M.C.3
Pastan, I.4
-
98
-
-
0025605344
-
The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily
-
1979659
-
R.V.Aroian, M.Koga, J.E.Mendel, Y.Ohshima, P.W.Sternberg. The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 1990; 348:693-9; PMID:1979659; http://dx.doi.org/10.1038/348693a0
-
(1990)
Nature
, vol.348
, pp. 693-699
-
-
Aroian, R.V.1
Koga, M.2
Mendel, J.E.3
Ohshima, Y.4
Sternberg, P.W.5
-
99
-
-
0037169336
-
Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila
-
11832215
-
T.E.Lloyd, R.Atkinson, M.N.Wu, Y.Zhou, G.Pennetta, H.J.Bellen. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 2002; 108:261-9; PMID:11832215; http://dx.doi.org/10.1016/S0092-8674(02)00611-6
-
(2002)
Cell
, vol.108
, pp. 261-269
-
-
Lloyd, T.E.1
Atkinson, R.2
Wu, M.N.3
Zhou, Y.4
Pennetta, G.5
Bellen, H.J.6
-
100
-
-
14444288522
-
The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling
-
9006938
-
H.S.Huang, M.Nagane, C.K.Klingbeil, H.Lin, R.Nishikawa, X.D.Ji, C.M.Huang, G.N.Gill, H.S.Wiley, W.K.Cavenee. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 1997; 272:2927-35; PMID:9006938; http://dx.doi.org/10.1074/jbc.272.5.2927
-
(1997)
J Biol Chem
, vol.272
, pp. 2927-2935
-
-
Huang, H.S.1
Nagane, M.2
Klingbeil, C.K.3
Lin, H.4
Nishikawa, R.5
Ji, X.D.6
Huang, C.M.7
Gill, G.N.8
Wiley, H.S.9
Cavenee, W.K.10
-
101
-
-
84923163826
-
Aged insulin granules display reduced microtubule-dependent mobility and are disposed within actin-positive multigranular bodies
-
25646459
-
P.Hoboth, A.Muller, A.Ivanova, H.Mziaut, J.Dehghany, A.Sonmez, M.Lachnit, M.Meyer-Hermann, Y.Kalaidzidis, M.Solimena. Aged insulin granules display reduced microtubule-dependent mobility and are disposed within actin-positive multigranular bodies. Proc Natl Acad Sci U S A 2015; 112:E667-76; PMID:25646459; http://dx.doi.org/10.1073/pnas.1409542112
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E667-E676
-
-
Hoboth, P.1
Muller, A.2
Ivanova, A.3
Mziaut, H.4
Dehghany, J.5
Sonmez, A.6
Lachnit, M.7
Meyer-Hermann, M.8
Kalaidzidis, Y.9
Solimena, M.10
-
102
-
-
84907042769
-
ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery
-
25052096
-
S.Schuck, C.M.Gallagher, P.Walter. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J Cell Sci 2014; 127:4078-88; PMID:25052096; http://dx.doi.org/10.1242/jcs.154716
-
(2014)
J Cell Sci
, vol.127
, pp. 4078-4088
-
-
Schuck, S.1
Gallagher, C.M.2
Walter, P.3
-
103
-
-
34249934085
-
Selective degradation of mitochondria by mitophagy
-
17475204
-
I.Kim, S.Rodriguez-Enriquez, J.J.Lemasters. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 2007; 462:245-53; PMID:17475204; http://dx.doi.org/10.1016/j.abb.2007.03.034
-
(2007)
Arch Biochem Biophys
, vol.462
, pp. 245-253
-
-
Kim, I.1
Rodriguez-Enriquez, S.2
Lemasters, J.J.3
-
104
-
-
43049138051
-
Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
-
18391941
-
C.Kraft, A.Deplazes, M.Sohrmann, M.Peter. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 2008; 10:602-10; PMID:18391941; http://dx.doi.org/10.1038/ncb1723
-
(2008)
Nat Cell Biol
, vol.10
, pp. 602-610
-
-
Kraft, C.1
Deplazes, A.2
Sohrmann, M.3
Peter, M.4
-
105
-
-
0027207680
-
Selective autophagy of peroxisomes in methylotrophic yeasts
-
8330626
-
D.L.Tuttle, A.S.Lewin, W.A.Dunn, Jr. Selective autophagy of peroxisomes in methylotrophic yeasts. Eur J Cell Biol 1993; 60:283-90; PMID:8330626
-
(1993)
Eur J Cell Biol
, vol.60
, pp. 283-290
-
-
Tuttle, D.L.1
Lewin, A.S.2
Dunn, W.A.3
-
106
-
-
84880108306
-
Spatiotemporally controlled induction of autophagy-mediated lysosome turnover
-
23817530
-
Y.H.Hung, L.M.Chen, J.Y.Yang, W.Y.Yang. Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nat Commun 2013; 4:2111; PMID:23817530; http://dx.doi.org/10.1038/ncomms3111
-
(2013)
Nat Commun
, vol.4
, pp. 2111
-
-
Hung, Y.H.1
Chen, L.M.2
Yang, J.Y.3
Yang, W.Y.4
-
107
-
-
0030007427
-
ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism
-
8654925
-
J.B.Kim, B.M.Spiegelman. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996; 10:1096-107; PMID:8654925; http://dx.doi.org/10.1101/gad.10.9.1096
-
(1996)
Genes Dev
, vol.10
, pp. 1096-1107
-
-
Kim, J.B.1
Spiegelman, B.M.2
-
108
-
-
0037162719
-
Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER
-
12202038
-
T.Yang, P.J.Espenshade, M.E.Wright, D.Yabe, Y.Gong, R.Aebersold, J.L.Goldstein, M.S.Brown. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002; 110:489-500; PMID:12202038; http://dx.doi.org/10.1016/S0092-8674(02)00872-3
-
(2002)
Cell
, vol.110
, pp. 489-500
-
-
Yang, T.1
Espenshade, P.J.2
Wright, M.E.3
Yabe, D.4
Gong, Y.5
Aebersold, R.6
Goldstein, J.L.7
Brown, M.S.8
-
109
-
-
0030941803
-
The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
-
9150132
-
M.S.Brown, J.L.Goldstein. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89:331-40; PMID:9150132; http://dx.doi.org/10.1016/S0092-8674(00)80213-5
-
(1997)
Cell
, vol.89
, pp. 331-340
-
-
Brown, M.S.1
Goldstein, J.L.2
-
110
-
-
0033613147
-
A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood
-
10500120
-
M.S.Brown, J.L.Goldstein. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 1999; 96:11041-8; PMID:10500120; http://dx.doi.org/10.1073/pnas.96.20.11041
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 11041-11048
-
-
Brown, M.S.1
Goldstein, J.L.2
-
111
-
-
0034710965
-
Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR α
-
11035776
-
A.Venkateswaran, B.A.Laffitte, S.B.Joseph, P.A.Mak, D.C.Wilpitz, P.A.Edwards, P.Tontonoz. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR α. Proc Natl Acad Sci U S A 2000; 97:12097-102; PMID:11035776; http://dx.doi.org/10.1073/pnas.200367697
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 12097-12102
-
-
Venkateswaran, A.1
Laffitte, B.A.2
Joseph, S.B.3
Mak, P.A.4
Wilpitz, D.C.5
Edwards, P.A.6
Tontonoz, P.7
-
112
-
-
84874271499
-
omega-6 Polyunsaturated fatty acids extend life span through the activation of autophagy
-
23392608
-
E.J.O'Rourke, P.Kuballa, R.Xavier, G.Ruvkun. omega-6 Polyunsaturated fatty acids extend life span through the activation of autophagy. Genes Dev 2013; 27:429-40; PMID:23392608; http://dx.doi.org/10.1101/gad.205294.112
-
(2013)
Genes Dev
, vol.27
, pp. 429-440
-
-
O'Rourke, E.J.1
Kuballa, P.2
Xavier, R.3
Ruvkun, G.4
-
113
-
-
80053312481
-
Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans
-
21906946
-
L.R.Lapierre, S.Gelino, A.Melendez, M.Hansen. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 2011; 21:1507-14; PMID:21906946; http://dx.doi.org/10.1016/j.cub.2011.07.042
-
(2011)
Curr Biol
, vol.21
, pp. 1507-1514
-
-
Lapierre, L.R.1
Gelino, S.2
Melendez, A.3
Hansen, M.4
-
114
-
-
84874218519
-
Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARgamma activation in MCF-7 breast cancer cells
-
23168911
-
D.Rovito, C.Giordano, D.Vizza, P.Plastina, I.Barone, I.Casaburi, M.Lanzino, F.De Amicis, D.Sisci, L.Mauro, et al. Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARgamma activation in MCF-7 breast cancer cells. J Cell Physiol 2013; 228:1314-22; PMID:23168911; http://dx.doi.org/10.1002/jcp.24288
-
(2013)
J Cell Physiol
, vol.228
, pp. 1314-1322
-
-
Rovito, D.1
Giordano, C.2
Vizza, D.3
Plastina, P.4
Barone, I.5
Casaburi, I.6
Lanzino, M.7
De Amicis, F.8
Sisci, D.9
Mauro, L.10
-
115
-
-
33644847375
-
2+: molecular determinants and functional consequences
-
16371601
-
2+: molecular determinants and functional consequences. Physiol Rev 2006; 86:369-408; PMID:16371601; http://dx.doi.org/10.1152/physrev.00004.2005
-
(2006)
Physiol Rev
, vol.86
, pp. 369-408
-
-
Rizzuto, R.1
Pozzan, T.2
-
116
-
-
84923820926
-
Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB
-
25720963
-
D.L.Medina, S.Di Paola, I.Peluso, A.Armani, D.De Stefani, R.Venditti, S.Montefusco, A.Scotto-Rosato, C.Prezioso, A.Forrester, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17:288-99; PMID:25720963; http://dx.doi.org/10.1038/ncb3114
-
(2015)
Nat Cell Biol
, vol.17
, pp. 288-299
-
-
Medina, D.L.1
Di Paola, S.2
Peluso, I.3
Armani, A.4
De Stefani, D.5
Venditti, R.6
Montefusco, S.7
Scotto-Rosato, A.8
Prezioso, C.9
Forrester, A.10
-
117
-
-
84891741302
-
Chaperone-mediated autophagy: roles in disease and aging
-
24281265
-
A.M.Cuervo, E.Wong. Chaperone-mediated autophagy: roles in disease and aging. Cell Res 2014; 24:92-104; PMID:24281265; http://dx.doi.org/10.1038/cr.2013.153
-
(2014)
Cell Res
, vol.24
, pp. 92-104
-
-
Cuervo, A.M.1
Wong, E.2
-
118
-
-
0031595780
-
IkappaB is a substrate for a selective pathway of lysosomal proteolysis
-
9693362
-
A.M.Cuervo, W.Hu, B.Lim, J.F.Dice. IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol Biol Cell 1998; 9:1995-2010; PMID:9693362; http://dx.doi.org/10.1091/mbc.9.8.1995
-
(1998)
Mol Biol Cell
, vol.9
, pp. 1995-2010
-
-
Cuervo, A.M.1
Hu, W.2
Lim, B.3
Dice, J.F.4
-
119
-
-
0034559945
-
The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme
-
11094287
-
M.A.Teste, B.Enjalbert, J.L.Parrou, J.M.Francois. The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme. FEMS Microbiol Lett 2000; 193:105-10; PMID:11094287; http://dx.doi.org/10.1111/j.1574-6968.2000.tb09410.x
-
(2000)
FEMS Microbiol Lett
, vol.193
, pp. 105-110
-
-
Teste, M.A.1
Enjalbert, B.2
Parrou, J.L.3
Francois, J.M.4
-
120
-
-
77955013855
-
Bioinformatic and biochemical studies point to AAGR-1 as the ortholog of human acid α-glucosidase in Caenorhabditis elegans
-
20349118
-
J.Sikora, J.Urinovska, F.Majer, H.Poupetova, J.Hlavata, M.Kostrouchova, J.Ledvinova, M.Hrebicek. Bioinformatic and biochemical studies point to AAGR-1 as the ortholog of human acid α-glucosidase in Caenorhabditis elegans. Mol Cell Biochem 2010; 341:51-63; PMID:20349118; http://dx.doi.org/10.1007/s11010-010-0436-3
-
(2010)
Mol Cell Biochem
, vol.341
, pp. 51-63
-
-
Sikora, J.1
Urinovska, J.2
Majer, F.3
Poupetova, H.4
Hlavata, J.5
Kostrouchova, M.6
Ledvinova, J.7
Hrebicek, M.8
-
121
-
-
84864006285
-
The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease
-
22815812
-
R.Khanna, J.J.Flanagan, J.Feng, R.Soska, M.Frascella, L.J.Pellegrino, Y.Lun, D.Guillen, D.J.Lockhart, K.J.Valenzano. The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. PloS One 2012; 7:e40776; PMID:22815812; http://dx.doi.org/10.1371/journal.pone.0040776
-
(2012)
PloS One
, vol.7
, pp. e40776
-
-
Khanna, R.1
Flanagan, J.J.2
Feng, J.3
Soska, R.4
Frascella, M.5
Pellegrino, L.J.6
Lun, Y.7
Guillen, D.8
Lockhart, D.J.9
Valenzano, K.J.10
-
122
-
-
80052526424
-
Rate of progression and predictive factors for pulmonary outcome in children and adults with Pompe disease
-
N.A.van der Beek, C.I.van Capelle, K.I.van der Velden-van Etten, W.C.Hop, B.van den Berg, A.J.Reuser, P.A.van Doorn, A.T.van der Ploeg, H.Stam. Rate of progression and predictive factors for pulmonary outcome in children and adults with Pompe disease. Mol Genetics Metab 2011; 104:129-36; http://dx.doi.org/10.1016/j.ymgme.2011.06.012
-
(2011)
Mol Genetics Metab
, vol.104
, pp. 129-136
-
-
van der Beek, N.A.1
van Capelle, C.I.2
van der Velden-van Etten, K.I.3
Hop, W.C.4
van den Berg, B.5
Reuser, A.J.6
van Doorn, P.A.7
van der Ploeg, A.T.8
Stam, H.9
-
123
-
-
0026584941
-
Development of obstruction to ventricular outflow and impairment of inflow in glycogen storage disease of the heart: serial echocardiographic studies from birth to death at 6 months
-
1729839
-
B.L.Seifert, M.S.Snyder, A.A.Klein, J.E.O'Loughlin, M.S.Magid, M.A.Engle. Development of obstruction to ventricular outflow and impairment of inflow in glycogen storage disease of the heart: serial echocardiographic studies from birth to death at 6 months. Am Heart J 1992; 123:239-42; PMID:1729839; http://dx.doi.org/10.1016/0002-8703(92)90779-U
-
(1992)
Am Heart J
, vol.123
, pp. 239-242
-
-
Seifert, B.L.1
Snyder, M.S.2
Klein, A.A.3
O'Loughlin, J.E.4
Magid, M.S.5
Engle, M.A.6
-
124
-
-
33645976485
-
Juvenile onset acid maltase deficiency presenting as a rigid spine syndrome
-
16531044
-
A.Kostera-Pruszczyk, A.Opuchlik, A.Lugowska, A.Nadaj, J.Bojakowski, A.Tylki-Szymanska, A.Kaminska. Juvenile onset acid maltase deficiency presenting as a rigid spine syndrome. Neuromuscular Disorders 2006; 16:282-5; PMID:16531044; http://dx.doi.org/10.1016/j.nmd.2006.02.001
-
(2006)
Neuromuscular Disorders
, vol.16
, pp. 282-285
-
-
Kostera-Pruszczyk, A.1
Opuchlik, A.2
Lugowska, A.3
Nadaj, A.4
Bojakowski, J.5
Tylki-Szymanska, A.6
Kaminska, A.7
-
125
-
-
0035064152
-
Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span
-
11290820
-
H.Du, M.Heur, M.Duanmu, G.A.Grabowski, D.Y.Hui, D.P.Witte, J.Mishra. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J Lipid Res 2001; 42:489-500; PMID:11290820
-
(2001)
J Lipid Res
, vol.42
, pp. 489-500
-
-
Du, H.1
Heur, M.2
Duanmu, M.3
Grabowski, G.A.4
Hui, D.Y.5
Witte, D.P.6
Mishra, J.7
-
126
-
-
84964542431
-
Lysosomal Acid Lipase Deficiency
-
Pagon R.A., Adam M.P., Ardinger H.H., Wallace S.E., Amemiya A., Bean L.J.H., Bird T.D., Fong C.T., Smith R.J.H., Stephens K., (eds), Seattle (WA)
-
E.P.Hoffman, M.L.Barr, M.A.Giovanni, M.F.Murray. Lysosomal Acid Lipase Deficiency. In: R.A.Pagon, M.P.Adam, H.H.Ardinger, S.E.Wallace, A.Amemiya, L.J.H.Bean, T.D.Bird, C.T.Fong, R.J.H.Smith, K.Stephens, eds. GeneReviews(R) Seattle (WA), 1993
-
(1993)
GeneReviews(R)
-
-
Hoffman, E.P.1
Barr, M.L.2
Giovanni, M.A.3
Murray, M.F.4
|