메뉴 건너뛰기




Volumn 3, Issue 1, 2014, Pages 32-47

Cell and molecular response to IORT treatment

Author keywords

Cell death; Gene expression profile; Intraoperative radiotherapy (IORT); Ionizing radiations (IRs)

Indexed keywords


EID: 84962755127     PISSN: 2218676X     EISSN: 22196803     Source Type: Journal    
DOI: 10.3978/j.issn.2218-676X.2014.02.03     Document Type: Article
Times cited : (26)

References (145)
  • 1
    • 0003605672 scopus 로고    scopus 로고
    • Radiobiology for the Radiologist
    • 6th ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins
    • Hall EJ, Giaccia AJ. eds. Radiobiology for the Radiologist, 6th ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins, 2006:16-180.
    • (2006) , pp. 16-180
    • Hall, E.J.1    Giaccia, A.J.2
  • 2
    • 34948897918 scopus 로고    scopus 로고
    • Oxidative damage pathways in relation to normal tissue injury
    • Zhao W, Diz DI, Robbins ME. Oxidative damage pathways in relation to normal tissue injury. Br J Radiol 2007;80:S23-31.
    • (2007) Br J Radiol , vol.80 , pp. S23-S31
    • Zhao, W.1    Diz, D.I.2    Robbins, M.E.3
  • 3
    • 84883288290 scopus 로고    scopus 로고
    • Biological consequences of radiation-induced DNA damage: relevance to radiotherapy
    • Lomax ME, Folkes LK, O'Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol) 2013;25:578-85.
    • (2013) Clin Oncol (R Coll Radiol) , vol.25 , pp. 578-585
    • Lomax, M.E.1    Folkes, L.K.2    O'Neill, P.3
  • 4
    • 84879953282 scopus 로고    scopus 로고
    • DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy
    • Mladenov E, Magin S, Soni A, et al. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol 2013;3:113.
    • (2013) Front Oncol , vol.3 , pp. 113
    • Mladenov, E.1    Magin, S.2    Soni, A.3
  • 5
    • 84874418442 scopus 로고    scopus 로고
    • The convergence of radiation and immunogenic cell death signaling pathways
    • Golden EB, Pellicciotta I, Demaria S, et al. The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol 2012;2:88.
    • (2012) Front Oncol , vol.2 , pp. 88
    • Golden, E.B.1    Pellicciotta, I.2    Demaria, S.3
  • 6
    • 84875221247 scopus 로고    scopus 로고
    • Radiation, inflammation, and immune responses in cancer
    • Multhoff G, Radons J. Radiation, inflammation, and immune responses in cancer. Front Oncol 2012;2:58.
    • (2012) Front Oncol , vol.2 , pp. 58
    • Multhoff, G.1    Radons, J.2
  • 7
    • 0141645600 scopus 로고    scopus 로고
    • Radiation-induced genomic instability and its implications for radiation carcinogenesis
    • Huang L, Snyder AR, Morgan WF. Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene 2003;22:5848-54.
    • (2003) Oncogene , vol.22 , pp. 5848-5854
    • Huang, L.1    Snyder, A.R.2    Morgan, W.F.3
  • 8
    • 33847078912 scopus 로고    scopus 로고
    • Targeted and nontargeted effects of low-dose ionizing radiation on delayed genomic instability in human cells
    • Huang L, Kim PM, Nickoloff JA, et al. Targeted and nontargeted effects of low-dose ionizing radiation on delayed genomic instability in human cells. Cancer Res 2007;67:1099-104.
    • (2007) Cancer Res , vol.67 , pp. 1099-1104
    • Huang, L.1    Kim, P.M.2    Nickoloff, J.A.3
  • 9
    • 4143092694 scopus 로고    scopus 로고
    • Proteins are major initial cell targets of hydroxyl free radicals
    • Du J, Gebicki JM. Proteins are major initial cell targets of hydroxyl free radicals. Int J Biochem Cell Biol 2004;36:2334-43.
    • (2004) Int J Biochem Cell Biol , vol.36 , pp. 2334-2343
    • Du, J.1    Gebicki, J.M.2
  • 10
    • 84864480764 scopus 로고    scopus 로고
    • Mechanistic analysis of the contributions of DNA and protein damage to radiation-induced cell death
    • Shuryak I, Brenner DJ. Mechanistic analysis of the contributions of DNA and protein damage to radiation-induced cell death. Radiat Res 2012;178:17-24.
    • (2012) Radiat Res , vol.178 , pp. 17-24
    • Shuryak, I.1    Brenner, D.J.2
  • 11
    • 84881123014 scopus 로고    scopus 로고
    • X-irradiation induces ER stress, apoptosis, and senescence in pulmonary artery endothelial cells
    • Panganiban RA, Mungunsukh O, Day RM. X-irradiation induces ER stress, apoptosis, and senescence in pulmonary artery endothelial cells. Int J Radiat Biol 2013;89:656-67.
    • (2013) Int J Radiat Biol , vol.89 , pp. 656-667
    • Panganiban, R.A.1    Mungunsukh, O.2    Day, R.M.3
  • 12
    • 33846230598 scopus 로고    scopus 로고
    • Homology-directed repair is required for the development of radioresistance during S phase: interplay between double-strand break repair and checkpoint response
    • Tamulevicius P, Wang M, Iliakis G. Homology-directed repair is required for the development of radioresistance during S phase: interplay between double-strand break repair and checkpoint response. Radiat Res 2007;167:1-11.
    • (2007) Radiat Res , vol.167 , pp. 1-11
    • Tamulevicius, P.1    Wang, M.2    Iliakis, G.3
  • 13
    • 23644433308 scopus 로고    scopus 로고
    • Differential response of two cell lines sequentially irradiated with low X-ray doses
    • Güerci AM, Dulout FN, Grillo CA, et al. Differential response of two cell lines sequentially irradiated with low X-ray doses. Int J Radiat Biol 2005;81:367-72.
    • (2005) Int J Radiat Biol , vol.81 , pp. 367-372
    • Güerci, A.M.1    Dulout, F.N.2    Grillo, C.A.3
  • 14
    • 84858188616 scopus 로고    scopus 로고
    • Radiation-induced double strand breaks and subsequent apoptotic DNA fragmentation in human peripheral blood mononuclear cells
    • Ghardi M, Moreels M, Chatelain B, et al. Radiation-induced double strand breaks and subsequent apoptotic DNA fragmentation in human peripheral blood mononuclear cells. Int J Mol Med 2012;29:769-80.
    • (2012) Int J Mol Med , vol.29 , pp. 769-780
    • Ghardi, M.1    Moreels, M.2    Chatelain, B.3
  • 15
    • 34547103992 scopus 로고    scopus 로고
    • Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment
    • Moeller BJ, Richardson RA, Dewhirst MW. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev 2007;26:241-8.
    • (2007) Cancer Metastasis Rev , vol.26 , pp. 241-248
    • Moeller, B.J.1    Richardson, R.A.2    Dewhirst, M.W.3
  • 16
    • 84884583548 scopus 로고    scopus 로고
    • Ionizing radiation, ion transports, and radioresistance of cancer cells
    • Huber SM, Butz L, Stegen B, et al. Ionizing radiation, ion transports, and radioresistance of cancer cells. Front Physiol 2013;4:212.
    • (2013) Front Physiol , vol.4 , pp. 212
    • Huber, S.M.1    Butz, L.2    Stegen, B.3
  • 17
    • 29244437908 scopus 로고    scopus 로고
    • The role of double-strand break repair - insights from human genetics
    • O'Driscoll M, Jeggo PA. The role of double-strand break repair - insights from human genetics. Nat Rev Genet 2006;7:45-54.
    • (2006) Nat Rev Genet , vol.7 , pp. 45-54
    • O'Driscoll, M.1    Jeggo, P.A.2
  • 18
    • 79952235291 scopus 로고    scopus 로고
    • Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications
    • Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 2011;25:409-33.
    • (2011) Genes Dev , vol.25 , pp. 409-433
    • Polo, S.E.1    Jackson, S.P.2
  • 19
    • 84900411285 scopus 로고    scopus 로고
    • DNA DSB repair pathway choice: an orchestrated handover mechanism
    • [Epub ahead of print].
    • Kakarougkas A, Jeggo P. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 2014. [Epub ahead of print].
    • (2014) Br J Radiol
    • Kakarougkas, A.1    Jeggo, P.2
  • 20
    • 0037884963 scopus 로고    scopus 로고
    • Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses
    • Rothkamm K, Löbrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci U S A 2003;100:5057-62.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 5057-5062
    • Rothkamm, K.1    Löbrich, M.2
  • 21
    • 77957948991 scopus 로고    scopus 로고
    • DNA mismatch repair and the DNA damage response to ionizing radiation: making sense of apparently conflicting data
    • Martin LM, Marples B, Coffey M, et al. DNA mismatch repair and the DNA damage response to ionizing radiation: making sense of apparently conflicting data. Cancer Treat Rev 2010;36:518-27.
    • (2010) Cancer Treat Rev , vol.36 , pp. 518-527
    • Martin, L.M.1    Marples, B.2    Coffey, M.3
  • 22
    • 33846230598 scopus 로고    scopus 로고
    • Homology-directed repair is required for the development of radioresistance during S phase: interplay between double-strand break repair and checkpoint response
    • Tamulevicius P, Wang M, Iliakis G. Homology-directed repair is required for the development of radioresistance during S phase: interplay between double-strand break repair and checkpoint response. Radiat Res 2007;167:1-11.
    • (2007) Radiat Res , vol.167 , pp. 1-11
    • Tamulevicius, P.1    Wang, M.2    Iliakis, G.3
  • 23
    • 84876877091 scopus 로고    scopus 로고
    • A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
    • Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 2013;49:872-83.
    • (2013) Mol Cell , vol.49 , pp. 872-883
    • Escribano-Díaz, C.1    Orthwein, A.2    Fradet-Turcotte, A.3
  • 24
    • 80053563437 scopus 로고    scopus 로고
    • Genetics and genomics of radiotherapy toxicity: towards prediction
    • West CM, Barnett GC. Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med 2011;3:52.
    • (2011) Genome Med , vol.3 , pp. 52
    • West, C.M.1    Barnett, G.C.2
  • 25
    • 36949013395 scopus 로고    scopus 로고
    • ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks
    • Lavin MF. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 2007;26:7749-58.
    • (2007) Oncogene , vol.26 , pp. 7749-7758
    • Lavin, M.F.1
  • 26
    • 84887087577 scopus 로고    scopus 로고
    • Targeting ATR in DNA damage response and cancer therapeutics
    • Fokas E, Prevo R, Hammond EM, et al. Targeting ATR in DNA damage response and cancer therapeutics Cancer Treat Rev 2014;40:109-17.
    • (2014) Cancer Treat Rev , vol.40 , pp. 109-117
    • Fokas, E.1    Prevo, R.2    Hammond, E.M.3
  • 27
    • 36949026694 scopus 로고    scopus 로고
    • Activation and regulation of ATM kinase activity in response to DNA double-strand breaks
    • Lee JH, Paull TT. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 2007;26:7741-8.
    • (2007) Oncogene , vol.26 , pp. 7741-7748
    • Lee, J.H.1    Paull, T.T.2
  • 28
    • 42249102663 scopus 로고    scopus 로고
    • gammaH2AX foci form preferentially in euchromatin after ionising-radiation
    • Cowell IG, Sunter NJ, Singh PB, et al. gammaH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One 2007;2:e1057.
    • (2007) PLoS One , vol.2 , pp. e1057
    • Cowell, I.G.1    Sunter, N.J.2    Singh, P.B.3
  • 29
    • 84908580973 scopus 로고    scopus 로고
    • Decay of y-H2AX foci correlates with potentially lethal damage repair and P53 status in human colorectal carcinoma cells
    • [Epub ahead of print].
    • Van Oorschot B, Oei AL, Nuijens AC, et al. Decay of y-H2AX foci correlates with potentially lethal damage repair and P53 status in human colorectal carcinoma cells. Cell Mol Biol Lett 2013. [Epub ahead of print].
    • (2013) Cell Mol Biol Lett
    • Van Oorschot, B.1    Oei, A.L.2    Nuijens, A.C.3
  • 30
    • 0034739853 scopus 로고    scopus 로고
    • p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks
    • Schultz LB, Chehab NH, Malikzay A, et al. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 2000;151:1381-90.
    • (2000) J Cell Biol , vol.151 , pp. 1381-1390
    • Schultz, L.B.1    Chehab, N.H.2    Malikzay, A.3
  • 31
    • 84893659031 scopus 로고    scopus 로고
    • Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice
    • Gupta A, Hunt CR, Chakraborty S, et al. Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res 2014;181:1-8.
    • (2014) Radiat Res , vol.181 , pp. 1-8
    • Gupta, A.1    Hunt, C.R.2    Chakraborty, S.3
  • 32
    • 84882450932 scopus 로고    scopus 로고
    • Various modes of cell death induced by DNA damage
    • Surova O, Zhivotovsky B. Various modes of cell death induced by DNA damage. Oncogene 2013;32:3789-97.
    • (2013) Oncogene , vol.32 , pp. 3789-3797
    • Surova, O.1    Zhivotovsky, B.2
  • 33
    • 33749023326 scopus 로고    scopus 로고
    • The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability
    • Gudmundsdottir K, Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 2006;25:5864-74.
    • (2006) Oncogene , vol.25 , pp. 5864-5874
    • Gudmundsdottir, K.1    Ashworth, A.2
  • 34
    • 15844373362 scopus 로고    scopus 로고
    • CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair
    • Esashi F, Christ N, Gannon J, et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 2005;434:598-604.
    • (2005) Nature , vol.434 , pp. 598-604
    • Esashi, F.1    Christ, N.2    Gannon, J.3
  • 35
    • 84894457154 scopus 로고    scopus 로고
    • Etiology of familial breast cancer with undetected BRCA1 and BRCA2 mutations: clinical implications
    • Yiannakopoulou E. Etiology of familial breast cancer with undetected BRCA1 and BRCA2 mutations: clinical implications. Cell Oncol (Dordr) 2014;37:1-8.
    • (2014) Cell Oncol (Dordr) , vol.37 , pp. 1-8
    • Yiannakopoulou, E.1
  • 36
    • 84886296822 scopus 로고    scopus 로고
    • BRCA1- and BRCA2-related mutations: therapeutic implications in ovarian cancer
    • Pothuri B. BRCA1- and BRCA2-related mutations: therapeutic implications in ovarian cancer. Ann Oncol 2013;24 Suppl 8:viii22-viii27.
    • (2013) Ann Oncol , vol.24 , pp. viii22-viii27
    • Pothuri, B.1
  • 37
    • 84888986609 scopus 로고    scopus 로고
    • A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer
    • Karami F, Mehdipour P. A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. Biomed Res Int 2013;2013:928562.
    • (2013) Biomed Res Int , vol.2013 , pp. 928562
    • Karami, F.1    Mehdipour, P.2
  • 38
    • 84880317372 scopus 로고    scopus 로고
    • Genetic predisposition to radiation induced sarcoma: possible role for BRCA and p53 mutations
    • Kadouri L, Sagi M, Goldberg Y, et al. Genetic predisposition to radiation induced sarcoma: possible role for BRCA and p53 mutations. Breast Cancer Res Treat 2013;140:207-11.
    • (2013) Breast Cancer Res Treat , vol.140 , pp. 207-211
    • Kadouri, L.1    Sagi, M.2    Goldberg, Y.3
  • 39
    • 77954641944 scopus 로고    scopus 로고
    • Radiation-induced cell death mechanisms
    • Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol 2010;31:363-72.
    • (2010) Tumour Biol , vol.31 , pp. 363-372
    • Eriksson, D.1    Stigbrand, T.2
  • 40
    • 80155161856 scopus 로고    scopus 로고
    • Effects of radiation quality and oxygen on clustered DNA lesions and cell death
    • Stewart RD, Yu VK, Georgakilas AG, et al. Effects of radiation quality and oxygen on clustered DNA lesions and cell death. Radiat Res 2011;176:587-602.
    • (2011) Radiat Res , vol.176 , pp. 587-602
    • Stewart, R.D.1    Yu, V.K.2    Georgakilas, A.G.3
  • 41
    • 81055125652 scopus 로고    scopus 로고
    • Programmed cell death in animal development and disease
    • Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell 2011;147:742-58.
    • (2011) Cell , vol.147 , pp. 742-758
    • Fuchs, Y.1    Steller, H.2
  • 42
    • 84879165160 scopus 로고    scopus 로고
    • Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis
    • Sinha K, Das J, Pal PB, et al. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 2013;87:1157-80.
    • (2013) Arch Toxicol , vol.87 , pp. 1157-1180
    • Sinha, K.1    Das, J.2    Pal, P.B.3
  • 43
    • 34247345833 scopus 로고    scopus 로고
    • The apoptosome: signalling platform of cell death
    • Riedl SJ, Salvesen GS. The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 2007;8:405-13.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 405-413
    • Riedl, S.J.1    Salvesen, G.S.2
  • 44
    • 61849140686 scopus 로고    scopus 로고
    • Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells
    • Ogura A, Oowada S, Kon Y, et al. Redox regulation in radiation-induced cytochrome c release from mitochondria of human lung carcinoma A549 cells. Cancer Lett 2009;277:64-71.
    • (2009) Cancer Lett , vol.277 , pp. 64-71
    • Ogura, A.1    Oowada, S.2    Kon, Y.3
  • 45
    • 79960454735 scopus 로고    scopus 로고
    • The relative contribution of pro-apoptotic p53-target genes in the triggering of apoptosis following DNA damage in vitro and in vivo
    • Kuribayashi K, Finnberg N, Jeffers JR, et al. The relative contribution of pro-apoptotic p53-target genes in the triggering of apoptosis following DNA damage in vitro and in vivo. Cell Cycle 2011;10:2380-9.
    • (2011) Cell Cycle , vol.10 , pp. 2380-2389
    • Kuribayashi, K.1    Finnberg, N.2    Jeffers, J.R.3
  • 46
    • 84881158084 scopus 로고    scopus 로고
    • Mechanisms of radiation toxicity in transformed and non-transformed cells
    • Panganiban RA, Snow AL, Day RM. Mechanisms of radiation toxicity in transformed and non-transformed cells. Int J Mol Sci 2013;14:15931-58.
    • (2013) Int J Mol Sci , vol.14 , pp. 15931-15958
    • Panganiban, R.A.1    Snow, A.L.2    Day, R.M.3
  • 47
    • 84883629146 scopus 로고    scopus 로고
    • The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity
    • Pant V, Xiong S, Jackson JG, et al. The p53-Mdm2 feedback loop protects against DNA damage by inhibiting p53 activity but is dispensable for p53 stability, development, and longevity. Genes Dev 2013;27:1857-67.
    • (2013) Genes Dev , vol.27 , pp. 1857-1867
    • Pant, V.1    Xiong, S.2    Jackson, J.G.3
  • 48
    • 24644436766 scopus 로고    scopus 로고
    • PUMA couples the nuclear and cytoplasmic proapoptotic function of p53
    • Chipuk JE, Bouchier-Hayes L, Kuwana T, et al. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 2005;309:1732-5.
    • (2005) Science , vol.309 , pp. 1732-1735
    • Chipuk, J.E.1    Bouchier-Hayes, L.2    Kuwana, T.3
  • 49
    • 84874418442 scopus 로고    scopus 로고
    • The convergence of radiation and immunogenic cell death signaling pathways
    • Golden EB, Pellicciotta I, Demaria S, et al. The convergence of radiation and immunogenic cell death signaling pathways. Front Oncol 2012;2:88.
    • (2012) Front Oncol , vol.2 , pp. 88
    • Golden, E.B.1    Pellicciotta, I.2    Demaria, S.3
  • 50
    • 3042771639 scopus 로고    scopus 로고
    • The p53 protein family and radiation sensitivity: Yes or no?
    • Cuddihy AR, Bristow RG. The p53 protein family and radiation sensitivity: Yes or no? Cancer Metastasis Rev 2004;23:237-57.
    • (2004) Cancer Metastasis Rev , vol.23 , pp. 237-257
    • Cuddihy, A.R.1    Bristow, R.G.2
  • 51
    • 19644370614 scopus 로고    scopus 로고
    • Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer
    • Rödel F, Hoffmann J, Distel L, et al. Survivin as a radioresistance factor, and prognostic and therapeutic target for radiotherapy in rectal cancer. Cancer Res 2005;65:4881-7.
    • (2005) Cancer Res , vol.65 , pp. 4881-4887
    • Rödel, F.1    Hoffmann, J.2    Distel, L.3
  • 52
    • 84880857179 scopus 로고    scopus 로고
    • A survivin-associated adaptive response in radiation therapy
    • Grdina DJ, Murley JS, Miller RC, et al. A survivin-associated adaptive response in radiation therapy. Cancer Res 2013;73:4418-28.
    • (2013) Cancer Res , vol.73 , pp. 4418-4428
    • Grdina, D.J.1    Murley, J.S.2    Miller, R.C.3
  • 54
    • 84872811756 scopus 로고    scopus 로고
    • Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells
    • Zhu HB, Yang K, Xie YQ, et al. Silencing of mutant p53 by siRNA induces cell cycle arrest and apoptosis in human bladder cancer cells. World J Surg Oncol 2013;11:22.
    • (2013) World J Surg Oncol , vol.11 , pp. 22
    • Zhu, H.B.1    Yang, K.2    Xie, Y.Q.3
  • 55
    • 69549118556 scopus 로고    scopus 로고
    • X-radiation induces non-small-cell lung cancer apoptosis by upregulation of Axin expression
    • Han Y, Wang Y, Xu HT, et al. X-radiation induces non-small-cell lung cancer apoptosis by upregulation of Axin expression. Int J Radiat Oncol Biol Phys 2009;75:518-26.
    • (2009) Int J Radiat Oncol Biol Phys , vol.75 , pp. 518-526
    • Han, Y.1    Wang, Y.2    Xu, H.T.3
  • 56
    • 0141757451 scopus 로고    scopus 로고
    • Radiation and ceramide-induced apoptosis
    • Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene 2003;22:5897-906.
    • (2003) Oncogene , vol.22 , pp. 5897-5906
    • Kolesnick, R.1    Fuks, Z.2
  • 58
    • 84874631382 scopus 로고    scopus 로고
    • Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells
    • Jella KK, Garcia A, McClean B, et al. Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells. Int J Radiat Biol 2013;89:182-90.
    • (2013) Int J Radiat Biol , vol.89 , pp. 182-190
    • Jella, K.K.1    Garcia, A.2    McClean, B.3
  • 59
    • 57649167477 scopus 로고    scopus 로고
    • Necroptosis: a specialized pathway of programmed necrosis
    • Galluzzi L, Kroemer G. Necroptosis: a specialized pathway of programmed necrosis. Cell 2008;135:1161-3.
    • (2008) Cell , vol.135 , pp. 1161-1163
    • Galluzzi, L.1    Kroemer, G.2
  • 60
    • 82755186219 scopus 로고    scopus 로고
    • Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers
    • Nehs MA, Lin CI, Kozono DE, et al. Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery 2011;150:1032-9.
    • (2011) Surgery , vol.150 , pp. 1032-1039
    • Nehs, M.A.1    Lin, C.I.2    Kozono, D.E.3
  • 61
    • 1542289739 scopus 로고    scopus 로고
    • Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD
    • Vanden Berghe T, van Loo G, Saelens X, et al. Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J Biol Chem 2004;279:7925-33.
    • (2004) J Biol Chem , vol.279 , pp. 7925-7933
    • Vanden Berghe, T.1    van Loo, G.2    Saelens, X.3
  • 62
    • 42249102086 scopus 로고    scopus 로고
    • Identification of RIP1 kinase as a specific cellular target of necrostatins
    • Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008;4:313-21.
    • (2008) Nat Chem Biol , vol.4 , pp. 313-321
    • Degterev, A.1    Hitomi, J.2    Germscheid, M.3
  • 63
    • 32944475186 scopus 로고    scopus 로고
    • Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis
    • Mullins ME, Barest GD, Schaefer PW, et al. Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis. AJNR Am J Neuroradiol 2005;26:1967-72.
    • (2005) AJNR Am J Neuroradiol , vol.26 , pp. 1967-1972
    • Mullins, M.E.1    Barest, G.D.2    Schaefer, P.W.3
  • 64
    • 84873638532 scopus 로고    scopus 로고
    • Aging, cellular senescence, and cancer
    • Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol 2013;75:685-705.
    • (2013) Annu Rev Physiol , vol.75 , pp. 685-705
    • Campisi, J.1
  • 65
    • 55349095456 scopus 로고    scopus 로고
    • Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations
    • Muller M. Cellular senescence: molecular mechanisms, in vivo significance, and redox considerations. Antioxid Redox Signal 2009;11:59-98.
    • (2009) Antioxid Redox Signal , vol.11 , pp. 59-98
    • Muller, M.1
  • 66
    • 84874603171 scopus 로고    scopus 로고
    • Cellular senescence and the senescent secretory phenotype: therapeutic opportunities
    • Tchkonia T, Zhu Y, van Deursen J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013;123:966-72.
    • (2013) J Clin Invest , vol.123 , pp. 966-972
    • Tchkonia, T.1    Zhu, Y.2    van Deursen, J.3
  • 67
    • 84870228727 scopus 로고    scopus 로고
    • The role of chromatin reorganization in the process of cellular senescence
    • Tominaga K, Pereira-Smith OM. The role of chromatin reorganization in the process of cellular senescence. Curr Drug Targets 2012;13:1593-602.
    • (2012) Curr Drug Targets , vol.13 , pp. 1593-1602
    • Tominaga, K.1    Pereira-Smith, O.M.2
  • 68
    • 34547198470 scopus 로고    scopus 로고
    • 5-Androstenediol promotes survival of gamma-irradiated human hematopoietic progenitors through induction of nuclear factor-kappaB activation and granulocyte colony-stimulating factor expression
    • Xiao M, Inal CE, Parekh VI, et al. 5-Androstenediol promotes survival of gamma-irradiated human hematopoietic progenitors through induction of nuclear factor-kappaB activation and granulocyte colony-stimulating factor expression. Mol Pharmacol 2007;72:370-9.
    • (2007) Mol Pharmacol , vol.72 , pp. 370-379
    • Xiao, M.1    Inal, C.E.2    Parekh, V.I.3
  • 69
    • 79961056817 scopus 로고    scopus 로고
    • Differential mechanisms of x-ray-induced cell death in human endothelial progenitor cells isolated from cord blood and adults
    • Mendonca MS, Chin-Sinex H, Dhaemers R, et al. Differential mechanisms of x-ray-induced cell death in human endothelial progenitor cells isolated from cord blood and adults. Radiat Res 2011;176:208-16.
    • (2011) Radiat Res , vol.176 , pp. 208-216
    • Mendonca, M.S.1    Chin-Sinex, H.2    Dhaemers, R.3
  • 70
    • 34948861014 scopus 로고    scopus 로고
    • The genetic basis of tissue responses to ionizing radiation
    • Lindsay KJ, Coates PJ, Lorimore SA, et al. The genetic basis of tissue responses to ionizing radiation. Br J Radiol 2007;80:S2-6.
    • (2007) Br J Radiol , vol.80 , pp. S2-S6
    • Lindsay, K.J.1    Coates, P.J.2    Lorimore, S.A.3
  • 71
    • 84879047011 scopus 로고    scopus 로고
    • Cellular metabolic and autophagic pathways: traffic control by redox signaling
    • Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013;63:207-21.
    • (2013) Free Radic Biol Med , vol.63 , pp. 207-221
    • Dodson, M.1    Darley-Usmar, V.2    Zhang, J.3
  • 72
    • 84856748733 scopus 로고    scopus 로고
    • Cell death by autophagy: facts and apparent artefacts
    • Denton D, Nicolson S, Kumar S. Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 2012;19:87-95.
    • (2012) Cell Death Differ , vol.19 , pp. 87-95
    • Denton, D.1    Nicolson, S.2    Kumar, S.3
  • 73
    • 84856603825 scopus 로고    scopus 로고
    • Protein modulation in mouse heart under acute and chronic hypoxia
    • Viganò A, Vasso M, Caretti A, et al. Protein modulation in mouse heart under acute and chronic hypoxia. Proteomics 2011;11:4202-17.
    • (2011) Proteomics , vol.11 , pp. 4202-4217
    • Viganò, A.1    Vasso, M.2    Caretti, A.3
  • 74
    • 69349094578 scopus 로고    scopus 로고
    • Role and regulation of autophagy in cancer
    • Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta 2009;1793:1516-23.
    • (2009) Biochim Biophys Acta , vol.1793 , pp. 1516-1523
    • Chen, N.1    Karantza-Wadsworth, V.2
  • 75
    • 84857366779 scopus 로고    scopus 로고
    • The autophagic paradox in cancer therapy
    • Wu WK, Coffelt SB, Cho CH, et al. The autophagic paradox in cancer therapy. Oncogene 2012;31:939-53.
    • (2012) Oncogene , vol.31 , pp. 939-953
    • Wu, W.K.1    Coffelt, S.B.2    Cho, C.H.3
  • 77
    • 84867182336 scopus 로고    scopus 로고
    • Autophagy and ionizing radiation in tumors: the "survive or not survive" dilemma
    • Palumbo S, Comincini S. Autophagy and ionizing radiation in tumors: the "survive or not survive" dilemma. J Cell Physiol 2013;228:1-8.
    • (2013) J Cell Physiol , vol.228 , pp. 1-8
    • Palumbo, S.1    Comincini, S.2
  • 78
    • 84874192415 scopus 로고    scopus 로고
    • Differential roles of miR-199a-5p in radiation-induced autophagy in breast cancer cells
    • Yi H, Liang B, Jia J, et al. Differential roles of miR-199a-5p in radiation-induced autophagy in breast cancer cells. FEBS Lett 2013;587:436-43.
    • (2013) FEBS Lett , vol.587 , pp. 436-443
    • Yi, H.1    Liang, B.2    Jia, J.3
  • 79
    • 84863630617 scopus 로고    scopus 로고
    • Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy
    • Chiu HW, Fang WH, Chen YL, et al. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One 2012;7:e40462.
    • (2012) PLoS One , vol.7 , pp. e40462
    • Chiu, H.W.1    Fang, W.H.2    Chen, Y.L.3
  • 80
    • 84871550160 scopus 로고    scopus 로고
    • DAB2IP regulates autophagy in prostate cancer in response to combined treatment of radiation and a DNA-PKcs inhibitor
    • Yu L, Tumati V, Tseng SF, et al. DAB2IP regulates autophagy in prostate cancer in response to combined treatment of radiation and a DNA-PKcs inhibitor. Neoplasia 2012;14:1203-12.
    • (2012) Neoplasia , vol.14 , pp. 1203-1212
    • Yu, L.1    Tumati, V.2    Tseng, S.F.3
  • 81
    • 80052273362 scopus 로고    scopus 로고
    • The zinc ionophore PCI-5002 radiosensitizes non-small cell lung cancer cells by enhancing autophagic cell death
    • Kim KW, Speirs CK, Jung DK, et al. The zinc ionophore PCI-5002 radiosensitizes non-small cell lung cancer cells by enhancing autophagic cell death. J Thorac Oncol 2011;6:1542-52.
    • (2011) J Thorac Oncol , vol.6 , pp. 1542-1552
    • Kim, K.W.1    Speirs, C.K.2    Jung, D.K.3
  • 82
    • 84875393368 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress sensitizes human esophageal cancer cell to radiation
    • Pang XL, He G, Liu YB, et al. Endoplasmic reticulum stress sensitizes human esophageal cancer cell to radiation. World J Gastroenterol 2013;19:1736-48.
    • (2013) World J Gastroenterol , vol.19 , pp. 1736-1748
    • Pang, X.L.1    He, G.2    Liu, Y.B.3
  • 83
    • 66449096228 scopus 로고    scopus 로고
    • The role of autophagy in sensitizing malignant glioma cells to radiation therapy
    • Zhuang W, Qin Z, Liang Z. The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai) 2009;41:341-51.
    • (2009) Acta Biochim Biophys Sin (Shanghai) , vol.41 , pp. 341-351
    • Zhuang, W.1    Qin, Z.2    Liang, Z.3
  • 84
    • 84863425652 scopus 로고    scopus 로고
    • Beclin1-induced autophagy abrogates radioresistance of lung cancer cells by suppressing osteopontin
    • Chang SH, Minai-Tehrani A, Shin JY, et al. Beclin1-induced autophagy abrogates radioresistance of lung cancer cells by suppressing osteopontin. J Radiat Res 2012;53:422-32.
    • (2012) J Radiat Res , vol.53 , pp. 422-432
    • Chang, S.H.1    Minai-Tehrani, A.2    Shin, J.Y.3
  • 85
    • 80053541546 scopus 로고    scopus 로고
    • The autophagy-inducing drug carbamazepine is a radiation protector and mitigator
    • Kim H, Bernard ME, Flickinger J, et al. The autophagy-inducing drug carbamazepine is a radiation protector and mitigator. Int J Radiat Biol 2011;87:1052-60.
    • (2011) Int J Radiat Biol , vol.87 , pp. 1052-1060
    • Kim, H.1    Bernard, M.E.2    Flickinger, J.3
  • 86
    • 79960356284 scopus 로고    scopus 로고
    • Autophagy contributes to resistance of tumor cells to ionizing radiation
    • Chaachouay H, Ohneseit P, Toulany M, et al. Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother Oncol 2011;99:287-92.
    • (2011) Radiother Oncol , vol.99 , pp. 287-292
    • Chaachouay, H.1    Ohneseit, P.2    Toulany, M.3
  • 87
    • 79960007748 scopus 로고    scopus 로고
    • Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy
    • Kuwahara Y, Oikawa T, Ochiai Y, et al. Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy. Cell Death Dis 2011;2:e177.
    • (2011) Cell Death Dis , vol.2 , pp. e177
    • Kuwahara, Y.1    Oikawa, T.2    Ochiai, Y.3
  • 88
    • 84891523851 scopus 로고    scopus 로고
    • Autophagy and senescence in cancer therapy
    • Gewirtz DA. Autophagy and senescence in cancer therapy. J Cell Physiol 2014;229:6-9.
    • (2014) J Cell Physiol , vol.229 , pp. 6-9
    • Gewirtz, D.A.1
  • 89
    • 78649266504 scopus 로고    scopus 로고
    • To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage
    • Huang Q, Shen HM. To die or to live: the dual role of poly(ADP-ribose) polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. Autophagy 2010;6:1232.
    • (2010) Autophagy , vol.6 , pp. 1232
    • Huang, Q.1    Shen, H.M.2
  • 90
    • 84856687924 scopus 로고    scopus 로고
    • Molecular machinery of autophagy and its implication in cancer
    • Li Y, Zhang J, Chen X, et al. Molecular machinery of autophagy and its implication in cancer. Am J Med Sci 2012;343:155-61.
    • (2012) Am J Med Sci , vol.343 , pp. 155-161
    • Li, Y.1    Zhang, J.2    Chen, X.3
  • 91
    • 2342635919 scopus 로고    scopus 로고
    • Cell death by mitotic catastrophe: a molecular definition
    • Castedo M, Perfettini JL, Roumier T, et al. Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004;23:2825-37.
    • (2004) Oncogene , vol.23 , pp. 2825-2837
    • Castedo, M.1    Perfettini, J.L.2    Roumier, T.3
  • 92
    • 33645284756 scopus 로고    scopus 로고
    • Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms
    • Mansilla S, Priebe W, Portugal J. Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 2006;5:53-60.
    • (2006) Cell Cycle , vol.5 , pp. 53-60
    • Mansilla, S.1    Priebe, W.2    Portugal, J.3
  • 94
    • 79960957085 scopus 로고    scopus 로고
    • Mitotic catastrophe: a mechanism for avoiding genomic instability
    • Vitale I, Galluzzi L, Castedo M, et al. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 2011;12:385-92.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 385-392
    • Vitale, I.1    Galluzzi, L.2    Castedo, M.3
  • 95
    • 33745058951 scopus 로고    scopus 로고
    • Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells
    • Ianzini F, Bertoldo A, Kosmacek EA, et al. Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells. Cancer Cell Int 2006;6:11.
    • (2006) Cancer Cell Int , vol.6 , pp. 11
    • Ianzini, F.1    Bertoldo, A.2    Kosmacek, E.A.3
  • 96
    • 33846424957 scopus 로고    scopus 로고
    • Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation
    • Vogel C, Hager C, Bastians H. Mechanisms of mitotic cell death induced by chemotherapy-mediated G2 checkpoint abrogation. Cancer Res 2007;67:339-45.
    • (2007) Cancer Res , vol.67 , pp. 339-345
    • Vogel, C.1    Hager, C.2    Bastians, H.3
  • 97
    • 62349086720 scopus 로고    scopus 로고
    • Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells
    • Luce A, Courtin A, Levalois C, et al. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis 2009;30:432-9.
    • (2009) Carcinogenesis , vol.30 , pp. 432-439
    • Luce, A.1    Courtin, A.2    Levalois, C.3
  • 98
    • 39149130361 scopus 로고    scopus 로고
    • Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming
    • Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008;132:567-82.
    • (2008) Cell , vol.132 , pp. 567-582
    • Jaenisch, R.1    Young, R.2
  • 99
    • 33847076246 scopus 로고    scopus 로고
    • Genetic and epigenetic regulators of pluripotency
    • Surani MA, Hayashi K, Hajkova P. Genetic and epigenetic regulators of pluripotency. Cell 2007;128:747-62.
    • (2007) Cell , vol.128 , pp. 747-762
    • Surani, M.A.1    Hayashi, K.2    Hajkova, P.3
  • 100
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705.
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 101
    • 33847065486 scopus 로고    scopus 로고
    • The epigenomics of cancer
    • Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007;128:683-92.
    • (2007) Cell , vol.128 , pp. 683-692
    • Jones, P.A.1    Baylin, S.B.2
  • 102
    • 3142703591 scopus 로고    scopus 로고
    • Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes
    • Pogribny I, Raiche J, Slovack M, et al. Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun 2004;320:1253-61.
    • (2004) Biochem Biophys Res Commun , vol.320 , pp. 1253-1261
    • Pogribny, I.1    Raiche, J.2    Slovack, M.3
  • 103
    • 7444226882 scopus 로고    scopus 로고
    • Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice
    • Raiche J, Rodriguez-Juarez R, Pogribny I, et al. Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice. Biochem Biophys Res Commun 2004;325:39-47.
    • (2004) Biochem Biophys Res Commun , vol.325 , pp. 39-47
    • Raiche, J.1    Rodriguez-Juarez, R.2    Pogribny, I.3
  • 104
    • 84880982342 scopus 로고    scopus 로고
    • Radiation-induced epigenetic DNA methylation modification of radiation-response pathways
    • Antwih DA, Gabbara KM, Lancaster WD, et al. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics 2013;8:839-48.
    • (2013) Epigenetics , vol.8 , pp. 839-848
    • Antwih, D.A.1    Gabbara, K.M.2    Lancaster, W.D.3
  • 105
    • 80655144416 scopus 로고    scopus 로고
    • DNA methylation changes in cells regrowing after fractioned ionizing radiation
    • Kuhmann C, Weichenhan D, Rehli M, et al. DNA methylation changes in cells regrowing after fractioned ionizing radiation. Radiother Oncol 2011;101:116-21.
    • (2011) Radiother Oncol , vol.101 , pp. 116-121
    • Kuhmann, C.1    Weichenhan, D.2    Rehli, M.3
  • 106
    • 84864057017 scopus 로고    scopus 로고
    • Differential DNA methylation alterations in radiation-sensitive and -resistant cells
    • Chaudhry MA, Omaruddin RA. Differential DNA methylation alterations in radiation-sensitive and -resistant cells. DNA Cell Biol 2012;31:908-16.
    • (2012) DNA Cell Biol , vol.31 , pp. 908-916
    • Chaudhry, M.A.1    Omaruddin, R.A.2
  • 107
    • 77949546881 scopus 로고    scopus 로고
    • Impact of genomic methylation on radiation sensitivity of colorectal carcinoma
    • Hofstetter B, Niemierko A, Forrer C, et al. Impact of genomic methylation on radiation sensitivity of colorectal carcinoma. Int J Radiat Oncol Biol Phys 2010;76:1512-9.
    • (2010) Int J Radiat Oncol Biol Phys , vol.76 , pp. 1512-1519
    • Hofstetter, B.1    Niemierko, A.2    Forrer, C.3
  • 108
    • 67649659846 scopus 로고    scopus 로고
    • The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines
    • Cho HJ, Kim SY, Kim KH, et al. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J Surg Oncol 2009;7:49.
    • (2009) World J Surg Oncol , vol.7 , pp. 49
    • Cho, H.J.1    Kim, S.Y.2    Kim, K.H.3
  • 109
    • 38449089087 scopus 로고    scopus 로고
    • Clinical potential of histone deacetylase inhibitors as stand alone therapeutics and in combination with other chemotherapeutics or radiotherapy for cancer
    • Karagiannis TC, El-Osta A. Clinical potential of histone deacetylase inhibitors as stand alone therapeutics and in combination with other chemotherapeutics or radiotherapy for cancer. Epigenetics 2006;1:121-6.
    • (2006) Epigenetics , vol.1 , pp. 121-126
    • Karagiannis, T.C.1    El-Osta, A.2
  • 110
    • 34748877735 scopus 로고    scopus 로고
    • Inhibition of histone deacetylation: a strategy for tumor radiosensitization
    • Camphausen K, Tofilon PJ. Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol 2007;25:4051-6.
    • (2007) J Clin Oncol , vol.25 , pp. 4051-4056
    • Camphausen, K.1    Tofilon, P.J.2
  • 111
    • 26444531619 scopus 로고    scopus 로고
    • Effects of ionizing radiation in non irradiated cells
    • Morgan WF, Sowa MB. Effects of ionizing radiation in non irradiated cells. Proc Natl Acad Sci USA 2005;102:14127-8.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 14127-14128
    • Morgan, W.F.1    Sowa, M.B.2
  • 112
    • 33846834182 scopus 로고    scopus 로고
    • Non-targeted bystander effects induced by ionizing radiation
    • Morgan WF, Sowa MB. Non-targeted bystander effects induced by ionizing radiation. Mutat Res 2007;616:159-64.
    • (2007) Mutat Res , vol.616 , pp. 159-164
    • Morgan, W.F.1    Sowa, M.B.2
  • 113
    • 73949161269 scopus 로고    scopus 로고
    • Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after alpha-particle irradiation
    • Han W, Chen S, Yu KN, et al. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after alpha-particle irradiation. Mutat Res 2010;684:81-9.
    • (2010) Mutat Res , vol.684 , pp. 81-89
    • Han, W.1    Chen, S.2    Yu, K.N.3
  • 114
    • 34249315106 scopus 로고    scopus 로고
    • DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models
    • Sedelnikova OA, Nakamura A, Kovalchuk O, et al. DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res 2007;67:4295-302.
    • (2007) Cancer Res , vol.67 , pp. 4295-4302
    • Sedelnikova, O.A.1    Nakamura, A.2    Kovalchuk, O.3
  • 115
    • 84880763160 scopus 로고    scopus 로고
    • Epigenetics meets radiation biology as a new approach in cancer treatment
    • Kim JG, Moon-Taek P, Heo K, et al. Epigenetics meets radiation biology as a new approach in cancer treatment. Int J Mol Sci 2013;14:15059-73.
    • (2013) Int J Mol Sci , vol.14 , pp. 15059-15073
    • Kim, J.G.1    Moon-Taek, P.2    Heo, K.3
  • 116
    • 39749144505 scopus 로고    scopus 로고
    • Epigenetic changes and nontargeted radiation effects-is there a link?
    • Kovalchuk O, Baulch JE. Epigenetic changes and nontargeted radiation effects-is there a link? Environ Mol Mutagen 2008;49:16-25.
    • (2008) Environ Mol Mutagen , vol.49 , pp. 16-25
    • Kovalchuk, O.1    Baulch, J.E.2
  • 117
    • 34447120179 scopus 로고    scopus 로고
    • Effects of low and high let radiations on bystander human lung fibroblast cell survival
    • Baskar R, Balajee AS, Geard CR. Effects of low and high let radiations on bystander human lung fibroblast cell survival. Int J Radiat Biol 2007;83:551-9.
    • (2007) Int J Radiat Biol , vol.83 , pp. 551-559
    • Baskar, R.1    Balajee, A.S.2    Geard, C.R.3
  • 118
    • 33646052257 scopus 로고    scopus 로고
    • Cellular radiation effects and the bystander response
    • Little JB. Cellular radiation effects and the bystander response. Mutat Res 2006;597:113-8.
    • (2006) Mutat Res , vol.597 , pp. 113-118
    • Little, J.B.1
  • 119
    • 54349098072 scopus 로고    scopus 로고
    • Identification of differential gene expression profiles of radioresistant lung cancer cell line established by fractionated ionizing radiation in vitro
    • Xu QY, Gao Y, Liu Y, et al. Identification of differential gene expression profiles of radioresistant lung cancer cell line established by fractionated ionizing radiation in vitro. Chin Med J (Engl) 2008;121:1830-7.
    • (2008) Chin Med J (Engl) , vol.121 , pp. 1830-1837
    • Xu, Q.Y.1    Gao, Y.2    Liu, Y.3
  • 120
    • 3042773987 scopus 로고    scopus 로고
    • Gene expression profiling after irradiation: clues to understanding acute and persistent responses?
    • Snyder AR, Morgan WF. Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev 2004;23:259-68.
    • (2004) Cancer Metastasis Rev , vol.23 , pp. 259-268
    • Snyder, A.R.1    Morgan, W.F.2
  • 121
    • 0141757460 scopus 로고    scopus 로고
    • MAPK pathways in radiation responses
    • Dent P, Yacoub A, Fisher PB, et al. MAPK pathways in radiation responses. Oncogene 2003;22:5885-96.
    • (2003) Oncogene , vol.22 , pp. 5885-5896
    • Dent, P.1    Yacoub, A.2    Fisher, P.B.3
  • 122
    • 0141645624 scopus 로고    scopus 로고
    • The role of the ubiquitin/proteasome system in cellular responses to radiation
    • McBride WH, Iwamoto KS, Syljuasen R, et al. The role of the ubiquitin/proteasome system in cellular responses to radiation. Oncogene 2003;22:5755-73.
    • (2003) Oncogene , vol.22 , pp. 5755-5773
    • McBride, W.H.1    Iwamoto, K.S.2    Syljuasen, R.3
  • 123
    • 0036174013 scopus 로고    scopus 로고
    • Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes
    • Chen X, Shen B, Xia L, et al. Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res 2002;62:1213-21.
    • (2002) Cancer Res , vol.62 , pp. 1213-1221
    • Chen, X.1    Shen, B.2    Xia, L.3
  • 124
    • 70449553846 scopus 로고    scopus 로고
    • Transcription factor AP-1 promotes growth and radioresistance in prostate cancer cells
    • Kajanne R, Miettinen P, Tenhunen M, et al. Transcription factor AP-1 promotes growth and radioresistance in prostate cancer cells. Int J Oncol 2009;35:1175-82.
    • (2009) Int J Oncol , vol.35 , pp. 1175-1182
    • Kajanne, R.1    Miettinen, P.2    Tenhunen, M.3
  • 125
    • 80053011704 scopus 로고    scopus 로고
    • Activation of mitogen-activated protein kinase extracellular signal-related kinase in head and neck squamous cell carcinomas after irradiation as part of a rescue mechanism
    • Affolter A, Fruth K, Brochhausen C, et al. Activation of mitogen-activated protein kinase extracellular signal-related kinase in head and neck squamous cell carcinomas after irradiation as part of a rescue mechanism. Head Neck 2011;33:1448-57.
    • (2011) Head Neck , vol.33 , pp. 1448-1457
    • Affolter, A.1    Fruth, K.2    Brochhausen, C.3
  • 126
    • 3442902816 scopus 로고    scopus 로고
    • Differential activation of the phosphatidylinositol 3-kinase/Akt survival pathway by ionizing radiation in tumor and primary endothelial cells
    • Zingg D, Riesterer O, Fabbro D, et al. Differential activation of the phosphatidylinositol 3-kinase/Akt survival pathway by ionizing radiation in tumor and primary endothelial cells. Cancer Res 2004;64:5398-406.
    • (2004) Cancer Res , vol.64 , pp. 5398-5406
    • Zingg, D.1    Riesterer, O.2    Fabbro, D.3
  • 127
    • 4544323253 scopus 로고    scopus 로고
    • Mitogen-activated protein kinases: specificity of response to dose of ionizing radiation in liver
    • Narang H, Krishna M. Mitogen-activated protein kinases: specificity of response to dose of ionizing radiation in liver. J Radiat Res 2004;45:213-20.
    • (2004) J Radiat Res , vol.45 , pp. 213-220
    • Narang, H.1    Krishna, M.2
  • 128
    • 33644639895 scopus 로고    scopus 로고
    • Vascular endothelial growth factor and basic fibroblast growth factor are released by squamous cell carcinoma cell lines after irradiation and increase resistance to subsequent irradiation
    • Brieger J, Schroeder P, Gosepath J, et al. Vascular endothelial growth factor and basic fibroblast growth factor are released by squamous cell carcinoma cell lines after irradiation and increase resistance to subsequent irradiation. Int J Mol Med 2005;16:159-64.
    • (2005) Int J Mol Med , vol.16 , pp. 159-164
    • Brieger, J.1    Schroeder, P.2    Gosepath, J.3
  • 129
    • 34248545443 scopus 로고    scopus 로고
    • Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation
    • Tsai MH, Cook JA, Chandramouli GV, et al. Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res 2007;67:3845-52.
    • (2007) Cancer Res , vol.67 , pp. 3845-3852
    • Tsai, M.H.1    Cook, J.A.2    Chandramouli, G.V.3
  • 130
    • 0033822247 scopus 로고    scopus 로고
    • Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation
    • Amundson SA, Do KT, Shahab S, et al. Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation. Radiat Res 2000;154:342-6.
    • (2000) Radiat Res , vol.154 , pp. 342-346
    • Amundson, S.A.1    Do, K.T.2    Shahab, S.3
  • 131
    • 0006470452 scopus 로고    scopus 로고
    • Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses
    • Amundson SA, Bittner M, Chen Y, et al. Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses. Oncogene 1999;18:3666-72.
    • (1999) Oncogene , vol.18 , pp. 3666-3672
    • Amundson, S.A.1    Bittner, M.2    Chen, Y.3
  • 132
    • 0141853958 scopus 로고    scopus 로고
    • Transcriptional response of lymphoblastoid cells to ionizing radiation
    • Jen KY, Cheung VG. Transcriptional response of lymphoblastoid cells to ionizing radiation. Genome Res 2003;13:2092-100.
    • (2003) Genome Res , vol.13 , pp. 2092-2100
    • Jen, K.Y.1    Cheung, V.G.2
  • 133
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001;98:5116-21.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 134
    • 0042170273 scopus 로고    scopus 로고
    • Radiation-induced gene expression in MCF-7 cells
    • Stassen T, Port M, Nuyken I, et al. Radiation-induced gene expression in MCF-7 cells. Int J Radiat Biol 2003;79:319-31.
    • (2003) Int J Radiat Biol , vol.79 , pp. 319-331
    • Stassen, T.1    Port, M.2    Nuyken, I.3
  • 135
    • 0043009733 scopus 로고    scopus 로고
    • ATM-dependent and -independent gene expression changes in response to oxidative stress, gamma irradiation, and UV irradiation
    • Heinloth AN, Shackelford RE, Innes CL, et al. ATM-dependent and -independent gene expression changes in response to oxidative stress, gamma irradiation, and UV irradiation. Radiat Res 2003;160:273-90.
    • (2003) Radiat Res , vol.160 , pp. 273-290
    • Heinloth, A.N.1    Shackelford, R.E.2    Innes, C.L.3
  • 136
    • 0035096716 scopus 로고    scopus 로고
    • Effector genes altered in MCF-7 human breast cancer cells after exposure to fractionated ionizing radiation
    • Li Z, Xia L, Lee LM, et al. Effector genes altered in MCF-7 human breast cancer cells after exposure to fractionated ionizing radiation. Radiat Res 2001;155:543-53.
    • (2001) Radiat Res , vol.155 , pp. 543-553
    • Li, Z.1    Xia, L.2    Lee, L.M.3
  • 137
    • 0043211850 scopus 로고    scopus 로고
    • Does metabolic radiolabeling stimulate the stress response? Gene expression profiling reveals differential cellular responses to internal beta vs
    • Marko NF, Dieffenbach PB, Yan G, et al. Does metabolic radiolabeling stimulate the stress response? Gene expression profiling reveals differential cellular responses to internal beta vs. external gamma radiation. Faseb J 2003;17:1470-86.
    • (2003) external gamma radiation. Faseb J , vol.17 , pp. 1470-1486
    • Marko, N.F.1    Dieffenbach, P.B.2    Yan, G.3
  • 138
    • 0037871522 scopus 로고    scopus 로고
    • Identification of distinct and common gene expression changes after oxidative stress and gamma and ultraviolet radiation
    • Heinloth AN, Shackelford RE, Innes CL, et al. Identification of distinct and common gene expression changes after oxidative stress and gamma and ultraviolet radiation. Mol Carcinog 2003;37:65-82.
    • (2003) Mol Carcinog , vol.37 , pp. 65-82
    • Heinloth, A.N.1    Shackelford, R.E.2    Innes, C.L.3
  • 139
    • 0032976864 scopus 로고    scopus 로고
    • Delayed expression of hpS2 and prolonged expression of CIP1/ WAF1/SDI1 in human tumor cells irradiated with X-rays, fission neutrons or 1 GeV/nucleon Fe ions
    • Balcer-Kubiczek EK, Zhang XF, Harrison GH, et al. Delayed expression of hpS2 and prolonged expression of CIP1/ WAF1/SDI1 in human tumor cells irradiated with X-rays, fission neutrons or 1 GeV/nucleon Fe ions. Int J Radiat Biol 1999;75:529-41.
    • (1999) Int J Radiat Biol , vol.75 , pp. 529-541
    • Balcer-Kubiczek, E.K.1    Zhang, X.F.2    Harrison, G.H.3
  • 140
    • 0035884191 scopus 로고    scopus 로고
    • APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis
    • Robles AI, Bemmels NA, Foraker AB, et al. APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res 2001;61:6660-4.
    • (2001) Cancer Res , vol.61 , pp. 6660-6664
    • Robles, A.I.1    Bemmels, N.A.2    Foraker, A.B.3
  • 141
    • 0037028291 scopus 로고    scopus 로고
    • Identification of radiation-specific responses from gene expression profile
    • Park WY, Hwang CI, Im CN, et al. Identification of radiation-specific responses from gene expression profile. Oncogene 2002;21:8521-8.
    • (2002) Oncogene , vol.21 , pp. 8521-8528
    • Park, W.Y.1    Hwang, C.I.2    Im, C.N.3
  • 142
    • 0037721736 scopus 로고    scopus 로고
    • Gene expression profile of human cells irradiated in G1 and G2 phases of cell cycle
    • Chaudhry MA, Chodosh LA, McKenna WG, et al. Gene expression profile of human cells irradiated in G1 and G2 phases of cell cycle. Cancer Lett 2003;195:221-33.
    • (2003) Cancer Lett , vol.195 , pp. 221-233
    • Chaudhry, M.A.1    Chodosh, L.A.2    McKenna, W.G.3
  • 143
    • 84875137889 scopus 로고    scopus 로고
    • "Omics" of HER2-positive breast cancer
    • Bravatà V, Cammarata FP, Forte GI, et al. "Omics" of HER2-positive breast cancer. OMICS 2013;17:119-29.
    • (2013) OMICS , vol.17 , pp. 119-129
    • Bravatà, V.1    Cammarata, F.P.2    Forte, G.I.3
  • 144
    • 84876811654 scopus 로고    scopus 로고
    • Genotyping analysis and 18FDG uptake in breast cancer patients: a preliminary research
    • Bravatà V, Stefano A, Cammarata FP, et al. Genotyping analysis and 18FDG uptake in breast cancer patients: a preliminary research. J Exp Clin Cancer Res 2013;32:23.
    • (2013) J Exp Clin Cancer Res , vol.32 , pp. 23
    • Bravatà, V.1    Stefano, A.2    Cammarata, F.P.3
  • 145
    • 84863221222 scopus 로고    scopus 로고
    • Unmasking epithelial-mesenchymal transition in a breast cancer primary culture: a study report
    • Minafra L, Norata R, Bravatà V, et al. Unmasking epithelial-mesenchymal transition in a breast cancer primary culture: a study report. BMC Res Notes 2012;5:343.
    • (2012) BMC Res Notes , vol.5 , pp. 343
    • Minafra, L.1    Norata, R.2    Bravatà, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.